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Abstract 

Biological and physical sampling of a 10km long, east-west transect was 

performed during 2007, off the coast of southeast Florida. Temperature and salinity 

measurements were recorded using a conductivity-temperature-depth (CTD) sensor, and 

current direction and magnitude measurements were recorded using an acoustic Doppler 

current profiler (ADCP). Zooplankton samples were collected, during the daytime, using 

a Tucker multiple net mid-water trawl, with 760µm mesh, at intended depths of ~25m 

and ~200m, at three stations along the transect. Laboratory analysis indicated that several 

currents and water masses influenced the density distribution of calanoid copepods and 

chaetognaths. During April and September 2007, a Subsurface Counter Current existed in 

conjunction with an offshore meander of the Florida Current. Physical data confirmed the 

presence of Continental Edge Water and Yucatan Water occupying different spatial and 

temporal scales, and the boundary between these two water masses existed as the western 

boundary of the Florida Current. Temperature and salinity profiles confirmed that the 

Subsurface Counter Current was composed of Continental Edge Water and not Yucatan 

Water. Therefore, the Subsurface Counter Current observed during the transect was not a 

cross section of a passing eddy caused by the meandering front of the Florida Current. 

Densities of both taxa were highest in the Subsurface Counter Current and the 

Intermediate water, while the lowest densities are found in the Florida Current. Calanoid 

copepod and chaetognath densities exhibited typical zooplankton trends for tropical and 

subtropical coastal waters. Densities were highly influenced by the physical parameters 

of each month. Highest densities were observed in April and the lowest in 

July/September, typically the nutrient limited season. Analysis by location showed that 
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the calanoid copepod and chaetognath densities were highest inshore and decreased 

offshore. The Florida Current exhibited the lowest densities for both taxa, while the 

Subsurface Counter Current and Intermediate water had higher densities. Previously 

documented southward flow had been associated with an offshore meander of the Florida 

Current, but during May and July there was a Subsurface Counter Current and an onshore 

meander of the Florida Current. Densities of both taxa were still lowest in the Florida 

Current. The stable isotope values of the zooplankton were skewed because of the 

preservation media and it was not possible to determine if the currents and water masses 

were isotopically different, and thus creation of a correction factor for the preservation 

effect was not possible. The δ13C values were variable in magnitude and direction from 

the control for each taxon. The δ15N values were less variable, but increased from the 

control, rather than decrease, as was expected for each taxon. 

Keywords 

zooplankton, Florida Current, stable isotopes, δ13C, δ15N, preservation 
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1. Introduction 

1.1. North Atlantic Ocean and the Gulf Stream 

1.1.1.  Current Transport 

The water of the Florida Current originates in the low latitude North 

Atlantic/South Atlantic Ocean and joins the Gulf Stream to become part of the global 

thermohaline circulation, known as the Meridonal Overturning Cell (MOC). The Gulf 

Stream is western boundary current along the east coast of the United States. It is about 

100km wide and velocities can exceed 2m/s, in contrast to currents on the eastern side of 

the gyre, which are over 100km wide and have velocities only reaching 0.25m/s. Its 

properties, in the northern hemisphere are due to the cyclonic rotation of the earth and the 

resulting Coriolis force that creates this anticyclonic gyre. Water from the North and 

South Atlantic oceans travel westward in the North Equatorial Current and divides into 

two parts. One part travels along the western edge of the Bahamas to join the Florida 

Current north of Bimini, Bahamas, and in full at Cape Hatteras. The other part enters the 

Caribbean Sea through the Windward Islands Passages and Leeward Islands Passages 

(The Lesser Antilles) and the Greater Antilles Passages (Stommel, 1966; Schmitz and 

McCartney, 1993; Johns et al., 2002; Colling, 2004). Johns et al. (2002) proposed a 

model that suggested the transport of water into the Caribbean was equally partitioned 

between these passages, ~10 Sv, ~8 Sv, and ~10 Sv, respectively (1 Sverdrup (Sv)  = 106 

m3/s). The model also suggested that the seasonal transport variability of the Florida 

Current closely resembled that of the transport through the Windward Islands Passages, 

with the maximum during June/July and the minimum during October/November, having 
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an amplitude of 4 Sv (Johns et al. 2002). Flow through the Old Bahama Channel, 

Santaren Channel and Northwest Providence Channel add to the total transport of the 

Florida Current through the Florida Straits (Figure 1) (Atkinson et al. 1995; Lee et al. 

1995; Wang and Mooers 1997; Johns et al. 2002). At Jupiter, Florida these passages 

provide direct connections between the Florida Straits and the subtropical gyre that flows 

northwest past the passages of the Lesser Antilles (Atkinson et al. 1995).  

1.1.2.  Water Masses 

Potential vorticity, the angular momentum of water masses, as well as 

temperature and salinity, are acquired at the source of water mass formation and are 

assumed to be a conservative property as the water mass spreads and moves throughout 

the ocean basin. These variables are used to distinguish a certain water mass from another 

flowing along with it (Stommel, 1966). A variety of conservative and non-conservative 

water properties have been used to identify water masses. The most often used 

conservative measurements are temperature and salinity, but some semi-conservative 

tracers used are dissolved oxygen, nitrate and phosphate, dissolved inorganic carbon, and 

δ13C (DIC), δ13C (sw), and δ18O (sw) (Wennekens, 1959; Kroopnick, 1985; Bender, 1990; 

Silva et al., 2009; Bostock et al. 2010). The δ13C (sw) tends to follow the same trends as 

nutrient levels. Waters with low δ13C (sw) levels are found in conjunction with nutrient 

rich waters, and high δ13C (sw) levels are found in conjunction with low nutrient waters 

(Kroopnick, 1985; Lynch-Stieglitz and Fairbanks, 1994). The uptake of carbon into the 

calcite tests of those organisms that produces a calcite test is a good record of seawater 

δ13C (sw), with an accuracy of ±0.2‰ (Duplessy, J-C, et al., 1984; Lynch-Stieglitz and 

Fairbanks, 1994).  
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Figure 1.  Map of the Caribbean Sea. The red arrows indicate the major transport 
pathways, contributing to the total transport of the Florida Current. The Leeward Passage 
in the Lesser Antilles includes the Anegada, Antigua, Guadeloupe, and Dominica 
passages, while the Windward Island Passage includes the St. Lucia, St. Vincent and 
Grenada passages. Figure is adapted from Johns et al. (2002). 
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North Atlantic Central Water is considered one of the most important water 

masses of the Gulf Stream as it occupies most of the upper 1000m. Its temperature ranges 

from 8oC to 19oC and its salinity ranges from 35.0‰ to 36.7‰. Another water mass 

which is considered important to the Gulf Stream system is the North Atlantic Deep 

Water, which has a temperature range of 2.2oC to 3.5oC and a salinity range of 34.90‰ to 

34.97‰ (Stommel, 1966). The lowest calculated potential vorticity appear on the 

anticyclonic edge of the stream, and is most prevalent off Cape Hatteras, North Carolina, 

near where the “18oC water” is formed. A thick layer of 18oC water flows though the 

Northwest Providence Channel and a thinner layer flows through the Santaren Channel, 

and empties into the northern section of the Florida Current (Leaman et al. 1989). 

1.2. The Caribbean Sea and the Gulf of Mexico 

1.2.1. Current Transport 

From the Caribbean Sea, the waters flow through the Yucatan Channel to the Gulf 

of Mexico, known as the Loop Current, then through the Florida Straits, to become what 

is known as the Florida Current. The transport model by Johns et al. (2002) estimates that 

contributions to the total Florida Current transport from the Caribbean Sea through the 

Yucatan Channel is about 28 Sv (Sverdrup: 1Sv = 106 m3/sec). Sheinbaum et al. (2002) 

recorded transport through the Yucatan Channel to be significantly less at 23.8 ± 1 Sv, 

suggesting that more systematic and long-term observations must be conducted in the 

area to determine the magnitude of variability. Variability in transport values over long 

time scales, for example climate-relevant, is small, while variation in the transport values 

on a monthly and seasonal basis is larger. Over the course of a 2-3 year period, variation 

in transport values in the southern Florida Straits and in the Caribbean Sea showed 
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fluctuations of only about 1 Sv, which seems to be linked to the changing sea level 

throughout the Caribbean (Schott and Zantopp 1985). 

1.2.2. Eddies 

In the Florida Current, cyclonic frontal eddies will occasionally form over the 

continental shelf along the northern boundary in the southern Florida Straits and western 

boundary in the northern Florida. Although the formation is not completely understood, it 

is associated with the offshore meandering cyclonic front and southward flowing warm 

Gulf Stream waters on the western edge of the current (Lee at al. 1981; Zantopp et al. 

1987; Lee et al. 1995). When the Loop Current extends far into the Gulf the flow 

overshoots the Straits of Florida and enters on the southern side (Figure 2). In 

combination with cyclonic vorticity in this area, a cold cyclonic gyre forms. This gyre 

decreases in size as it travels to the east, mostly due to narrowing of the Straits When the 

Loop Current does not extend far into the Gulf of Mexico, the flow enters the Straits of 

Florida close to the Florida Keys leading to a strong downstream flow inshore with no 

gyre formation (Figure 3). (Lee et al. 1995). 

1.3. The Florida Current 

1.3.1. Current Properties 

The Florida Current is a fast moving current that begins at the westernmost 

Florida Keys (83oW) and then travels north between the east coast of Florida and the 

Bahama Bank to Jupiter, FL (27oN). From the 28 Sv of transport from the Yucatan 

Channel, the Florida Current transport increases by about 3 Sv due to the flow from the 

Old Bahama Channel, most likely via the Santaren Channel, and from the Northwest 

Providence Channel (Atkinson et al. 1995; Johns et al. 2002). Most studies are in 
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agreement with an average transport value of the Florida Current off the southeast coast 

of Florida to be close to 32 Sv (Molinari et al. 1985; Leaman et al. 1987; Leaman et al. 

1989).  

A study done by Schmitz and Richardson (1968) examined the average transport 

along four transects across the Straits of Florida at Sombrero Key, Cat Cay (Bahamas), 

Miami/Bimini, and Ft. Pierce. Transport increased from 29.6 Sv at Sombrero Key to 32.2 

Sv at Miami/Bimini, then 33.1 Sv at Ft. Pierce. Lee et al. (1985) and Leaman et al. (1987) 

recorded transport values at 27oN to be 30.1 Sv and 31.7 Sv respectively. Based on the 

previous studies, Leaman et al. (1987) assumed that the increase in transport from south 

to north was due to inputs from the Northwest Providence Channel and was later 

confirmed by Leaman et al. (1995) while studying the transport into the Florida Current 

from the Santaren Channel and the Northwest Providence Channel. Through velocity and 

temperature measurements, it was estimated that each channel contributed 1.8 Sv and 1.2 

Sv, respectively. This input contributes roughly 10% of the total transport downstream in 

the Florida Current. 

A look at the annual variance in transport values at Jupiter, FL from 1982-1984 

indicated a range of 8 Sv and a standard deviation of ± 1.5 Sv. An analysis of variance on 

a monthly scale showed a greater range in transport values (10 Sv) and higher standard 

deviation (± 2.5 Sv). During the summer months, transport values had the highest 

variance for the 10-30 day, 30-100 day and 100-180 day ranges, while the highest 

variances in the winter occurred during the 5-10 day, 10-30 day and 30-100 day ranges. 
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Figure 2. Near-surface velocity averages from 1989-1999 during the summer months 
(June-August). Velocity measurements indicate a large Loop Current, extending far north 
and west into the Gulf of Mexico during the summer. From DiMarco et al. (2005). 



8 
 

 

Figure 3. Near-surface velocity averages from 1989-1999 during the winter months 
(December-February). Velocity measurements indicate a small Loop Current that does 
not extend far into the Gulf during the winter. From DiMarco et al. (2005). 
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Overall, the winter months (November – April) showed the highest variance compared to 

summer (May – October). In regards to location, the highest variance occurred on the 

Florida Shelf, while the lowest variance occurred at the central axis of the Florida Current 

(Schott et al. 1988). Brooks (1979) observed axis meandering over a distance of 24 km 

(27 to 51 km off the Miami coast), which is approximately 30% of the entire passage 

width. The east-west meandering had a large effect on the transport at each stations, but 

less so on the total transport of the entire stream. Diurnal tides are responsible for up to 

20% of the total transport variance on the Miami Terrace, while they account for almost 

40% of the variance near the Bahama Bank. Semidiurnal tides are responsible for the 

total transport variance in the interior of the stream (Brooks, 1979). 

An anomalous feature of the Florida Current is the spatial and temporal variability of 

its meandering from its central axis. Along the transects at Cat Cay, Miami and Ft. 

Pierce, Schmitz and Richardson (1968) observed meanders of the western boundary of 

the Florida Current with maximum amplitudes up to 5 km, whereas the meanders at 

Sombrero Key measured up to 15 km. However, Brooks (1979) observed that the axis of 

the Florida Current meandered over a range of 25 km off the coast of Miami on a 

timescale of a few days to two weeks. The variability in current velocity as well as the 

variations in individual station transport (not total current transport), mostly towards the 

western edge, was generally attributed to the east-west meandering of the central axis of 

the current (Brooks 1979; Johns and Schott 1987; Leaman et al. 1987). 

Similar to the increase in average transport downstream, the velocity of the 

Florida Current also increases. The velocity of the current intensifies as it moves down 

stream mostly due to the narrowing of the channel in the Florida Straits and the shoaling 



10 
 

bottom topography, with a maximum depth greater than 2000 m at 83oW, decreasing to a 

depth of about 800 m at Jupiter, FL. Inflows from the Old Bahama Channel and the 

Northwest Providence Channel also add to the current’s intensification (Leaman et al. 

1987; Wang and Mooers, 1997). Records of velocities indicate the Florida Current 

moving at 1.8 m/s at 83oW and increasing to 2.0 m/s at Jupiter, FL (Wang and Mooers, 

1997). An analysis of velocity data collected at this location indicates that velocity 

variability on the small time scale (one week) is just as large as the variability on an 

annual time scale, particularly on the western side of the current. The annual cycle 

indicates a maximum velocity during May and a minimum velocity during November, 

with amplitude of about 1 m/s. This amplitude decreases to only 0.5 m/s on the eastern 

side of the current (Leaman et al. 1987). 

1.3.2. Meander and Eddy Formation 

Zantopp et al. (1987) observed meanders as well as the formation of cold-core 

eddies along a transect of the Florida Current at Daytona, FL. Meanders are not isolated 

events but periodic events on a weekly timescale. Observations of the formation of cold-

core eddies show a warm surface filament that extends across the shelf then curls 

cyclonically around a cold core. When the eddy is large enough, a southward flow can be 

produced, with some measurements reaching 50 cm/s. This southward flow is preceded 

by a strong onshore flow, and developed in conjunction with a large offshore meander of 

the Florida Current (Lee et al. 1981; Zantopp et al. 1987). Generally, the coastal shelf 

waters are cooler than the waters of the northward moving Florida Current. Water in 

these eddies is not trapped coastal water as in the cold core rings in the North Atlantic, 

but rather upwelled cold, nutrient rich North Atlantic Central Water (NACW).These 
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waters can be easily determined by T-S plots, as coastal water is lower in salinity (36.0 

‰) and tends to exhibit salinity stratification, while waters of the Gulf Stream are fairly 

uniform and have a higher salinity (36.5 ‰). The diameters of these eddies increase past 

Jupiter, Florida as the width of the continental shelf increases (Lee et al. 1981; Yoder et 

al. 1981). 

1.3.3. Deep Water Flow Reversal 

Another anomaly associated with the Florida Current is the presence of an 

aperiodic, deep-water flow reversal, flowing south, rather than north with the Florida 

Current. During the months of September and October 1972, May and October 1973 and 

January 1974, deep water flow reversals were detected in the Florida Straits off the coast 

of Miami (Stepien 1980). These flow reversals lasted anywhere between two and five 

days. Generally, when the flow is to the north, the cross-flow is to the east (offshore). 

When there are deep reversals to the south, the cross flow is to the west (onshore). Duing 

and Johnson (1971) also confirmed the presence of southward flowing deep water 

counter currents in the Florida Straits at a station 26 km east of Fowey Rock, off Miami 

in November 1970. In a vertical profile extending 500 m, southward flow was detected in 

the lower 100m of the water column and sustained a maximum velocity of 30 cm/s, while 

strong westward flow recorded a maximum 70 cm/s. No change in velocity or direction 

was detected in the water mass above the counter current. It was estimated that the 

southward flow constituted up to 11% of the transport in this area. Observations of 

southward flow were also made off the coast of Key Biscayne in January 1971, 

constituting approximately 25% of the transport in that area. Profiles of the water column 

on the east side of the Florida Current, near Bimini, indicated no southward flow. 
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Zantopp et al. (1987) observed southward flow as well, but they attributed this to the 

formation of an eddy. These southward flowing counter currents seemed to be only 

associated with western boundary (cyclonic front) of the Florida Current, and occupied 

the bottom of the water column following the bottom topography. Uncertainty exists as to 

the relation of these counter currents to eddies, but they are most likely caused by the 

meandering Florida Current. 

1.3.4. Water Masses of the Florida Current 

The water masses that affect the southern section of the Florida Current originate 

in the Caribbean Sea and the Gulf of Mexico, and only to a small extent, the waters of the 

Western North Atlantic. In the section of the Straits of Florida between the Florida Keys 

and Cuba, Yucatan Water is suggested to have North Atlantic origin water mixing with 

South Atlantic water. There is also evidence to suggest Antarctic Intermediate water 

infiltrates between 200m and 1000m, based on the salinity minimum. Yucatan water 

undergoes seasonal variation in the upper 200m, with summer salinity ranges between 

35.9 to 36.6 ‰, and summer temperature ranges between 21 to 30oC. Winter salinity 

ranges are between 35.9 to 36.6 ‰ and temperature ranges between 20 to 28oC 

(Wennekens, 1959; Schmitz and Richardson, 1991; Schmitz and McCartney, 1993). 

Evaporation and seasonal cooling modify the upper 300m of the original Yucatan water, 

which create new water masses in the NW Gulf of Mexico. Not found in the Straits of 

Florida, but contributing to the water masses found there, is the Western Gulf Water. This 

water mass is formed in the Gulf of Mexico, west of a line drawn from the Yucatan 

Peninsula and the Mississippi delta. Seasonal temperature variations were observed but 

salinities remained constant (36.1-36.8 ‰, 22-29oC, in the upper 100m) (Sverdrup et al. 
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1946; Wennekens, 1959). Continental Edge water is defined by the waters of the Eastern 

Gulf of Mexico between the northern and eastern edge of the Yucatan Peninsula and the 

coastal regions between the Mississippi delta and western tip of Florida. This water mass 

is hypothesized to be an intermediate water mass between the Yucatan and Western Gulf 

waters. Patterns of the T-S plots are not as homogeneous as the Yucatan water and 

Western Gulf water. Below 200m, the T-S plots are very similar to those of the Western 

Gulf water. The greater spread in salinity ranges are found in the upper 150m of the water 

column. Differentiation between Yucatan water and Edge water is found in the upper 

300m. There is a seasonal difference in the Edge water mass, where summer salinity 

ranges from 36.1 to 36.7 ‰, and temperature ranges from 15 to 30oC. Winter salinity 

ranges from 36.1 to 36.7‰, and temperature ranges from 11 to 26oC (Fuglister, 1946; 

Pheleger, 1951; Wennekens, 1959).  

The northern Straits of Florida, from Miami to north of Bimini, are characterized 

by well differentiated Continental Edge water and Yucatan water. Edge water has a very 

narrow T-S range in the upper 150m, also accompanied by large temperature and salinity 

fluctuations at the surface. Yucatan water has the same characteristics as previously 

described. There is very little temperature fluctuation in the upper 100m, but there is a 

disappearance of a salinity minimum. This is due to the constraints of the bathymetry 

which prevents intrusion of waters greater than 800m into this part of the Straits 

(Wennekens, 1959, Schmitz et al., 1993). 

The boundary between the Edge water and the Yucatan water in the northern 

Straits is found approximately 16 km – 24 km from the east coast of Florida, about one-

third the distance from Miami to Bimini. A cross channel transect showed that on the 
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Bimini side of the straits, a salinity maximum exists of 36.8 ‰ between 100-200m, 

characteristic of Yucatan water. Eight kilometers off Florida’s east coast, T-S plots are 

characteristic of Edge water, with no salinity maximum, and the water is nearly isohaline 

at about 36 ‰ to over 100m. At stations approximately 16 and 32 km offshore, there are 

noticeable salinity variations between 50 and 200m. These stations are located near the 

meandering axis of the Florida Current; therefore, salinity variations may be explained by 

the meandering of the boundary edge between the Edge water and Yucatan water. 

Salinity fluctuations must be considered carefully as they are dependent on a spatial 

distribution that varies on a temporal scale. The continental margin of the Florida Current 

is characterized by Continental Edge water, and the insular margin is characterized by 

Yucatan water (Parr, 1938; Wennekens, 1959; Schmitz et al., 1993). 

The meandering front of the Florida Current determines where the boundary 

exists for these two water masses. Seasonal temperature fluctuations occur from the 

surface to about 150m and vary between 25oC and 28oC (Bsharah, 1957; Wennekens, 

1959). Temperature is highly variable between 50 and 100m, ranging from 13oC to 23oC, 

possibly indicating the location of the thermocline. The coldest water found in the Straits 

of Florida has been record at 7oC, and has an origin in the South Atlantic and flows 

through the Caribbean Sea and out through the Straits (Schmitz and Richardson, 1991; 

Schmitz and McCartney, 1993). A water mass found in the Santaren Channel at the 24.5-

27.0oC layer is Subtropical Underwater (STUW). There is no indication that the 18oC 

water, described previously, exists in the Florida Current before the flow reached the 

Santaren Channel. Maximum rate of transport increase is found in the 18oC water layer 
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from Jupiter, FL downstream to Cape Hatteras, increasing from 4.5 Sv to 19.1 Sv 

(Leaman et al. 1989). 

1.4. Marine Production 

1.4.1. General Information 

The majority of phytoplankton and zooplankton occupy the water column from 

the surface down to 75 to 200 m, dependent on light availability. There are estimates that 

these waters support 95% of marine primary production, and possibly 30% of the total 

global primary production (Daly and Smith, 1993). Low latitude ocean waters are 

characterized by high species richness, but lower biomass. From a basin-wide 

perspective, higher levels of chlorophyll exist along the coastal areas and areas of 

upwelling, and remain low in the subtropical gyres. High levels of chlorophyll indicate 

high levels of phytoplankton which generally translates to increased zooplankton 

biomass. Within these regions, phytoplankton and zooplankton exhibit a patchy 

distribution, both vertically and horizontally, as well as seasonal variations (Omori and 

Hammer, 1982; Legendre and Demers, 1984; Daley and Smith, 1993). Aggregations of 

zooplankton, which vary by species, age and size classes, can be caused by physical 

properties such as temperature and salinity gradients and water movement, as well as by 

biological properties such as the presence of food sources and predator avoidance, or 

seasonal-based spawning periods (Omori and Hammer, 1982, Steele; 1989). 

1.4.2. Primary Production 

Primary production tends to follow similar patterns of phytoplankton distribution. 

Primary production of a community is defined as the change in biomass over a period of 

time. Production is a function of the formation of new organic matter, and the additions 
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and losses due to respiration, sinking, grazing, diffusion and advection (Niebauer and 

Smith, 1989; Daly and Smith, 1993; Cowles et al. 1998). Primary production can be 

divided into two different types. New production is primary production from freshly 

upwelled nitrate as well as atmospheric nitrogen, and regenerated production is from 

ammonia that has been excreted by other organisms and converted into a useable form for 

primary producers (Eppley and Peterson, 1979; Mann and Lazier, 2006). 

In the tropical waters and subtropical summer water, phytoplankton is generally 

nutrient-limited but can move within the water to overcome this limitation by regulating 

diffusion, regulating sinking rates, and turbulent motion of the water (Pasciak and Gavis, 

1974, 1975). Savidge (1981) found that in some diatoms and flagellates, increased 

turbulence caused an increase in nitrogenous nutrient uptake and an increase in growth 

rate by 25-40% and 60%, respectively. In this in situ experiment, light levels may have 

been influenced by the turbulence, contributing to the results. Other studies (Pasciak and 

Gavis, 1975; Thomas and Gibson, 1990, 1992) have shown that diatoms tend to be 

positively affected by turbulence while dinoflagellates are negatively affected. It is 

difficult to determine the actual effect of turbulence when comparing different species, as 

the turbulence levels simulated in these multiple studies were sometimes outside of the 

range experienced in the natural ocean. Li (2002) examined different phytoplankton sizes 

and stratification as a proxy for different degrees of turbulence, finding that the greatest 

diversity was found in the intermediate degrees of stratification. When relating this to an 

ecological perspective, it is in accordance with the intermediate disturbance theory, 

which states that community diversity levels are the highest when environment is 

subjected to intermediate levels of disturbance (Mann and Lazier 2006). 
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1.4.2.1. Primary Production Estimates 

Ryther (1969) synthesized the data collected by Schaefer (1965) and described 

different regions of the ocean as having different productivity. The open ocean, 

accounting for 90% of the total area, contributes up to 81.5% (16.3 PgC/yr) (1 Pg = 1 

Petagram = 1x1015g) of the world’s ocean primary production. The coastal waters over 

the continental shelf and areas of divergent fronts account for almost 10% of the total 

area and contribute to 18% (3.6 PgC/yr) of the world’s ocean primary productivity. 

Finally, upwelling regions account for a very small fraction (0.1%) of the total area but 

contribute to 0.5% (0.1 PgC/yr) of the total primary production. Based on satellite near-

surface chlorophyll measurements and local data on the chlorophyll maximum, 

Longhurst et al. (1995) were able to estimate the net global production to be 44.70 Pg 

C/year, more than double the estimates of Schaefer (1965). The total amount of global 

primary production is uncertain, but with better technology and methods of primary 

production estimation, total global production estimates are bound to change. What can 

be agreed upon is that when comparing primary production by total area in the world 

ocean, upwelling regions are the most productive regions. Waters over the continental 

shelf are the next most productive, and then the open ocean (Schaefer, 1965; Ryther, 

1969; Pomeroy, 1974; Chavez and Barber, 1987; Laws et al. 1987; Platt et al. 1989; 

Longhurst et al., 1995). 

1.4.3. Primary Consumers and Secondary Consumers 

Even more uncertain than the primary production estimates are the global patterns 

of primary and secondary consumers, as zooplankton community structure is dependent 

on growth, reproduction, mortality and advection of each individual species. Zooplankton 
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densities are a good proxy for phytoplankton production as they are quick to use new 

food resources associated with phytoplankton blooms, and therefore, their seasonal 

patterns mirror the phytoplankton seasonal patterns, both peaking in late summer, for the 

shallow shelf waters as well in the deeper waters (Turner et al., 1979a). It was previously 

thought that primary consumers were large zooplankton such as copepods, mysids and 

euphausiids, but it has now been suggested that micro-plankton are the larger group of 

primary consumers. They are almost equal in biomass to the larger zooplankton, but have 

higher metabolic rates, meaning they transfer greater amounts of energy into the system. 

This complicates the ever expanding food web and makes it difficult to establish the role 

of lower trophic level organisms within it (Pomeroy, 1974). 

Many different taxa of zooplankton are well described, but their spatial and 

temporal variations, as well as trophic position and mortality, are rather difficult to study. 

To complicate this situation further, advection by ocean currents and tidal flow transport 

in and species’ transport out from certain regions (Iles and Sinclair, 1982; Daly and 

Smith, 1993). Boundaries between water masses, characterized by different temperature, 

nutrient levels, and/or current speed, tend to be areas of increased biological production. 

The types of fronts that tend to be associated with the highest levels of production are 

continental shelf-breaks, estuarine fronts, tidal fronts, and current boundaries (Steel, 

1989; Daly and Smith, 1993). 

1.4.4. Production on the Southeast Continental Shelf 

The southeast continental shelf of the United States, and even more specific, the 

East Florida Shelf, is characterized by having generally low production, but blooms of 

phytoplankton, and consequently zooplankton, are known to occur. They are associated 
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with pulses of nutrients from coastal rivers and estuaries, as well as isolated upwelling 

events associated with frontal eddies (Haines and Dunston, 1975; Yoder et al., 1981). The 

continental shelf break at the 200m contour along the east coast of Florida, the East 

Florida Shelf (EFS), extends roughly 160 km along Miami-Dade, Broward, and Palm 

Beach counties, and extends an average of 6 km offshore, encompassing an area of 600 

km2 at a depth of 55m (Finkl et al., 2005).  Beyond the EFS, the slope bathymetry drops 

to 800 m (Wang and Mooers, 1997). Processes occurring within estuaries can have 

affects on the plankton communities of the continental shelf. Seasonal patterns of 

estuarine primary production are mirrored by production on the continental shelf. As 

estuarine plankton are transported out to the shelf where there is an increase in light 

attenuation, primary production increases but then rates of primary production drop 

significantly just 10 km off shore. (Turner et al., 1979b). 

It was once assumed that waters seaward of the shelf and bordered by the western 

edge of the Gulf Stream, were low in nutrients and relatively unproductive, but further 

studies of the cyclonic eddies formed along this region provide a different perspective. 

The western front of the Gulf Stream can be detected by a sharp temperature gradient 

(23oC to 26oC) with the Gulf Stream waters being warmer than the coastal waters. Water 

that is >21oC, as well as slightly lower in salinity (36.0 ‰), along this front indicates the 

presence of upwelled, nutrient rich North Atlantic Central Water (NACW), in the core of 

the eddy. Highest chlorophyll levels (>4 µg/L) are detected in the cold, upwelled waters, 

and chlorophyll levels drop to 0.1 µg/L when upwelling is not present (Bishop et al. 

1980, Yoder et al. 1981).  Primary production levels ranged from 1.2-2.4 g C/m2/day and 

assimilation ranged from 15 to 19 mg C/ mg Chl-a/ hour. At the highest level of recorded 
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primary production (6 g C/m2/day), the depth of the euphotic zone was only 25-40m. The 

maximum concentration of diatoms observed was 1.8x106 cells/ L (Yoder et al. 1981). 

Assuming that an eddy passed by an area once every two weeks and the eddies were of 

similar size, Lee et al. (1981) calculated the estimated annual nitrogen input as well an 

annual production levels for the area that the eddy covered. In this case, Lee et al (1981) 

observed an eddy that was 225 km in diameter and waters with nitrate levels of 10µmol/L 

in an area that normally does not exceed 1µmol/L. Assuming a constant rate of nitrate 

influx, annual direct nitrogen input into the area was roughly 6.4 g N/m2/yr. Since C:N 

ratios range from 5:1 to 10:1, theoretically, eddy passages could annually contribute 32-

64 g C/m2/yr to the area. Due to the eddy-forced upwelling of NACW on a time scale of 

weeks and resulting phytoplankton blooms, the southeast coast of the United States is an 

important area for secondary producers and larval species of consumers to develop 

(Yoder et al. 1981). 

1.4.5. Study Species 

1.4.5.1. Calanoid Copepod (phylum: Crustacea; subclass: 

Copepoda; order: Calanoida;) 

Roughly 11,500 species of calanoid copepods are known, divided into 200 

families and 1650 genera Within the order Calanoida, there are roughly 1800 species of 

marine copepods, encompassing 195 genera, most being pelagic species. They are one of 

the most numerous multi-cellular organisms on the planet. Copepods inhabit freshwater, 

brackish, and hypersaline environments. They are distributed vertically throughout the 

water column, and are found over the continental shelves as well as in the pelagic waters. 

Some species, generally the pelagic species, can withstand wide ranges of salinity and 
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temperature and can, therefore, be distributed throughout many geographical regions. 

Other species are somewhat limited in their tolerances and are confined to specific 

regions (Humes, 1994; Mauchline, 1998). 

Copepods tend to aggregate at the vertical or horizontal front between different 

water masses. In coastal regions bordered by fast moving western boundary currents, 

such as the Gulf Stream, communities of copepods often become entrained in the 

cyclonic eddies, preventing them from being transported downstream (Ashjian, 1993; 

Piontkovski et al. 1995). Cross shelf flow and undercurrent velocity, coupled with diel 

vertical movement, determines if an organism stays over the shelf or moves offshore to 

continue transport downstream. Temperature and salinity gradients also play a role in 

dictating cross-shelf movement (Hopkins et al. 1981; Mauchline, 1998). 

Copepod species at middle and higher latitudes tend to show more seasonality in 

their breeding than do those species in the lower latitudes. In high latitudes, several 

generations of copepods can exist within one breeding season, as generation times 

usually span a time frame of two weeks to two months, although some species have 

generation times upwards of a year or two (Diel and Tande, 1992; Mauchline, 1998). 

Periodicity of breeding can vary between species as well. Some breed continuously; some 

are discontinuous but breed over long periods of time; and some are sporadic breeders. 

Specifically in the lower latitudes, breeding appears to be continuous as abundance tends 

to be consistent, although there are peaks in abundance following phytoplankton blooms 

(Heinrikh, 1962). 

Copepods are important to marine ecosystems because they provide a trophic link 

between phytoplankton and small fish, baleen whales, and many invertebrate species 
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(Frost, 1987). Availability of food resources, whether it be phytoplankton production for 

herbivorous species, or eggs and nauplii of other species of carnivorous copepods, can 

create a cascading effect in the larval production of other organisms, whether planktonic 

or benthic (Lonsdale et al. 1996; Mauchline, 1998). In a feeding study, Acartia tonsa 

selectively fed on organisms that were higher in protein content, even though smaller, 

less protein enriched organisms were present. This suggests that copepods selectively 

feed in order to maximize their nitrogenous ingestion (Cowles, 1988). When small scale 

turbulent events are introduced to the environment, copepod metabolism increases, most 

likely due to increased stimulation to the sensory organs, resulting in increased feeding 

and excretion rates (Alcaraz et al., 1994). 

During a comprehensive zooplankton sampling regime from Cape Hatteras to 

southern Florida along the continental shelf, Bowman (1979) identified about 100 species 

of calanoid copepods. Bowman noted a clear zonation between inshore and offshore 

species. Also, the species richness tended to increase with increased distance from shore. 

To give an example of the extremes, at an inshore station, only Acartia tonsa was found, 

whereas at an offshore station, 42 species of copepod were found. Acartia tonsa, an 

estuarine species, and Labidocera aestiva, a coastal species, were the most predominant 

species found in the coastal assemblage. Particular to the cruise along the Florida coast, 

Paracalanus parvus, Centropages furcatus, Eucalanus pileatus, and Labidocera aestiva 

were the most dominant species in the shelf assemblages. Based on distribution patterns 

of all the other species found, they are classified in the oceanic assemblage. In the 

continental shelf waters, rarely were only shelf species found. Most often a combination 

of the coastal, shelf and oceanic species of copepods were collected (Bowman, 1979). 
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1.4.5.2. Chaetognath (phylum: Chaetognatha) 

Roughly 100 species of chaetognaths exist. They are a fairly ubiquitous species in 

the world’s oceans, occupying coastal and pelagic environments in both tropical and 

polar regions They are flat, transparent organisms, reaching lengths between 1 and 2cm, 

with their chitinous grasping hooks being one of its most identifiable structures 

(Casanova, 1999; Johnson and Allen, 2005). Chaetognaths play an important role in 

marine ecosystems, both as a predator and prey. They are voracious predators, with body 

size being the limiting factor in prey selection. Adults tend to feed primarily on copepods 

but have been known to feed on tintinnids, barnacle larvae, fish larvae and other 

chaetognaths. Newly hatched chaetognaths tend to prey on smaller organisms, especially 

copepod nauplii. High abundance of chaetognaths in coastal waters can have serious 

impacts on the copepods populations (Baier and Purcell, 1997; Johnson and Allen, 2005). 

Some species are also known to be cannibalistic (Casanova, 1999). In an in situ study 

done by Baier and Purcell (1997), they concluded that chaetognaths are more active 

feeders at night as the number of prey per chaetognath, determined from gut content 

analysis, was almost twice as great at night than during the day. Also, when Baier and 

Purcell (1997) compared these data with previous feeding rate information as well as 

with temperature data, they determined that the cooler temperatures caused a longer 

digestion rate and, therefore, lower feeding rate in the chaetognaths. 

Breeding and spawning in tropical and subtropical waters is mostly uninterrupted, 

although rates of production can be influenced by biotic and abiotic changes within the 

environment. It is suggested that spawning is also determined by chemical stimuli from 

algae and diatom growth, an indication that there is a plentiful food supply for the larvae, 
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and chemical stimuli given off by the males and females to synchronize spawning 

behaviors (Alvarino, 1994). 

Stepien (1980) examined the occurrence of chaetognaths in the Florida Current 

off the coast of Miami in the deep water flow reversals at roughly 600m. In addition to 

the twenty species described for that area, this study described five additional species. 

Vertical distribution of species was clearly defined in the epipelagic (0-200m), 

mesopelagic (200-600m), and meso-bathypelagic (>500-600m). Species were also 

zonally specific, with certain species occupying the neritic waters and others occupying 

the oceanic environment. When sampling different locations, the presence or absence of 

certain species can be used as an indicator of different water masses. The unusual co-

occurrence of many epipelagic, mesopelagic and meso-bathypelagic species of 

chaetognath within the deep southward flow indicated that a down welling of coastal 

water may have occurred in association with the flow reversal. In addition to vertical 

distribution by species, there is also distribution by size. Chaetognaths in the larval and 

juvenile stages tend to occupy the surface water while adults will occupy the deeper 

waters below 225m (Alvarino, 1994). 

1.5. Stable Isotopes in Ecology 

1.5.1. General Information 

The analysis of stable isotope ratios have been utilized to determine differences in 

terrestrial and aquatic systems; differences in freshwater, brackish water, and marine 

environments; and differences between coastal and open ocean environments. They have 

been used in a variety of ecosystem types to understand historical and present food web 

interactions, including the recreation of historical and present-day food webs for the polar 
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oceans (McConnaughey and McRoy, 1979; Hobson and Welch, 1992), for native species 

of freshwater lakes for potential restoration (Vander Zanden and Rasmussen, 2001; 

Vander Zanden et al., 2003), and effects of exotic species on local ecosystems (Vander 

Zanden et al., 1999). Tracking the changing stable isotope ratios of only a few organisms 

within an ecosystem can be used as a proxy for environmental changes whether it is on a 

small, seasonal scale or on a large, climatic scale. Stable isotopes can also be used to 

determine environmental changes along a spatial scale, including small scale from shelf 

water to oceanic environments, or ecosystems with large spatial scales, such as latitudinal 

differences (Rau et al. 1982; Rau et al., 1983; Schell et al., 1998; Perry et al., 1999). In 

the marine environment, this method has been used to determine ecosystem importance 

for organisms as small as zooplankton and benthic organisms, to larger species such as 

fish, mammals, and some apex predators. 

The stable isotope ratios of carbon and nitrogen, 13C/12C (δ13C) and 15N/14N 

(δ15N), are commonly used to determine food web structure within an ecosystem. The 

ratios of these non-decaying, heavier to lighter isotopes give an indication of how energy 

is passed through the food web (DeNiro and Epstein, 1978, 1981; Minagawa and Wada, 

1984; Hirons 2001). The heavier isotopes (13C and 15N) are preferentially conserved by 

the organism while the lighter isotopes (12C and 14N) are lost to the environment, leading 

to an enrichment of the heavier isotopes within the organisms with increasing trophic 

levels. The predator assimilates the heavier isotope of its prey into its tissues while 

respiring and egesting/excreting the lighter isotope. This is called the trophic enrichment 

factor (TEF) and is defined as Δ δ (study isotope) = δ animal – δ food. Stable isotope ratios 

are always expressed in terms of the heavier to lighter isotope (Peterson and Fry, 1987; 
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Michener and Kaufman, 2007). Stable isotope analysis proves to be a more useful tool in 

estimating an organism’s diet compared to gut content analysis, fecal content analysis 

and field/laboratory observations, as these methods represents a snap-shot in time while 

stable isotopes represent the diet over a period of time, particularly in the case of an 

opportunistic predator (Sholto-Douglas et al., 1991). The period of time in which the 

stable isotope ratios represent is dependent on the tissue turnover time. Age, tissue type 

and physiological state of an organism influence the metabolic rate and, in turn, affect the 

turnover rate. Zooplankton stable isotope ratios tend to represent the current 

environmental conditions, as they have a short life span and fast tissue turnover time. 

Stable isotope ratios of larger, longer-lived organisms will represent environmental 

conditions more in the past (Fry and Arnold, 1982; Tieszen et al., 1983; Sholto-Douglas 

et al., 1991). In situations where analyzing the entire body of an organism is not practical, 

multiple tissue types should be analyzed to determine the overall stable isotope 

composition of the organism and its diet, as it has be shown that different tissue types 

have different stable isotope values (DeNiro and Epstien, 1978, 1981). 

1.5.2. Carbon (δ13C) 

Differences in δ13C values among organisms indicate a different source of carbon 

at the base of the food web from their respective environments, and can be identified by 

their origin (i.e.: marine, freshwater, terrestrial), or by the different photosynthetic 

pathways utilized by the primary producers (i.e.: C3, C4, CAM). In the marine 

environment, δ13C values can be used to track movement of migratory species, and 

species entrained in a certain water mass (Schell et al., 1998). Carbon isotopic ratios are 

generally preserved between prey and predator, but can vary by 1-3‰. In some cases the 
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enrichment can be even higher and also vary by season. Since these values are highly 

variable and small between trophic level, the stable isotope values of carbon are not 

recommended for use in determining trophic changes in a particular food web, but rather 

aiding in determining the source of energy input into the system (Fry and Quinones, 

1994).  

When analyzing the isotopic carbon content of organisms with carbonate shells 

and bones, it is important to remember that the soft tissue will provide information on the 

diet while the bones and shells will provide information on the CO2 which was dissolved 

in the water. It is also important to consider the biochemical components of the tissue 

being analyzed. Tissues and/or organisms high in lipid will have more negative δ13C 

values than those low in lipids. This relationship tends to be transferred to the next 

trophic level as well (DeNiro and Epstein, 1978). 

When comparing the δ13C values across latitudes in the northern and southern 

hemisphere oceans, it was determined that change in temperature is not the only factor 

affecting carbon isotope composition, as each hemisphere showed different variations, 

although there was a very general trend of decreasing δ13C values poleward. Different 

rates of lipid production as well as different rates of metabolism must be considered (Rau 

et al., 1982) 

The utilization of δ13C analyses is most useful in determining the diets of near 

shore organisms as the δ13C values of terrestrial plants do not overlap with aquatic plants, 

as well as determining the contribution of C3 and C4 plants to a diet, since those values do 

not overlap either. The δ13C values for C3 plants range from -24‰ to -34‰, while the 

values for C4 plants range from -6‰ to -19‰ (DeNiro and Epstein, 1978; Peterson and 
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Fry, 1987). In the marine environment, atmospheric CO2 is at equilibrium with the 

bicarbonate CO2 in the surface waters. The fractionation of this dissolved carbon gives 

marine phytoplankton δ13C values between -19‰ and -24‰ (Sackett et al., 1965; DeNiro 

and Epstein, 1978; Rau et al., 1982; Fry 2006). 

1.5.3. Nitrogen (δ15N) 

The variations in δ15N values within an ecosystem can be used to determine the 

trophic position of an organism. The δ15N values are more enriched from prey to predator 

because δ15N accumulates stepwise in the food chain, but values can vary between 

individuals of the same species fed the same diet, as well as vary between different 

species fed the same diet. All the tissue types of an organism are enriched relative to their 

diet, but vary significantly between each other.  

In regards to the plant types, those that fix atmospheric nitrogen, for example 

blue-green algae in oligotrophic waters, will have lower 15N/14N ratios than those that 

assimilate inorganic nitrogen in the forms of ammonia and nitrate, like diatoms, in more 

nutrient rich waters. The δ15N values from the oligotrophic East China Sea were low (-

2.1‰) compared to the nutrient rich Bering Sea (5.6‰) (DeNiro and Epstein, 1981; 

Minagawa and Wada, 1984). Ultimately, δ15N values of producers are dependent on the 

inorganic source of nitrogen and these values are enriched stepwise at every trophic level. 

The general stepwise enrichment is 3-3.4‰ per trophic level regardless of the nitrogen 

source or habitat, but the many deviations from this value indicate that there is no simple 

food chain in an ecosystem, but rather an expansive food web with different producers 

and varying feeding preferences/habits by consumers contributing to its complexity 
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(DeNiro and Epstein, 1981; Minagawa and Wada, 1984; Mullin et al., 1984; Schell et al., 

1998). 

1.5.4. Stable Isotope Ratios and Zooplankton 

When examining carbon and nitrogen isotope ratios of zooplankton with regional 

differences, Fry and Quinones (1994) deduced that variations in the combinations of 

isotope ratios between the different regions was most likely due to the variations in 

phytoplankton types in the lower trophic levels. The δ13C values were more variable in 

the coastal and shelf area, ranging between -18‰ and -24‰, compared to stations in the 

oligotrophic Sargasso Sea, having values ranging between -18‰ and -21‰. 

Buskey et al. (1999) evaluated the variations of δ13C in the copepod Acartia tonsa 

within an estuary over spatial and temporal scales. The δ13C values were enriched by 4-

8‰ in the summer months, compared to winter months. In keeping with the concept that 

differing δ13C values indicate different carbon sources, Buskey et al. found that δ13C 

values were enriched by 2-5‰ in A. tonsa collected over seagrass compared to those 

collected over muddy bottoms. Spatial differences, whether they be small on a scale of a 

couple kilometers or large on a scale of hundreds of kilometers, or temporal differences 

(i.e. seasonal), can be reflected in δ13C values in zooplankton, allowing these stable 

isotope values to be used to determine different source carbon. 

A comparison of the δ15N values between these regions was less variable but there 

was a clear distinction between regions. Coastal and shelf values ranged between 5‰ and 

8‰, where the open ocean values ranged between 2‰ and 4‰. Although regional values 

are evident, organism size is an important variable for all regions. Increasing size 
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generally led to increased trophic level based on the δ15N values (Sholto-Douglas et al., 

1991; Fry and Quinones, 1994).  

Schell et al. (1998) observed 3‰ enrichment in δ15N values from less carnivorous 

copepods and euphausiids to the more carnivorous chaetognaths, implicating different 

trophic positions between those organisms. When specifically looking at zooplankton 

(calanoid copepods and chaetognaths), Mullin et al. (1984) observed the reverse of what 

is expected when different organic nitrogenous nutrients are present for photosynthesis. It 

was previously expected that when NO3
- is most readily available (compared to NH4

+), 

the δ15N values of the zooplankton will be low, yet Mullin et al. observed higher δ15N 

values. Enrichment in δ15N of the copepods and chaetognaths has been attributed to the 

increased levels NO3
- , decreased levels of NH4

+, and rapid turnover of nitrogen in the 

euphotic waters. The δ15N values for zooplankton clearly define different trophic levels 

within the ecosystem, as well as identify different sources of nitrogen acquisition by the 

primary producers in the ecosystem, allowing these isotope values to be used for trophic 

determination as well as source determination. 

1.6. Preservative Effects on Stable Isotope Ratios 

The effect of chemical preservation methods on stable isotope results, especially 

δ13C, is still varied. A number of studies have focused on the effects of formalin and 

ethanol preservation methods on plant and animal tissues. In general, preservation in 

formalin generally led to a depletion in the δ13C values of the organic material, 

specifically in marine and freshwater zooplankton (Mullin et al., 1984; Syvaranta et al., 

2008), avian muscle (Hobson et al., 1997), fish muscle and other fish tissues (Bosley and 

Wainright, 1999; Kaehler and Pakhomov, 2001; Sarakinos et al., 2002; Sweeting et al., 
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2004; Kelly, et al., 2006), a certain fruit fly species (Ponsard and Amlou, 1999; Sarakinos 

et al., 2002) and a species of kelp (Kaehler and Pakhomov, 2001). Some studies have 

found contradictory results with formalin preservation causing enrichment in δ13C values, 

specifically in the Asian clam (Sarakinos et al., 2002) and freshwater zooplankton 

(Feuchtmayr and Grey, 2003). 

Contradictory effects have occurred in both in the magnitude and direction of 

δ15N values as a result of chemical preservation, but in most cases, regardless of 

direction, the change in the isotope ratio was less than 1‰. The few exceptions include 

the study by Bosley and Wainright (1999) which showed enriched juvenile winter 

flounder muscle tissue (1.21‰ for formalin, and 1.41‰ for formalin/ethanol 

combination) and enriched mud shrimp (2.49‰ for formalin, and 1.10‰ for 

formalin/ethanol combination).The study by Sweeting et al. (2004) showed an 

enrichment of 1.05‰ in the muscle tissue of the Atlantic cod for ethanol treatment only. 

The liver and roe were also analyzed, but did not show enrichment greater than 1‰. 

Uncertainties exist as to how chemical preservative specifically affect the stable 

isotope ratios of the organic material. Bosley and Wainright (1999) suggested that 

chemical preservatives may promote the leaching of compounds rich in the lighter 14N 

isotope and compounds rich in the heavier 13C isotope to explain the enriched δ15N and 

depleted δ13C values in their study. The binding of lighter carbon from the preservatives 

with tissues (specifically formalin) and the hydrolysis of proteins could also cause 

depletion in the δ13C values (Arrington and Winemiller, 2002; Edwards et al., 2002; 

Sarakinos et al., 2002; Kelly et al., 2006). The magnitude of the depletion may be due to 
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varying isotopic content of the preservatives from the manufacturer (Arrington and 

Winemiller, 2002). 

Based on the discussion by Kelly et al. (2006), variations in the magnitude of the 

stable isotope ratio shift between chemically preserved organic materials, specifically fish 

tissue in this case study, and dried samples may be due to the different lipid types and the 

ratios of the lipid types within the tissue. Fish tissue contains phospholipids and free fatty 

acids, which are polar molecules, and triglycerides, which are non-polar molecules. 

These lipids of differing polarity react differently with different preservation media, 

specifically ethanol (a polar compound) and formalin (a non-polar compound). 

Ethanol is responsible for removing the greatest proportion of lipids compared to 

formalin (75% versus 45%). Using calanoid copepods and cyclopoid copepods and 

Cladocera as the study organisms, Syvaranta et al. (2008) deduced that ethanol definitely 

acts as a lipid extracting agent, due to the enriched δ13C values and the lower C:N ratio in 

preserved samples, as lipids are depleted in δ13C. The high variability in the effect of 

ethanol treatment on the copepods is due to the high variability in the lipid content of 

copepods. 

It will be expected that if the study organisms are high in lipids, the ethanol 

treatments will show an increase in δ13C values and relatively no change in δ15N values 

as ethanol is a lipid extraction agent. If the study organisms are high in protein, the 

formalin treatments will show a decrease in δ13C values, and will show relatively no 

change in δ15N values since formalin does not remove protein, but rather binds to it. 
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2. Statement of Purpose and Hypothesis 

2.1. Purpose 

Ocean currents provide the primary means of transportation for holoplanktonic 

and meroplanktonic zooplankton, including the larvae of both pelagic and benthic 

species. These planktonic organisms are confined to the water mass they inhabit as they 

are not large or strong enough to cross the physical barriers that separate different water 

masses. Physical characteristics of water masses are defined by temperature, salinity, and 

current velocity and direction. Temporal and spatial variability exists for biotic and 

abiotic measures, such as spawning periodicity and environmental inter-annual 

variability. 

The stable isotope ratios of zooplankton are used as a proxy for primary 

production, and production often varies between current boundaries and water masses 

(Bishop et al., 1980; Lee et al., 1981; Yoder et al., 1981). The purpose of this research is 

to examine (1) the characteristics of the zooplankton composition and densities, (2) stable 

isotope analyses of the zooplankton, and (3) changing physical parameters of the Florida 

Current, the inshore subsurface counter current, and the waters surrounding these water 

masses, along an east-west (E-W) transect off the coast of Fort Lauderdale, Florida. 

Sampling occurred during April, May, July, September and November in 2007, and 

sample data were analyzed from three stations designated inshore, middle and offshore. 

These results will contribute to the growing current scientific knowledge on the spatial 

and temporal variation of the water masses at this location. 
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2.2. Hypotheses 

Zooplankton densities, stable isotope ratios and physical oceanographic 

measurements were utilized to test for distinct currents and water masses. Differences in 

these biotic and abiotic parameters were expected to exist between the different currents, 

previously defined by acoustic Doppler current profiler (ADCP) data, and different water 

masses, identified by temperature-salinity data collected by a conductivity-temperature-

depth sensor (CTD), along an east-west transect of the East Florida Shelf. 

Hypothesis 1 (H1): The subsurface counter current is biologically and isotopically 

different from the Florida Current and intermediate water 

Hypothesis 2 (H2): The intermediate water is biologically and isotopically different from 

the Florida Current and the subsurface counter current. 

Hypothesis 3 (H3): The Florida Current is biologically and isotopically different from 

the subsurface counter current and the intermediate water. 

Hypothesis 4 (H4): Continental Edge Water is biologically and isotopically different 

from Yucatan Water. 

Hypothesis 5 (H5): The western edge of the Florida Current delineates the vertical 

boundary between the Continental Edge Water and the Yucatan Water. 

3. Materials and Methods 

3.1. Biological and Physical Analysis of Currents and Water Masses 

3.1.1. Study Site 

A series of research cruises took place during April, May, July, September, and 

November of 2007 aboard the R/V F.G. Walton Smith. Zooplankton samples and 

physical measurements of the water masses surrounding the E-W transect were collected 
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on every cruise. The 10 km long transect was located 6.5 km off the coast of southeast 

Florida at 26.2oN, and ranged from 80.03oW to 79.93oW. The inshore station was located 

6.5 km offshore (~80.035oW), over a water depth of ~200m, the middle station was 12.5 

km offshore (~79.975oW), over a water depth of ~250m, and the offshore station was 

located 16.5 km offshore (~79.933oW), over a water depth of ~300, all located over the 

East Florida Shelf (Figure 4). 

3.1.2. Physical Data Collection 

Acoustic Doppler current profiler (ADCP) data were collected during each cruise 

and was used to define direction and velocity of the currents present along the E-W 

transect. Conductivity-Temperature-Depth (CTD) data were collected in conjunction with 

each tow and verified the tow depth. These data provided information to determine the 

depth of the thermocline and possible halocline; and were also used to construct 

temperature-salinity (T-S) plots used to determine water masses along the transect. A 

continuous water flow-through system aboard the R/V F.G. Walton Smith collected sea 

surface temperature (oC), surface density (kg/m3), and a relative fluorescence 

measurement along the entire cruise track. Water was sampled from a depth of 1m. 

3.1.3. Zooplankton Collection 

Daytime zooplankton tows were conducted at the inshore, middle and offshore 

stations along the E-W transect at intended depths of 25 m (Shallow) and 200 m (Deep). 

Three different net types were used at each station. A bongo net with 202µm and 335µm 

mesh was deployed at each intended depth. A Tucker multiple net mid-water trawl, with 

760µm mesh, was deployed to the intended depth of 200 meters. Due to the large mesh 

size of the Tucker trawl, many smaller organisms passed through the nets, and the 
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densities reported indicated counts of the larger and adult organisms. Net A collected 

samples from 0-25 meters, net B collected samples from 25-200 meters, and net C 

collected samples from 200-0 meters. A 0.6 m ring net was deployed to a depth of 10 

meters. Samples from the bongo net and Tucker trawl nets were immediately preserved in 

5% seawater buffered formalin, and then transferred to 70% ethanol for long-term storage 

once at the laboratory. Samples collected in the ring net were immediately frozen for 

long-term storage. Flow meters were attached to each of the bongo and Tucker net 

openings to record the volume of water flowing through the nets which was used to 

calculated zooplankton density. A separate study specifically intended to determine the 

effect of preservation media, on both δ13C and δ15N values, was also performed. In 

November 2008, zooplankton samples were collected along the continental slope off the 

coast of Miami. Samples were collected using a Multiple Opening/Closing Net and 

Environmental Sampling System (MOCNESS) with 335µm mesh nets. Samples from 3 

nets were immediately frozen in a standard -20oC freezer in 500ml high-density 

polyethylene bottles prior to analysis in the laboratory. 

3.1.4. Laboratory Analysis 

Zooplankton samples were sorted and counted to determine composition and 

density, as well as frozen samples analyzed for δ13C and δ15N, to assess the biological 

and biochemical differences of the water masses. Analysis of samples collected at depth 

from the inshore station, offshore station and middle station provided information on the 

properties of the inshore Subsurface Counter Current, the Florida Current, and the 

Intermediate water between the two water masses. Biological, biochemical, and physical 

information, was used to describe the similarities and differences of these water masses.  
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Figure 4. Map of stations sampled along the East-West transect in April, May, July, 

September, and November 2007. 
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3.1.5. Stable Isotope Analysis 

Zooplankton samples collected from the Tucker trawl net A (0-25m) and net B 

(25-200m) were sorted for stable isotope analysis. Tucker trawl samples ensured that no 

mixing of plankton from the upper water mass and the water mass at depth occurred. 

Based on a preliminary analysis of four samples from four different months, it was 

determined that zooplankton from the order Calanoida and the phylum Chaetognatha 

were most abundant zooplankton in the four samples analyzed, with calanoid copepods 

composing greater than 39% of the total abundance and chaetognaths composing greater 

than 18% of the total abundance for most samples. 

Samples collected for the preservation study were slowly thawed in tepid water in 

the laboratory immediately prior to analysis. Zooplankton samples from each net were 

sorted for calanoid copepods and chaetognaths. Only completely intact and whole 

organisms, as well as non-gravid females, were selected for preservation. A bulk 

zooplankton sample, which includes the previously defined study species, and all other 

taxa collected in the nets, was collected for analysis. The samples were treated using four 

preservation methods: 1) Frozen (Control), 2) 70% Ethanol, 3) Formalin, 4) Formalin 

fixed then transferred to 70% Ethanol. The frozen sample was used as the control for this 

experiment. The entire preservation treatment lasted 6 weeks. The Formalin/Ethanol 

treated samples were treated in formalin for 1 week and then transferred to 70% Ethanol 

for 5 more weeks (Figure 5). 

All preserved organisms for stable isotope analysis were rinsed in distilled water 

to remove the excess preservative. The samples were dried at 60oC in a drying oven for a 

minimum 96 hours to evaporate any water. The samples will then be fumed with 
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concentrated HCl for 24 hours in order to eliminate the inorganic carbon structures in the 

zooplankton.  For the samples collected along the E-W transect, approximately 0.2-0.4 

mg of dried sample was placed in a tin capsule for stable isotope analysis at the Alaska 

Stable Isotope Facility at the University of Alaska Fairbanks. For the samples collected 

for the preservation study, between 0.6 and 0.8 mg of sample were weighed and packed 

into aluminum tins in preparation for analysis at the Smithsonian Institution OUSS/MCI 

Stable Isotope Mass Spectrometry Facility. The samples were run on a Thermo Delta V 

Advantage mass spectrometer in continuous flow mode, coupled to a Costech 4010 

Elemental Analyzer (EA) via a Thermo Conflo IV.  Sample standards include USGS40 

(L-glutamic acid), USGS (L-glutamic acid), and Costech acetanilide. The δ13C and δ15N 

notation is derived from the equation:  

δ X (‰) = (Rsample / Rstandard -1) x 1000 

where X is the isotope being evaluated and Rsample is the ratio of the heavy isotope to the 

lighter isotope. Reproducibility for the standards is <0.2‰ (1σ) for both δ13C and δ15N. 

These results were used to determine if a correction factor could be created and applied to 

previously preserved samples in order to establish the natural stable isotope values. 

3.1.6. Statistical Analysis 

Statistical tests were performed to determine the differences in zooplankton 

density, and the differences in the stable isotope values on a spatial and temporal scale 

(Month, Location, Depth, Month*Location, Month*Depth, and Location*Depth). 

Statistical tests were then performed on the data sets defined by the physical properties of 

the water from the physical data collected by the ADCP and CTD sensor. The Shapiro-

Wilk’s test of normality was used to determine if the variables were normally distributed 
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and to determine if parametric or non-parametric analyses should be employed. The 

Kruskal-Wallis ANOVA by Ranks was used for the analyses involving the non-

parametric data. 

The Kruskal-Wallis ANOVA by Ranks is not as powerful as the ANOVA because 

it does not assume normally distributed data and, therefore, if no significant differences 

exist, it cannot be assumed that the populations are identical. The one-way ANOVA was 

used to compare the differences between parametric sets of data. Multiple comparison 

analysis was used to determine specific differences as a post-hoc analysis for the 

Kruskal-Wallis ANOVA by Ranks. The Tukey post-hoc analysis was used to determine 

specific differences for the one-way ANOVA. At times, the Kruskal-Wallis ANOVA by 

Ranks showed a significant difference, but the multiple comparisons showed no 

difference between groups. According to Daniel (1990) the multiple comparisons  

approach uses the experiment-wise error rate, which is a conservative approach. Tukey 

HSD is a less conservative post-hoc analysis, and it was used to evaluate where the 

statistical differences may lie. When the one-way ANOVA results showed a significant 

difference, but the Tukey did not show between which groups the differences were, the 

less conservative Fisher LSD was used as the post-hoc analysis. 
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Figure 5. Illustration of the preservation timeline. 1) Frozen treatment (solid), 2) 70% 
Ethanol treatment (hash marks), 3) Formalin treatment (dotted). 
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4. Results 

4.1. Preservation Effect Results 

4.1.1. Carbon Isotope Ratios - δ13C 

Each preservation media led to an increase in mean δ13C values in calanoid 

copepods, chaetognaths, and the bulk samples, when compared to the control, except for 

the formalin treatment in the bulk sample. Calanoid copepod sample δ13C values 

increased from formalin, to ethanol, to formalin/ethanol only. Chaetognath sample δ13C 

values increased from formalin, to formalin/ethanol, to ethanol only. For bulk sample 

values, formalin decreased and sample values increased from formalin/ethanol to ethanol 

only. When compared to the control value, calanoid copepod enrichment ranged from 

0.23‰ to 0.73‰; chaetognath enrichment ranged from 0.06‰ to 1.77‰, and the bulk 

sample change ranged from -0.72‰ to 0.62‰ (Table 1, Figure 6). Shapiro-Wilk’s test of 

normality indicates that δ13C values are normally distributed for all taxa and parametric 

methods should be used for further statistical analyses (Table 2). One-Way ANOVA 

results indicate that there was a significant difference in mean δ13C values between 

treatment types for calanoid copepods and chaetognaths but not for the bulk zooplankton 

sample (p=0.014, p=0.001, p = 0.131, α = 0.05, respectively). Tukey HSD Post-hoc test 

showed significant differences in calanoid copepod tests, specifically between 

frozen*ethanol, and frozen*formalin/ethanol treatments (p = 0.032, p=0.024, α = 0.05, 

respectively). Tukey HSD Post-hoc test for chaetognaths show the specific treatment 

differences were specifically between frozen*ethanol, frozen*formalin/ethanol, 

ethanol*formalin, and formalin*formalin/ethanol treatments (p=0.002, p=0.014, p=0.002, 

p=0.018, α = 0.05, respectively) (Table 3). 
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4.1.2. Nitrogen Isotope Ratios - δ15N  

Each preservation media led to an increase in mean δ15N values in calanoid 

copepods, chaetognaths, and the bulk zooplankton samples, when compared to the 

control. The bulk sample values increased from formalin/ethanol, to ethanol, to formalin. 

Calanoid copepod sample values increased from formalin to formalin/ethanol, to ethanol. 

Chaetognath sample values increased from formalin/ethanol, to ethanol, to formalin. 

Compared to the frozen control, calanoid copepod change ranged from 0.72‰ to 0.81‰, 

chaetognath change ranged from 1.34‰ to 2.20‰, and the bulk sample change ranged 

from 0.41‰ to 0.95‰ (Table 4, Figure 7). Shapiro-Wilk’s test of normality indicates that 

δ15N values are normally distributed for all taxa and parametric methods should be used 

for further statistical analyses (Table 5). One-Way ANOVA results indicate that there 

was a significant difference in mean δ15N values between treatment types for 

chaetognaths but not for calanoid copepods or the bulk zooplankton sample (p=0.001, 

p=0.205, p=0.387, α = 0.05, respectively). Tukey HSD Post-hoc test showed that for 

chaetognaths, the specific treatment differences were specifically between 

frozen*ethanol, frozen*formalin, and frozen*formalin/ethanol treatments (p=0.003, 

p=0.029, p=0.002, α = 0.05, respectively) (Table 6). 
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Table 1. Mean δ13C values for each treatment and their deviation from the Control 
Frozen. 

Mean δ13C Values by Treatment      

    N 
Mean 
(‰) SD 

Δ Control 
(‰) Effect 

Calanoid Copepod Ethanol 3 -20.23 0.31 0.69 Increase 
 Formalin/EtOH 3 -20.19 0.10 0.73 Increase 
 Formalin 3 -20.69 0.27 0.22 Increase 
  Frozen (C) 3 -20.91 0.22 - - 
Chaetognath Ethanol 3 -18.18 0.19 1.77 Increase 
 Formalin/EtOH 3 -18.74 0.62 1.22 Increase 
 Formalin 3 -19.89 0.18 0.06 Increase 
  Frozen (C) 3 -19.95 0.25 - - 
Bulk Ethanol 3 -19.95 0.64 0.62 Increase 
 Formalin/EtOH 3 -20.12 0.27 0.45 Increase 
 Formalin 3 -21.29 1.02 -0.72 Decrease 
  Frozen (C) 3 -20.57 0.44 - - 
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Figure 6. The δ13C values (‰) and one standard deviation for all taxa and all treatments. 
The box indicates the values of the first quartile, median, and third quartile. The whiskers 
indicate the next values below the first quartile and above the third quartile.
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Table 2. Shapiro-Wilk’s test of normality of δ13C for each taxa. P values < 0.05 are 
considered not normally distributed. 

Shapiro-Wilk's Test of Normality for δ13C 
α = 0.05, p value  
  p value 
Bulk 0.101 
Calanoid Copepod 0.338 
Chaetognath 0.070 

 

Table 3. One-way ANOVA and Tukey HDS Post-hoc results comparing δ13C values 
between each preservation type for each taxa. P values < 0.05 indicate a significant 
difference. 

One-Way ANOVA δ13C By Treatment   
α = 0.05     
 H/F Value p value 

Calanoid Copepod (3, 3) = 6.658 0.014 
Chaetognath (3, 3) = 17.933 0.001 

Bulk (3, 3) = 2.528 0.131 
   
Tukey HDS Post Hoc Analysis  
α = 0.05   

Dependent Variable  Treatments p value 
Calanoid Copepod Frozen (Ethanol) 0.032 
  Frozen (Formalin/EtOH) 0.024 

Chaetognath Frozen (Ethanol) 0.002 
 Frozen (Formalin/EtOH) 0.014 
 Ethanol (Formalin) 0.002 

  
Formalin 
(Formalin/EtOH) 0.018 
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Table 4. Mean δ15N values for each treatment and their deviation from the Control. 

Mean δ15N Values by Treatment      

    N 
Mean 
(‰) SD 

Δ Control 
(‰) Effect 

Calanoid Copepod Ethanol 3 3.56 0.23 0.82 Increase 
 Formalin/EtOH 3 3.53 0.72 0.79 Increase 
 Formalin 3 3.45 0.84 0.71 Increase 
  Frozen (Control) 3 2.74 0.56 - - 
Chaetognath Ethanol 3 5.14 0.40 2.07 Increase 
 Formalin/EtOH 3 5.27 0.37 2.20 Increase 
 Formalin 3 4.41 0.20 1.34 Increase 
  Frozen (Control) 3 3.07 0.71 - - 
Bulk Ethanol 3 3.62 0.55 0.49 Increase 
 Formalin/EtOH 3 3.55 0.37 0.41 Increase 
 Formalin 3 4.08 0.70 0.95 Increase 
  Frozen (Control) 3 3.13 0.15 - - 
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Figure 7. The δ15N (‰) values and one standard deviation for all taxa and all treatments. 
The box indicates the values of the first quartile, median, and third quartile. The whiskers 
indicate the next values below the first quartile and above the third quartile.
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Table 5. Shapiro-Wilk’s test of normality of δ15N for each taxa. P values < 0.05 are 
considered not normally distributed. 

Shapiro-Wilk's Test of Normality for δ15N 
α = 0.05, p value  
  p value 
Bulk 0.780 
Calanoid Copepod 0.979 
Chaetognath 0.119 

 

Table 6. One-way ANOVA and Tukey HDS Post-hoc results comparing δ15N values 
between each preservation type for each taxa. P values < 0.05 indicate a significant 
difference. 

One-Way ANOVA δ15N By Treatment  
α = 0.05     

 H/F Value p value 
Calanoid Copepod (3, 3) = 1.148 0.387 

Chaetognath (3, 3) = 14.542 0.001 
Bulk (3, 3) = 1.920 0.205 

   
Tukey HDS Post Hoc Analysis  
α = 0.05   

Dependent Variable  Treatments p value 
Chaetognath Frozen (Ethanol) 0.003 

 Frozen (Formalin) 0.029 
  Frozen (Formalin/EtOH) 0.002 
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4.2. Biological and Physical Properties of Currents and Water Masses 

4.2.1. Physical Properties of the E-W Transect 

4.2.1.1. Acoustic Doppler Current Profiler (ADCP) Data 

The ADCP data indicated that there were three currents present throughout the 

sampling period. The fast (500-2200 mm/s), northward flowing current was the Florida 

Current (FC). An aperiodic, sub-surface counter-current (SSCC) was characterized by 

predominately southward flowing water with a speed between 500 and 1100 mm/s. The 

third current describes the water not encompassed by either the FC or SSCC, and was 

referred to as intermediate water (Interm). The intermediate current flows to the north and 

is slower than the other currents (< 500 mm/s). 

In April current velocity direction data from the ADCP showed a strong SSCC 

covering the cross-sectional area from the Inshore station to just west of the Middle 

station, extending from about 40m to the bottom (100-200m) (Figure 8). Current velocity 

magnitude data showed the strongest flow was in the center of the SSCC, flowing at 1100 

mm/s (Figure 9). The ADCP data also showed the western boundary of the FC was 

located at the Offshore station, having a strong north-northeast flow of 1100mm/s. A 

bottom flow of water extended eastwardly offshore nearly 75 m up into the water 

column.  

In May, current velocity direction data showed the SSCC located at the Inshore 

station, but was diminished in cross-sectional area when compared to April. The SSCC 

extended from the bottom to about 70 m into the water column (Figure 10). Current 

velocity magnitude information showed the SSCC was flowing at roughly 550mm/s. The 

western boundary of the northerly flowing FC extended just westward of the Inshore 
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Station (in the surface waters) and obtained a maximum velocity of 2200mm/s between 

the Inshore and Middle stations. From this area of maximum velocity, FC current 

velocity diminished vertically through the water column as well as horizontally east and 

west (Figure 11).  

In July, current velocity direction data showed the SSCC was shoreward of the 

Inshore station and its eastern boundary just reached the Inshore station, extending along 

the bottom roughly 70 m into the water column (Figure 12). Current velocity magnitude 

data showed the western boundary of the FC extended shoreward of the Inshore station, 

encompassing the Inshore, Middle, and Offshore stations. Maximum flow existed 

between the Middle and Offshore stations, reaching a velocity of roughly 1650mm/s and 

flowing north (Figure 13).  

In September, the current velocity direction data showed the SSCC encompassed 

the entire horizontal section west of the Inshore station to just about the Middle station, 

extending along the bottom to roughly 100 m into the water column (Figure 14). Current 

velocity magnitude data showed the western boundary of the FC extended between the 

Middle and Offshore stations, with maximum flow reaching 1100mm/s in this area 

(Figure 15). A multi-directional flow along the ocean bottom extended 50m up into the 

water column, suggesting a highly turbid area. 

In November, the current velocity direction data showed no evidence of the SSCC 

(Figure 16). The current velocity magnitude data showed the western boundary of the FC 

extends to the Inshore station, encompassing the Inshore, Middle, and Offshore stations. 

Maximum flow existed between the Middle and Offshore stations, reaching a velocity of 

roughly 2200mm/s at the Middle station and flowing northerly (Figure 17). 
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Figure 8. April 2007 ADCP current velocity direction. 

April 2007 ADCP
Current Velocity Magnitude

0

50

100

150

200

250

300

79.913779.933779.953779.973779.993780.013780.033780.0537

Longitude W (dec. degree)

D
epth (m

)

Shallow

Deep

Shallow

Deep

Inshore
Station

Offshore
Station

Shallow

Deep

Middle
Station

 

Figure 9. April 2007 ADCP current velocity magnitude. 
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May 2007 ADCP
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Figure 10. May 2007 ADCP current velocity direction. 
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Figure 11. May 2007 ADCP current velocity magnitude. 
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Figure 12. July 2007 ADCP current velocity direction. 
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Figure 13. July 2007 ADCP current velocity magnitude. 
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September 2007 ADCP
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Figure 14. September 2007 ADCP current velocity direction. 
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Figure 15. September 2007 ADCP current velocity magnitude. 
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November 2007 ADCP
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Figure 16. November 2007 ADCP current velocity direction. 
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Figure 17. November 2007 ADCP current velocity magnitude. 
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Table 4.9 illustrates the diversity of current magnitude and direction observed at 

each station during the 2007sampling period. Based on the current direction and 

magnitude, conclusions about the present water masses were made for each station. 

4.2.2. Conductivity-Temperature-Depth Sensor (CTD) Data 

Due to instrument failure, CTD information was not collected at any station 

during April or May. Available CTD data showed that all Shallow tows were conducted 

between 10.5m and 26m, while all the Deep tows were conducted between 53m and 

253.7m. All shallow tows occurred above the thermocline during all months. All deep 

tows occurred below the thermocline, excluding the November Inshore station tow. This 

was due to a particularly shallow tow coinciding with a particularly deep thermocline, 

indicated by the thermocline information collected at the Middle and Offshore stations 

(Table 8). 

In July, the Middle and Offshore stations had similar temperature profiles. The 

temperature above the thermocline was ~29oC and the thermocline began at a depth of 

27m for both stations. The inshore station thermocline began at a shallower depth of 19m. 

Water below the thermocline at the inshore station was 0.5-1.0oC cooler than the water 

below the thermocline at the Middle and Offshore stations (Figure 18). The depth of the 

thermocline was shallowest at the Inshore station (16.60m) compared to the Middle and 

Offshore stations (24.6m and 23.4m, respectively). 
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Table 7. Direction and magnitude of the current at each tow station. 

Current Summary For Each Tow 
      Direction Velocity mm/s Current 
April Inshore Shallow NNE (30o) 350 Interm 
   Deep S (180o) 600 SSCC 
 Middle Shallow ENE (60o) 350 Interm 
   Deep SE (130o) 350 Interm 
 Offshore Shallow NNE (30o) 600 FC 
    Deep E (90o) 350 Interm 
May Inshore Shallow N (0o) 1100 FC 
   Deep SSE (150o) 300 SSCC 
 Middle Shallow N (0o) 1700 FC 
   Deep Unkn Unkn ~Interm 
 Offshore Shallow N (0o) 1650 FC 
    Deep W (270o) 350 Interm 
July Inshore Shallow N (0o) 1100 FC 
   Deep NNE (30o) 600 FC 
 Middle Shallow N (0o) 1375 FC 
   Deep NNE (30o) 350 Interm 
 Offshore Middle N (0o) 1375 FC 
    Deep NNE (30o) 1100 FC 
September Inshore Shallow N (0o) 600 Interm 
   Deep S (180o) 600 SSCC 
 Middle Shallow N (0o) 800 FC 
   Deep Unkn Unkn ~Interm 
 Offshore Shallow NNE (30o) 1100 FC 
    Deep W (270o) 350 Interm 
November Inshore Shallow NNE (30o) 1100 FC 
   Deep ENE (60o) 600 Interm 
 Middle Shallow NNE (30o) 1650 FC 
   Deep Unkn Unkn ~Interm 
 Offshore Shallow N (0o) 1550 FC 
    Deep N (0o) 1550 FC 
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Table 8. Water mass and thermocline information interpolated from CTD data. 

Water Mass Summary at Each Tow 

   
Tow 

Depth Temp Salinity Water Thermo- 
      (m) (oC) (‰) Mass Cline 
July Inshore Shallow 16.6 28.98 36.27 YW Above 
   Deep 53.0 25.33 36.42 YW Mixed 
 Middle Shallow 19.9 29.09 36.22 YW Above 
   Deep 196.1 11.63 35.51 OTHER Mixed 
 Offshore Shallow 17.6 29.1 36.22 YW Above 
    Deep 142.6 16.19 36.13 OTHER Mixed 
September Inshore Shallow 26 30.11 36.01 CEW Above 
   Deep 146.1 15.23 36.01 CEW Below 
 Middle Shallow 25.0 30.08 35.89 CEW Above 
   Deep 253.7 10.45 35.28 OTHER Below 
 Offshore Shallow 20.3 30.61 35.9 CEW Above 
    Deep 189.9 14.43 35.88 CEW Below 
November Inshore Shallow 25.1 26.29 36.24 YW Above 
   Deep 67.2 26.24 36.24 YW Above 
 Middle Shallow 15.5 26.69 36.17 YW Above 
   Deep 207.8 8.93 35.13 OTHER Below 
 Offshore Shallow 10.5 27.24 36.21 YW Above 
    Deep 136.3 20.85 36.61 YW Mixed 
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 Like the water temperature profiles, the Middle and Offshore stations showed 

similar salinity profiles. Salinity was consistent from the surface (~36.2‰) to the 

halocline at ~29m, again similar to the depth of the thermocline. The Middle station 

salinity profile deviated slightly from the Offshore station profile by attaining a salinity 

maximum of 36.8‰ at ~100m, while the Offshore station had a salinity of 36.5‰ at this 

depth. The Inshore station showed a different profile from the other stations. Salinity 

consistently increased from 35.7‰ to 36.3‰ from the surface to ~17m (Figure 19).  

In September all stations had similar temperature profiles, with the temperature 

above the thermocline consistently hovering around 30oC. The thermocline at all stations 

began at ~26m. Below the thermocline, the Inshore station exhibited slightly cooler water 

(0.5-1.0oC) than the Middle and Offshore stations (Figure 20). Salinity profiles of all 

stations were also similar. The halocline started at ~29m at the Inshore and Middle 

stations, but was shallower at the Offshore station (~18m) (Figure 21). 

In November, all stations showed similar temperature profiles, varying only by 

~1oC between the Inshore and Offshore stations, with the water above the thermocline 

hovering around 26oC. The thermocline begins at ~90m and the mixed layer of the 

thermocline ended at ~190m at a temperature of 9oC (Figure 22). All stations showed 

similar salinity profiles as well. The salinity ranged between 35.7‰ and 36.2‰ between 

the Offshore station and the Inshore station, but then only varied by ~0.1‰ for the 

remainder of the profile. The first halocline began at ~67m and ended at 108m, increasing 

by ~0.5‰. The salinity rapidly decreased by ~1.5‰ from 108m to 190m (Figure 23). 
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Figure 18. July 2007 temperature profiles collected from CTD information. 
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Figure 19. July 2007 salinity profiles collected from CTD information. 
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September 2007 Temperature Profiles
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Figure 20. September 2007 temperature profiles collected from CTD information. 
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Figure 21. September 2007 salinity profiles collected from CTD information. 
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November 2007 Temperature Profiles
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Figure 22. November 2007 temperature profiles collected from CTD information. 
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Figure 23. November 2007 salinity profiles collected from CTD information. 
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The average thermocline depths at all stations for July and September were 

relatively shallow (21.5m ± 4.3, n=3; 29.0 m ± 1.5, n=3) compared to November (91.7 m 

± 0.2, n=2). When examining the depth of the mixed layer, the greatest tow depth for all 

stations in July and the Offshore station in November did not reach below the mixed 

layer. For these stations, the bottom of the mixed layer was assumed to be below the 

greatest tow depth. Even with this consideration, the average mixed layer depth was 

shallowest in September (82.5 m ± 15.9, n=3), while July and November had similar 

minimum mixed layer depths (121.1 m ± 60.3m, n=3; 117.0 m ± 27.3, n=2). 

Temperature and salinity information from the CTD casts were also compiled to 

create temperature-salinity plots (T-S) and these plots were utilized to identify water 

masses, based on defined conservative temperature and salinity properties unique to 

individual water masses, as defined in the introduction. During July and November, most 

of the tows occurred in the Yucatan Water (YW), although during July the deep tows 

were possibly in STUW or another water source, indicated by the low temperature. These 

water masses were listed as OTHER. During September, all tows except the Middle Deep 

tow were located in the Continental Edge Water (CEW) (Table 8, Figures 24-26). 



65 
 

 

Figure 24. July 2007 T-S plot of all stations, compiled from CTD data. In the legend, (---) 
indicates temperature and salinity ranges of Coastal Edge Water (CEW), (—) indicates 
temperature and salinity ranges of Yucatan Water (YW), (♦) indicates Inshore CTD data, 
(▲) indicates Middle CTD data,  (●) indicates Offshore CTD data, (◙) indicates tow 
temperature and salinity. 
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Figure 25. September 2007 T-S plot of all stations, compiled from CTD data. In the 
legend, (---) indicates temperature and salinity ranges of Coastal Edge Water (CEW), (—
) indicates temperature and salinity ranges of Yucatan Water (YW), (♦) indicates Inshore 
CTD data, (▲) indicates Middle CTD data,  (●) indicates Offshore CTD data, (◙) 
indicates tow temperature and salinity.. 
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Figure 26. November 2007 T-S plot of all stations, compiled from CTD data. In the 
legend, (---) indicates temperature and salinity ranges of Coastal Edge Water (CEW), (—
) indicates temperature and salinity ranges of Yucatan Water (YW), (♦) indicates Inshore 
CTD data, (▲) indicates Middle CTD data,  (●) indicates Offshore CTD data, (◙) 
indicates tow temperature and salinity. 
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4.2.3. Zooplankton Properties of the E-W Transect 

4.2.3.1. Density and Stable Isotope Results by Species 

During the sampling regime, for all months, at all locations and at all depths, 

mean calanoid copepod density (#/m3) was 5.9 (SD=6.1, n=30), and mean chaetognath 

density (#/m3)  was 2.3 (SD=2.5, n=30). Mean δ13C (‰) values were -20.1 (SD=0.8, 

n=29 and -18.9 (SD=0.8, n=29) for calanoid copepods and chaetognaths, respectively. 

Mean δ15N (‰) values were 5.2 (SD=0.9, n=29), and 6.1 (SD=0.7, n=29), for calanoid 

copepods and chaetognaths, respectively (Table 9, Figures 27 – 29). Shapiro-Wilk’s test 

of normality indicated that calanoid copepod density, chaetognath density and 

chaetognath δ13C were not normally distributed and non-parametric methods should be 

used for further statistical analyses (Table 10). 

4.2.3.2. Density and Stable Isotope Results by Month 

Analysis values by month only showed mean density for both calanoid copepods 

and chaetognaths was highest in April and lowest in September. Mean calanoid copepod 

density (#/m3) ranged from 12.4 (SD=8.0, n=6), to 3.0 (SD=2.5, n=6). Mean chaetognath 

density (#/m3) ranged from 3.8 (SD=2.8, n=6), to 1.5 (SD=2.8, n=6).  

Mean δ13C was lowest in April for both taxa, and highest in November for 

calanoid copepods and September for chaetognaths. Mean calanoid copepod δ13C (‰) 

ranged from -21.0 (SD=0.3, n=6), to -19.2 (SD=0.3, n=6). Mean chaetognath δ13C (‰) 

ranged from -19.8 (SD=0.1, n=6) to -18.1 (SD=0.4, n = 6). Mean calanoid copepod δ15N 

(‰) was lowest in September and highest in July. Mean calanoid copepod δ15N (‰) 

ranged from 4.8 (SD=0.9, n=6) to 5.6 (SD=1.1, n=5). Mean chaetognath δ15N (‰) was 
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lowest in November and highest in April. Mean chaetognath δ15N (‰) ranged from 5.4 

(SD=0.5, n = 6) to 6.7 (SD=0.4, n=6) (Table 11, Figures 30 - 32). 

Shapiro-Wilk’s test of normality indicated that calanoid copepod density, 

chaetognath density, and chaetognath δ13C were not normally distributed for at least one 

of the months, and nonparametric methods should be used for further statistical analyses 

(Table 12). The ANOVA results indicated that calanoid copepod δ13C was significantly 

different between months (F(1,4) = 26.911, p<0.001, α = 0.05) and Kruskal-Wallis 

ANOVA by Ranks results indicated that chaetognath δ13C was significantly different 

between months (H(4, 29) = 22.437, p<0.001, α = 0.05). Tukey HSD showed calanoid 

copepod δ13C in April was significantly different from July, September, and November 

(p=0.001, p<0.001, p< 0.0001, α = 0.05, respectively). Values in May were significantly 

different from those in July, September, and November (p=0.008, p<0.001, p<0.001, α = 

0.05, respectively), and values in July were significantly different from those in 

November (p=0.023, α = 0.05). Multiple comparisons post-hoc analysis showed that 

chaetognath δ13C in April was significantly different from September and November 

(p=0.003, 0.049, α = 0.05, respectively), and values in May were significantly different 

from those in September and November (p=0.002, 0.032, α = 0.05, respectively). No 

other variables were significantly different (Tables 13 - 14). 
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Table 9. Descriptive statistics by Taxa. 

Descriptive Statistics by Taxa           

 N Mean Med Min Max Rng SD 

Copepod Density (#/m3) 30 5.60 3.22 0.08 22.57 22.49 6.08 
Chaetognath Density (#/m3) 30 2.32 1.41 0.11 8.35 8.25 2.46 
Copepod δ13C (‰) 29 -20.08 -19.99 -21.34 -18.57 2.77 0.75 
Chaetognath δ13C (‰) 29 -18.91 -18.67 -20.13 -17.84 2.29 0.79 
Copepod δ15N (‰) 29 5.22 5.10 3.94 7.18 3.24 0.85 
Chaetognath δ15N (‰) 29 6.10 6.22 4.70 7.43 2.73 0.68 
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Figure 27. Density values (#/m3) by taxa. The box indicates the values of the first 
quartile, median, and third quartile. The whiskers indicate the next values below the first 
quartile and above the third quartile. The stars represent the far outside values. 
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Figure 28. The δ13C values (‰) by taxa. The box indicates the values of the first quartile, 
median, and third quartile. The whiskers indicate the next values below the first quartile 
and above the third quartile. The stars represent the extreme values. Open circles (when 
present) represent the outliers. 
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Figure 29. The δ15N values (‰) by taxa. The box indicates the values of the first quartile, 
median, and third quartile. The whiskers indicate the next values below the first quartile 
and above the third quartile. The stars represent the extreme values. Open circles (when 
present) represent the outliers. 
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Table 10. Shapiro-Wilk’s test of normality for each taxa. P values < 0.05 are considered 
not normally distributed. 

Shapiro-Wilk’s Test of Normality 
α = 0.05     

 N p value 
Copepod Density (#/m3) 30 0.002 
Chaetognath Density (#/m3) 30 0.000 
Copepod δ13C (‰) 29 0.201 
Chaetognath δ13C (‰) 29 0.004 
Copepod δ15N (‰) 29 0.290 
Chaetognath δ15N (‰) 29 0.674 
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Table 11. Descriptive statistics by Month for each taxa. 

Descriptive Statistics by 
Month             
      N Mean Med Min Max Rng SD 

Density Calanoid April 6 12.36 11.57 2.91 22.57 19.66 7.95 

(#/m3) Copepod May 6 4.52 2.69 0.21 11.29 11.08 4.91 
  July 6 3.50 2.24 0.08 11.17 11.09 4.37 
  Sept 6 2.89 2.15 1.18 7.70 6.51 2.46 
   Nov 6 4.71 3.23 0.51 15.50 14.98 5.56 
 Chaet April 6 3.85 2.41 1.23 8.35 7.13 2.84 
  May 6 1.57 0.77 0.13 6.39 6.26 2.40 

  July 6 1.62 0.67 0.11 6.06 5.96 2.28 
  Sept 6 1.48 1.41 0.53 3.10 2.57 0.87 
    Nov 6 3.11 2.05 0.24 7.54 7.30 3.13 
δ13C Calanoid April 6 -20.95 -20.90 -21.34 -20.59 0.76 0.34 
(‰) Copepod May 6 -20.70 -20.71 -20.83 -20.49 0.34 0.12 
  July 5 -19.91 -19.88 -20.46 -19.40 1.07 0.38 
  Sept 6 -19.58 -19.59 -20.04 -19.25 0.79 0.26 
   Nov 6 -19.22 -19.39 -19.78 -18.57 1.21 0.51 
 Chaet April 6 -19.76 -19.79 -19.90 -19.58 0.32 0.13 
  May 6 -19.76 -19.78 -20.13 -19.21 0.91 0.32 
  July 5 -18.60 -18.62 -19.17 -18.12 1.06 0.39 
  Sept 6 -18.12 -17.98 -18.95 -17.84 1.12 0.42 
    Nov 6 -18.28 -18.24 -18.56 -17.94 0.62 0.22 
δ15N Calanoid April 6 5.56 5.49 4.54 7.03 2.49 0.98 
(‰) Copepod May 6 5.41 5.36 4.80 5.99 1.20 0.46 
  July 5 5.58 5.67 4.07 7.18 3.11 1.14 
  Sept 6 4.78 4.45 3.94 6.17 2.23 0.85 
   Nov 6 4.82 4.66 3.96 5.56 1.60 0.62 
 Chaet April 6 6.67 6.54 6.30 7.43 1.13 0.43 
  May 6 6.35 6.31 5.61 7.22 1.61 0.59 
  July 5 5.85 6.26 4.70 6.65 1.96 0.88 
  Sept 6 6.16 6.11 5.62 6.63 1.01 0.36 
    Nov 6 5.43 5.42 4.78 6.00 1.23 0.47 
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Figure 30. Density values (#/m3) by month for each taxa. The box indicates the values of 
the first quartile, median, and third quartile. The whiskers indicate the next values below 
the first quartile and above the third quartile. The stars represent the far outside values. 
Open circles represent the outliers. 
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Figure 31. The δ13C values (‰) by month for each taxa. The box indicates the values of 
the first quartile, median, and third quartile. The whiskers indicate the next values below 
the first quartile and above the third quartile. The stars represent the far outside values. 
Open circles represent the outliers. 
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Figure 32. The δ15N values (‰) by month for each taxa. The box indicates the values of 
the first quartile, median, and third quartile. The whiskers indicate the next values below 
the first quartile and above the third quartile. The stars represent the far outside values. 
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Table 12. Shapiro-Wilk’s test of normality for each taxa by month. N = 6 for all 
variables, except for July copepod and chaetognath carbon and nitrogen isotope values, 
where N = 5. P values < 0.05 are considered not normally distributed. 

Shapiro-Wilk's Test of Normality         
α = 0.05, p value           

 April May July Sept Nov 
Copepod Density (#/m3) 0.575 0.104 0.098 0.017 0.031 
Chaetognath Density (#/m3) 0.089 0.002 0.012 0.179 0.183 
Copepod δ13C (‰) 0.136 0.350 0.816 0.477 0.195 
Chaetognath δ13C (‰) 0.524 0.636 0.859 0.003 0.567 
Copepod δ15N (‰) 0.534 0.771 0.958 0.322 0.307 
Chaetognath δ15N (‰) 0.213 0.966 0.222 0.860 0.893 
 

Table 13. Parametric and non-parametric ANOVA results. P values < 0.05 indicate a 
significant difference. 

Parametric and Nonparametric ANOVA Results by Month   
α = 0.05    

  Test H/F values p value 

Copepod Density (#/m3) Kruskal-Wallis ANOVA (4, 30) = 7.385 0.110 
Chaetognath Density (#/m3) Kruskal-Wallis ANOVA (4, 30) = 7.411 0.116 
Copepod δ13C (‰) One-way ANOVA (1, 4) = 26.911  < 0.001 
Chaetognath δ13C (‰) Kruskal-Wallis ANOVA (4, 29) = 22.437 < 0.001 
Copepod δ15N (‰) One-way ANOVA (1, 4) = 1.332 0.287 
Chaetognath δ15N (‰) One-way ANOVA (1, 4) = 4.287 0.009 
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Table 14. Parametric and non-parametric post-hoc analysis results. P values < 0.05 
indicate a significant difference. 

Post Hoc Analysis       
Test Dependent Variable Months p value 

Tukey HSD Calanoid Copepod δ13C April (July) 0.001 
  April (September) 0.000 
  April (November) 0.000 
  May (July) 0.008 
  May (September) 0.000 
  May (November) 0.000 
    July (November) 0.023 

Tukey HSD Chaetognath δ15N April (November) 0.006 
Multiple Comparisons Chaetognath δ13C April (September) 0.003 
  April (November) 0.049 
  May (September) 0.002 
    May (November) 0.032 
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4.2.3.3. Density and Stable Isotope Results by Location 

Analysis of values by location only showed the highest mean density was found at 

the Inshore station for both taxa, and the lowest mean density was found at the Middle 

station for calanoid copepods and at the Offshore station for chaetognaths. Mean calanoid 

copepod density (#/m3) ranged from 2.2 (SD=3.6, n=10) to 7.3 (SD=7.8, n=10). Mean 

chaetognath density (#/m3) ranged from 1.1 (SD=1.0, n=10) to 4.3 (SD=3.0, n=10). 

Mean calanoid copepod δ13C was lowest at the Middle station and highest at the 

Inshore station. Mean calanoid copepod δ13C (‰) ranged from -20.1 (SD=0.5, n=10) to -

20.0 (SD=1.0, n=9). Mean chaetognath δ13C was lowest at the Inshore station and highest 

at the Offshore station. Mean chaetognath δ13C (‰) ranged from -19.1(SD=0.9, n=9) to -

18.8 (SD=0.7, n=10). Both mean calanoid copepod and chaetognath δ15N was lowest at 

the Offshore station and highest at the Middle station. Mean calanoid copepod δ15N (‰) 

ranged from 4.9 (SD=0.9, n=10) to 5.6 (SD=0.9, n=10). Mean chaetognath δ15N (‰) 

ranged from 6.0 (SD=0.8, n=10) to 6.2 (SD=0.7, n=10) (Table 15, Figures 33 - 35). 

Shapiro-Wilk’s test of normality indicated that all variables were normally 

distributed at all Locations and parametric methods should be used for further statistical 

analyses. Despite the result of the Shapiro-Wilk’s test, non-parametric methods were 

used for calanoid copepod and chaetognath density analyses due to inherent, patchy 

nature of zooplankton distribution (Table 16). Kruskal-Wallis ANOVA by Ranks results 

indicated that chaetognath density was significantly different between locations (H(2, 30) 

= 6.970, p=0.031, α = 0.05). Multiple comparisons post-hoc analysis showed that 

chaetognath density was significantly different between the Inshore and Offshore stations 

(p=0.038, α = 0.05). No other variables were different (Table 17 and Table 18).
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Table 15. Descriptive statistics by location for each taxon. 

Descriptive Statistics By Location             
      N Mean Med Min Max Rng SD 

Density Calanoid Inshore 10 7.26 3.85 0.25 22.57 22.32 7.77 

(#/m3) Copepod Middle 10 3.17 2.06 0.17 11.17 11.01 3.64 
   Offshore 10 6.36 5.50 0.08 15.50 15.42 5.95 
 Chaet Inshore 10 4.27 4.74 0.24 8.35 8.12 3.04 
  Middle 10 1.56 1.29 0.16 6.06 5.90 1.71 
   Offshore 10 1.14 0.91 0.11 2.63 2.53 0.98 

δ13C Calanoid Inshore 9 -20.03 -19.82 -21.31 -18.57 2.75 0.97 
(‰) Copepod Middle 10 -20.11 -20.23 -21.34 -18.60 2.74 0.81 
   Offshore 10 -20.09 -19.96 -20.74 -19.40 1.34 0.52 
 Chaet Inshore 9 -19.08 -18.95 -20.13 -17.84 2.29 0.88 
  Middle 10 -18.87 -18.83 -19.90 -17.93 1.98 0.85 
    Offshore 10 -18.80 -18.59 -19.74 -17.92 1.82 0.71 

δ15N Calanoid Inshore 9 5.18 5.23 3.94 6.19 2.25 0.63 
(‰) Copepod Middle 10 5.58 5.78 4.24 7.18 2.94 0.88 
   Offshore 10 4.89 4.65 3.96 7.03 3.08 0.93 
 Chaet Inshore 9 6.12 6.26 5.28 6.78 1.50 0.45 
  Middle 10 6.16 6.11 4.70 7.22 2.52 0.73 
    Offshore 10 6.02 6.26 4.78 7.43 2.65 0.84 
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Figure 33. Density values (#/m3) by location for each taxon. The box indicates the values 
of the first quartile, median, and third quartile. The whiskers indicate the next values 
below the first quartile and above the third quartile. The stars represent the far outside 
values. Open circles represent the outliers. 
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Figure 34. The δ13C values (‰) by location for each taxon. The box indicates the values 
of the first quartile, median, and third quartile. The whiskers indicate the next values 
below the first quartile and above the third quartile. 
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Figure 35.  The δ15N values (‰) by month for each taxon. The box indicates the values of 
the first quartile, median, and third quartile. The whiskers indicate the next values below 
the first quartile and above the third quartile. The stars represent the far outside values. 
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4.2.3.4. Density and Stable Isotope Results by Depth 

Analysis of values by depth only showed the high mean density of both taxa was 

found at the deep tow, while the lowest mean density was found at the shallow tow. Mean 

calanoid copepod density (#/m3) ranged from 8.0 (SD=6.2, n=15) to 3.2 (SD=5.1, n=15). 

Mean chaetognath density ranged (#/m3) from 2.9 (SD=2.7, n=15) to 1.7 (SD=2.1, n=15). 

The lowest mean δ13C of both taxa was found at the deep tow while the highest 

mean δ13C was found at the shallow tow. Mean calanoid copepod δ13C (‰) ranged from  

-20.1 (SD=0.6, n=15) to -20.1 (SD=0.9, n=14). Mean chaetognath δ13C (‰) ranged from 

-19.01 (SD=0.8, n=15) to -18.9 (SD=0.8, n=14). Mean calanoid copepod δ15N (‰) was 

lowest at the deep tow and highest at the shallow tow. The δ15N ranged from 5.1 

(SD=0.7, n=15) to 5.3 (SD=1.0, n=14). Mean chaetognath δ15N is highest at the deep tow 

and lowest at the shallow tow, and δ15N (‰) ranged from 5.9 (SD=0.7, n=14) to 6.3 

(SD=0.6, n=15) (Table 19, Figures 36 - 38). Shapiro-Wilk’s test of normality indicated 

that calanoid copepod, chaetognath density, and chaetognath δ13C were not normally 

distributed for at least one of the depth categories, and non-parametric methods should be 

used for further statistical analyses (Table 20). Mann-Whitney U test showed a 

significant difference in calanoid copepod density between the shallow and deep tow 

(U(29) = 43.000, Z = 2.862, p=0.004, α = 0.05). No other variables were significantly 

different (Table 21). 
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Table 16. Shapiro-Wilk’s test of normality for all taxa. N = 10 for all variables, except for 
Inshore copepod and chaetognath carbon and nitrogen isotope values, where N = 9. P 
values < 0.05 are considered not normally distributed. 

Shapiro-Wilk's Test of Normality     
α = 0.05, p value    
  Inshore Middle Offshore 

Copepod Density (#/m3) 0.008 0.014 0.145 
Chaetognath Density (#/m3) 0.149 0.001 0.086 
Copepod δ13C (‰) 0.438 0.825 0.161 
Chaetognath δ13C (‰) 0.169 0.037 0.156 
Copepod δ15N (‰) 0.652 0.476 0.054 
Chaetognath δ15N (‰) 0.628 0.814 0.556 

 

Table 17. Parametric and non-parametric ANOVA results. P values < 0.05 indicate a 
significant difference. 

Parametric and Non-parametric ANOVA Results by Location 
α = 0.05    
  Test H/F values p value 

Copepod Density (#/m3) Kruskal-Wallis ANOVA (2, 30) = 2.516 0.284 
Chaetognath Density (#/m3) Kruskal-Wallis ANOVA (2, 30) = 6.970 0.031 
Copepod δ13C (‰) One-way ANOVA (1, 2) = 0.026 0.974 
Chaetognath δ13C (‰) One-way ANOVA (1, 2) = 0.297 0.746 
Copepod δ15N (‰) One-way ANOVA (1, 2) = 1.711 0.200 
Chaetognath δ15N (‰) One-way ANOVA (1, 2) = 0.116 0.891 

 

Table 18. Parametric and non-parametric post-hoc analysis results. P values < 0.05 
indicate a significant difference. 

Post Hoc Analysis       
Test Dependent Variable Locations p value 
Multiple Comparisons Chaetognath Density Inshore (Offshore) 0.038 
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Table 19. Descriptive statistics by depth for each taxon. 

Descriptive Statistics By 
Depth               
      N Mean Med Min Max Rng SD 

Density Calanoid Shallow 15 3.21 1.20 0.08 19.64 19.56 5.14 
(#/m3) Copepod Deep 15 7.98 5.11 1.18 22.57 21.39 6.17 
 Chaet Shallow 15 1.74 0.91 0.11 6.40 6.29 2.11 
    Deep 15 2.91 1.48 0.41 8.35 7.95 2.72 
δ13C Calanoid Shallow 14 -20.05 -20.12 -21.34 -18.57 2.77 0.91 
(‰) Copepod Deep 15 -20.10 -19.99 -21.31 -19.32 2.00 0.60 
 Chaet Shallow 14 -18.87 -18.72 -19.98 -17.92 2.06 0.77 
    Deep 15 -18.95 -18.67 -20.13 -17.84 2.29 0.84 
δ15N Calanoid Shallow 14 5.30 5.16 3.94 7.18 3.24 1.04 
(‰) Copepod Deep 15 5.14 5.08 3.96 6.17 2.21 0.65 
 Chaet Shallow 14 5.86 5.94 4.70 6.85 2.16 0.66 
    Deep 15 6.33 6.40 5.09 7.43 2.34 0.63 
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Figure 36. Density values (#/m3) by depth for each taxon. The box indicates the values of 
the first quartile, median, and third quartile. The whiskers indicate the next values below 
the first quartile and above the third quartile. The stars represent the far outside values. 
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Figure 37. The  δ13C values (‰) by depth for each taxon. The box indicates the values of 
the first quartile, median, and third quartile. The whiskers indicate the next values below 
the first quartile and above the third quartile. 
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Figure 38. The δ15N values (‰) by depth for each taxon. The box indicates the values of 
the first quartile, median, and third quartile. The whiskers indicate the next values below 
the first quartile and above the third quartile. 
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Table 20. Shapiro-Wilk’s test of normality for each taxon. N = 15 for all variables, except 
for Shallow copepod and chaetognath carbon and nitrogen isotope values, where N = 14. 
P values < 0.05 are considered not normally distributed. 

Shapiro-Wilk's Test of Normality   
α = 0.05, p-value     
 Shallow Deep 
Copepod Density (#/m3) 0.000 0.0378 
Chaetognath Density (#/m3) 0.001 0.0026 
Copepod δ13C (‰) 0.263 0.21657 
Chaetognath δ13C (‰) 0.065 0.04542 
Copepod δ15N (‰) 0.399 0.81475 
Chaetognath δ15N (‰) 0.599 0.85482 

 

Table 21. Parametric and non-parametric t-test results by depth for each taxon. P values < 
0.05 indicate a significant difference. 

Parametric and Non-parametric t-test Results by Depth 
α = 0.05, p-value         

 Test U/ t value 
Z 

value 
p 

value 
Copepod Density (#/m3) Mann-Whitney U (29) = 43.000 2.862 0.004 
Chaetognath Density (#/m3) Mann-Whitney U (29) = 72.000 -0.458 0.098 
Copepod δ13C (‰) t-test (28) = -0.163  -   0.872 
Chaetognath δ13C (‰) Mann-Whitney U (28) = 94.000 -0.458 0.647 
Copepod δ15N (‰) t-test (28) = -0.517  -  0.610 
Chaetognath δ15N (‰) t-test (28) = 1.953  -  0.061 
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4.2.3.5. Density and Stable Isotope Results by Month*Location 

When breaking down the month only statistics further by location, the highest 

mean values were distributed differently by location* month. During April, calanoid 

copepod and chaetognath mean densities (#/m3) were highest Inshore, 21.1 (SD=2.1, 

n=2) and 7.4 (SD=1.4, n=2), respectively. During May, calanoid copepod and 

chaetognath mean densities (#/m3) were highest Inshore, 6.0 (SD=5.7, n=2) and 3.7 

(SD=3.9, n=2), respectively. During July, calanoid copepod and chaetognath mean 

densities (#/m3) were highest at the Middle station, 5.7 (SD=7.8, n=2), and 3.3 (SD=4.0, 

n=2), respectively. September calanoid copepod mean density (#/m3) was highest 

Offshore, 4.8 (SD=4.1, n=2). September chaetognath mean density (#/m3) was highest 

Inshore, 2.3 (SD=1.2, n=2. November calanoid copepod mean density (#/m3) was highest 

Offshore, 8.1 (SD=10.5, n=2). November chaetognath mean density was highest Inshore, 

7.0 (SD=0.8, n=2). During April calanoid copepod and chaetognath mean δ13C (‰) was 

highest Offshore, -20.7 (SD= 0.0, n=2) and -19.8 SD=0.1, n=2), respectively. In May, 

calanoid copepod and chaetognath mean δ13C (‰) was highest Offshore, -20.6 (SD=0.2, 

n=2) and -19.4 (SD=0.3, n=2), respectively. In July, calanoid copepod and chaetognath 

mean δ13C (‰) is highest Offshore, -19.6 (SD=0.3, n=2) and -18.5 (SD=0.2, n=2), 

respectively. September calanoid copepod mean δ13C (‰) was highest Inshore, -19.3 

(SD=0.1, n=2). September chaetognath mean δ13C (‰) was highest Offshore, -18.0 

(SD=0.1, n=2). November calanoid copepod mean δ13C (‰) was highest Inshore, -18.9 

(SD=0.5, n=2). November chaetognath mean δ13C (‰) was highest at the Middle station, 

-18.2 (SD=0.4, n=2). During April, calanoid copepod and chaetognath mean δ15N (‰) 

was highest Offshore, 5.8 (SD=1.8, n=2), and 6.9 (SD=0.8, n=2), respectively. May 
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calanoid copepod δ15N was highest at the Middle station, 5.9 (SD=0.1, n=2). May 

chaetognath δ15N (‰) was highest Inshore, 6.6 (SD=0.7, n=2). July calanoid copepod 

mean δ15N (‰) was highest at the Middle station, 6.4 (SD=1.0, n=2). July chaetognath 

mean δ15N (‰) was highest Inshore, 6.3 (n=1). September calanoid copepod mean δ15N 

(‰) was highest at the Middle station, 5.2 (SD=1.4, n=2). September chaetognath mean 

δ15N (‰) was highest Offshore, 6.5 (SD=0.1, n=2). November calanoid copepod mean 

δ15N (‰) was highest Inshore, 5.1 (SD=0.6, n=2). November chaetognath mean δ15N 

(‰) was highest at the Middle station, 5.7 (SD=0.2, n=2) (Table 22, Figures 39 - 41). 

The ANOVA results indicated that calanoid copepod δ13C was significantly 

different between months and locations (F(1, 14) = 10.5, p<0.001, α = 0.05) and Kruskal-

Wallis ANOVA by Ranks results indicate that chaetognath δ13C was significantly 

different between months and locations (H(14, 29) = 24.290, p=0.042, α = 0.05). Tukey 

HSD showed that there was no significant difference in calanoid copepod δ13C between 

locations within months, but there were significant differences for locations between 

different months. April locations and May locations did not differ and September 

locations and November locations did not differ, but both April and May locations did 

differ from both September and November locations. The multiple comparisons post-hoc 

analysis is a conservative analysis and did not show any specific differences in 

chaetognath δ13C. The less conservative Tukey post-hoc test was run to determine where 

possible differences may lie. Chaetognath δ13C showed the same trend as the calanoid 

copepod δ13C, no differences between locations within months, but differences for 

locations between months. April and May locations for chaetognath δ13C differed from 

both September and November locations (Tables 23 - 24). 
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Table 22. Density descriptive statistics by Month and Location for each taxon. 

Density Descriptive Statistics By Month*Location     
      N Mean Med Min Max Rng SD 

Calanoid April In 2 21.11 21.11 19.64 22.57 2.93 2.07 
Copepod  Mid 2 5.42 5.42 2.91 7.92 5.01 3.54 
   Off 2 10.55 10.55 5.88 15.21 9.33 6.60 
 May In 2 5.97 5.97 1.93 10.01 8.08 5.71 
  Mid 2 1.83 1.83 0.21 3.44 3.23 2.29 
   Off 2 5.77 5.77 0.25 11.29 11.04 7.81 
 July In 2 2.24 2.24 0.25 4.22 3.97 2.81 
  Mid 2 5.67 5.67 0.17 11.17 11.01 7.78 
   Off 2 2.59 2.59 0.08 5.11 5.03 3.56 
 Sept In 2 2.70 2.70 2.42 2.98 0.56 0.40 
  Mid 2 1.19 1.19 1.18 1.20 0.02 0.01 
   Off 2 4.79 4.79 1.87 7.70 5.82 4.12 
 Nov In 2 4.29 4.29 3.47 5.11 1.64 1.16 
  Mid 2 1.75 1.75 0.51 2.99 2.47 1.75 
    Off 2 8.10 8.10 0.70 15.50 14.80 10.46 
Chaetognath April In 2 7.38 7.38 6.40 8.35 1.96 1.38 
  Mid 2 1.79 1.79 1.23 2.35 1.12 0.79 
   Off 2 2.38 2.38 2.28 2.47 0.19 0.13 
 May In 2 3.65 3.65 0.91 6.39 5.48 3.87 
  Mid 2 0.40 0.40 0.16 0.63 0.47 0.33 
   Off 2 0.66 0.66 0.13 1.18 1.05 0.74 
 July In 2 1.10 1.10 0.24 1.97 1.73 1.22 
  Mid 2 3.26 3.26 0.45 6.06 5.61 3.97 
   Off 2 0.49 0.49 0.11 0.88 0.77 0.55 
 Sept In 2 2.28 2.28 1.46 3.10 1.64 1.16 
  Mid 2 1.42 1.42 1.35 1.48 0.13 0.09 
   Off 2 0.74 0.74 0.53 0.95 0.42 0.30 
 Nov In 2 6.96 6.96 6.39 7.54 1.15 0.81 
  Mid 2 0.93 0.93 0.41 1.46 1.06 0.75 
    Off 2 1.44 1.44 0.24 2.63 2.39 1.69 
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Table 23. δ13C descriptive statistics by Month and Location for each taxon. 

δ13C Descriptive Statistics By Month*Location    
      N Mean Med Min Max Rng SD 

Calanoid April In 2 -21.21 -21.21 -21.31 -21.10 0.21 0.15 
Copepod  Mid 2 -20.96 -20.96 -21.34 -20.59 0.76 0.53 
   Off 2 -20.68 -20.68 -20.69 -20.67 0.02 0.02 
 May In 2 -20.74 -20.74 -20.80 -20.68 0.12 0.09 
  Mid 2 -20.75 -20.75 -20.83 -20.68 0.15 0.10 
   Off 2 -20.61 -20.61 -20.74 -20.49 0.26 0.18 
 July In 1 -19.82 -19.82 -19.82 -19.82   
  Mid 2 -20.23 -20.23 -20.46 -19.99 0.48 0.34 
   Off 2 -19.64 -19.64 -19.88 -19.40 0.48 0.34 
 Sept In 2 -19.34 -19.34 -19.43 -19.25 0.19 0.13 
  Mid 2 -19.59 -19.59 -19.60 -19.58 0.02 0.02 
   Off 2 -19.83 -19.83 -20.04 -19.61 0.42 0.30 
 Nov In 2 -18.94 -18.94 -19.32 -18.57 0.75 0.53 
  Mid 2 -19.04 -19.04 -19.47 -18.60 0.87 0.62 
    Off 2 -19.67 -19.67 -19.78 -19.55 0.23 0.16 
Chaetognath April In 2 -19.85 -19.85 -19.86 -19.83 0.03 0.02 
  Mid 2 -19.74 -19.74 -19.90 -19.58 0.32 0.23 
   Off 2 -19.69 -19.69 -19.74 -19.63 0.11 0.08 
 May In 2 -20.05 -20.05 -20.13 -19.98 0.15 0.10 
  Mid 2 -19.78 -19.78 -19.85 -19.72 0.13 0.09 
   Off 2 -19.45 -19.45 -19.68 -19.21 0.47 0.33 
 July In 1 -18.67 -18.67 -18.67 -18.67   
  Mid 2 -18.64 -18.64 -19.17 -18.12 1.06 0.75 
   Off 2 -18.51 -18.51 -18.62 -18.40 0.22 0.16 
 Sept In 2 -18.39 -18.39 -18.95 -17.84 1.12 0.79 
  Mid 2 -17.99 -17.99 -18.05 -17.93 0.12 0.09 
   Off 2 -17.98 -17.98 -18.03 -17.92 0.11 0.08 
 Nov In 2 -18.24 -18.24 -18.24 -18.23 0.01 0.01 
  Mid 2 -18.21 -18.21 -18.48 -17.94 0.55 0.39 
    Off 2 -18.39 -18.39 -18.56 -18.21 0.35 0.24 
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Table 24. δ15N descriptive statistics by Month and Location for each taxon. 

δ15N Descriptive Statistics By Month*Location    
      N Mean Med Min Max Rng SD 

Calanoid April In 2 5.63 5.63 5.06 6.19 1.13 0.80 
Copepod  Mid 2 5.27 5.27 4.63 5.91 1.28 0.91 
   Off 2 5.79 5.79 4.54 7.03 2.49 1.76 
 May In 2 5.36 5.36 5.23 5.49 0.27 0.19 
  Mid 2 5.93 5.93 5.88 5.99 0.11 0.08 
   Off 2 4.95 4.95 4.80 5.10 0.30 0.21 
 July In 1 5.08 5.08 5.08 5.08   
  Mid 2 6.43 6.43 5.67 7.18 1.51 1.06 
   Off 2 4.98 4.98 4.07 5.88 1.81 1.28 
 Sept In 2 4.69 4.69 3.94 5.43 1.49 1.06 
  Mid 2 5.20 5.20 4.24 6.17 1.93 1.37 
   Off 2 4.45 4.45 4.26 4.64 0.38 0.27 
 Nov In 2 5.09 5.09 4.66 5.52 0.86 0.61 
  Mid 2 5.06 5.06 4.57 5.56 0.99 0.70 
    Off 2 4.31 4.31 3.96 4.65 0.70 0.49 
Chaetognath April In 2 6.37 6.37 6.35 6.40 0.05 0.04 
  Mid 2 6.77 6.77 6.69 6.85 0.16 0.11 
   Off 2 6.86 6.86 6.30 7.43 1.13 0.80 
 May In 2 6.59 6.59 6.40 6.78 0.38 0.27 
  Mid 2 6.55 6.55 5.88 7.22 1.34 0.95 
   Off 2 5.92 5.92 5.61 6.22 0.62 0.43 
 July In 1 6.26 6.26 6.26 6.26   
  Mid 2 5.68 5.68 4.70 6.65 1.96 1.38 
   Off 2 5.82 5.82 5.12 6.52 1.40 0.99 
 Sept In 2 5.82 5.82 5.62 6.02 0.40 0.28 
  Mid 2 6.11 6.11 6.02 6.20 0.18 0.13 
   Off 2 6.55 6.55 6.47 6.63 0.16 0.12 
 Nov In 2 5.64 5.64 5.28 6.00 0.72 0.51 
  Mid 2 5.71 5.71 5.57 5.85 0.28 0.20 
    Off 2 4.93 4.93 4.78 5.09 0.31 0.22 
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Figure 39. Calanoid copepod and chaetognath density values (#/m3) by month and 
location. The box indicates the values of the first quartile, median, and third quartile. The 
whiskers indicate the next values below the first quartile and above the third quartile. 
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Figure 40. Calanoid copepod and chaetognath δ13C values (‰) by month and location. 
The box indicates the values of the first quartile, median, and third quartile. The whiskers 
indicate the next values below the first quartile and above the third quartile. 
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Figure 41. Calanoid copepod and chaetognath δ15N values (‰) by month and location. 
The box indicates the values of the first quartile, median, and third quartile. The whiskers 
indicate the next values below the first quartile and above the third quartile. 
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Table 25. Parametric and nonparametric ANOVA results by month and location. P values 
< 0.05 indicate a significant difference. 
Parametric and Non-parametric ANOVA Results by Month*Location 
α = 0.05       

 Test H/F values p value 
Copepod Density (#/m3) Kruskal-Wallis ANOVA (14, 30) = 11.832 0.620 
Chaetognath Density (#/m3) Kruskal-Wallis ANOVA (14, 30) = 18.400 0.189 
Copepod δ13C (‰) One-way ANOVA (1, 14) = 10.5 < 0.001 
Chaetognath δ13C (‰) Kruskal-Wallis ANOVA (14, 29) = 24.290 0.042 
Copepod δ15N (‰) One-way ANOVA (1, 14) = 0.755 0.697 
Chaetognath δ15N (‰) One-way ANOVA (1, 14) = 1.496 0.230 
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Table 26. Parametric and nonparametric post hoc analysis results by month and location. 
P values < 0.05 indicate a significant difference. 

Parametric and Nonparametric Post Hoc Results     
Test Dependent Variable Month*Location p value 

Tukey HSD Calanoid Copepod δ13C April Inshore July Offshore 0.010 
   Sept Inshore 0.002 
   Sept Middle 0.007 
   Sept Offshore 0.027 
   Nov Inshore 0.000 
   Nov Middle 0.001 
    Nov Offshore 0.012 
  April Middle July Offshore 0.037 
   Sept Inshore 0.007 
   Sept Middle 0.028 
   Nov Inshore 0.001 
   Nov Middle 0.002 
    Nov Offshore 0.044 
  April Offshore Sept Inshore 0.034 
   Nov Inshore 0.004 
    Nov Middle 0.007 
  May Inshore Sept Inshore 0.024 
   Nov Inshore 0.003 
    Nov Middle 0.005 
  May Middle Sept Inshore 0.023 
   Nov Inshore 0.003 
    Nov Middle 0.004 
  May Offshore Sept Inshore 0.049 
   Nov Inshore 0.006 
    Nov Middle 0.009 
  July Middle Nov Inshore 0.047 
      Nov Middle 0.077 
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Table 27. Parametric and non-parametric post hoc analysis results by month and location. 
P values < 0.05 indicate a significant difference. 

Parametric and Nonparametric Post Hoc Results     
Test Dependent Variable Month*Location p value 

Tukey HSD Chaetognath δ13C April Inshore Sept Inshore 0.034 
   Sept Middle 0.005 
   Sept Offshore 0.004 
   Nov Inshore 0.015 
   Nov Middle 0.013 
    Nov Offshore 0.032 
  April Middle Sept Middle 0.007 
   Sept Offshore 0.007 
   Nov Inshore 0.026 
    Nov Middle 0.022 
  April Offshore Sept Middle 0.010 
   Sept Offshore 0.009 
   Nov Inshore 0.034 
   Nov Middle 0.030 
    Nov Offshore 0.072 
  May Inshore July Middle 0.042 
   July Offshore 0.022 
   Sept Inshore 0.012 
   Sept Middle 0.002 
   Sept Offshore 0.002 
   Nov Inshore 0.005 
   Nov Middle 0.005 
    Nov Offshore 0.012 
  May Middle Sept Inshore 0.046 
   Sept Middle 0.006 
   Sept Offshore 0.006 
   Nov Inshore 0.021 
   Nov Middle 0.018 
   Nov Offshore 0.044 
    May Offshore Sept Middle 0.033 
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4.2.3.6. Density and Stable Isotope Results by Month*Depth 

When breaking down the month only statistics by depth, the highest mean 

calanoid copepod density (#/m3) values were found at the deep tow for all months (April, 

13.6 SD= 9.9, n = 3; May, 8.2 SD=4.2, n = 3; July, 6.8 SD=3.8, n = 3; September, 4.0 

SD=3.4, n = 3; November, 7.3 SD=7.1, n = 3).   Chaetognath mean densities (#/m3) were 

highest at the deep tow during April, July, and November (4.0 SD=3.8, n = 3; 3.0 

SD=2.7, n = 3; 3.5 SD=3.6, n = 3, respectively), while mean density (#/m3) was highest 

in the shallow tow during May and September (2.7 SD=3.2, n = 3; 1.7 SD=1.3, n = 3, 

respectively). 

Mean calanoid copepod δ13C (‰) was highest at the deep tow during July (-19.9 

SD=0.1, n = 3) and highest at the shallow tow during April, May, September and 

November (-20.9 SD=0.4, n = 3; -20.6 SD=0.1, n = 3; -19.5 SD=0.2, n = 3; -19.0 

SD=0.7, n = 3, respectively). Mean chaetognath δ13C (‰) was highest at the deep tow 

during September and November (-18.0 SD=0.1, n = 3; -18.2 SD=0.3, n = 3, 

respectively) and highest at the shallow tow during April, May, and July (-19.7 SD=0.1, n 

= 3; -19.6 SD=0.4, n=3; -18.3 SD=0.2, n = 2, respectively). 

Mean calanoid copepod δ15N (‰) was highest at the deep tow during May and 

September (5.4 SD=0.5, n = 3; 5.3 SD=1.0, n = 3, respectively) and highest at the 

shallow tow during April, July and November (6.4 SD=0.6, n = 3; 5.6 SD=2.2, n = 2; 4.9 

SD=0.5, n = 3, respectively). Mean chaetognath δ15N (‰) was highest at the deep town 

during April, May, July, and September (6.8 SD=0.5, n = 3; 6.7 SD=0.5, n = 3; 6.5 

SD=0.2, n = 3; 6.2 SD=0.3, n = 3, respectively) and was highest at the shallow tow 

during November (5.4 SD=0.6, n = 3) (Table 25, Figures 42 - 44). 
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Table 28. Density descriptive statistics by month and depth for each taxon. 

Density Descriptive Statistics By Month*Depth     
      N Mean Med Min Max Rng SD 

Calanoid April Shal 3 11.15 7.92 5.88 19.64 13.76 7.42 
Copepod   Deep 3 13.57 15.21 2.91 22.57 19.66 9.93 
 May Shal 3 0.80 0.25 0.21 1.93 1.72 0.98 
   Deep 3 8.25 10.01 3.44 11.29 7.85 4.21 
 July Shal 3 0.17 0.17 0.08 0.25 0.17 0.09 
   Deep 3 6.83 5.11 4.22 11.17 6.95 3.78 
 Sept Shal 3 1.83 1.87 1.20 2.42 1.21 0.61 
   Deep 3 3.95 2.98 1.18 7.70 6.51 3.36 
 Nov Shal 3 2.11 0.70 0.51 5.11 4.60 2.60 
    Deep 3 7.32 3.47 2.99 15.50 12.51 7.09 
Chaet April Shal 3 3.68 2.35 2.28 6.40 4.12 2.36 
   Deep 3 4.02 2.47 1.23 8.35 7.13 3.81 
 May Shal 3 2.74 1.18 0.63 6.39 5.76 3.18 
   Deep 3 0.40 0.16 0.13 0.91 0.78 0.44 
 July Shal 3 0.27 0.24 0.11 0.45 0.34 0.17 
   Deep 3 2.97 1.97 0.88 6.06 5.19 2.73 
 Sept Shal 3 1.66 1.35 0.53 3.10 2.57 1.31 
   Deep 3 1.30 1.46 0.95 1.48 0.53 0.30 
 Nov Shal 3 2.70 1.46 0.24 6.39 6.15 3.26 
    Deep 3 3.53 2.63 0.41 7.54 7.13 3.65 
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Table 29. δ13C descriptive statistics by month and depth for each taxon. 

δ13C Descriptive Statistics By Month*Depth       
      N Mean Med Min Max Rng SD 

Calanoid April Shal 3 -20.86 -20.69 -21.31 -20.59 0.73 0.39 
Copepod   Deep 3 -21.04 -21.10 -21.34 -20.67 0.67 0.34 
 May Shal 3 -20.62 -20.68 -20.68 -20.49 0.20 0.11 
   Deep 3 -20.79 -20.80 -20.83 -20.74 0.09 0.04 
 July Shal 2 -19.93 -19.93 -20.46 -19.40 1.07 0.75 
   Deep 3 -19.89 -19.88 -19.99 -19.82 0.17 0.09 
 Sept Shal 3 -19.49 -19.60 -19.61 -19.25 0.36 0.21 
   Deep 3 -19.68 -19.58 -20.04 -19.43 0.60 0.32 
 Nov Shal 3 -18.98 -18.60 -19.78 -18.57 1.21 0.69 
    Deep 3 -19.45 -19.47 -19.55 -19.32 0.24 0.12 
Chaet April Shal 3 -19.68 -19.63 -19.83 -19.58 0.25 0.13 
   Deep 3 -19.83 -19.86 -19.90 -19.74 0.16 0.08 
 May Shal 3 -19.64 -19.72 -19.98 -19.21 0.77 0.39 
   Deep 3 -19.88 -19.85 -20.13 -19.68 0.45 0.23 
 July Shal 2 -18.26 -18.26 -18.40 -18.12 0.28 0.20 
   Deep 3 -18.82 -18.67 -19.17 -18.62 0.55 0.31 
 Sept Shal 3 -18.27 -17.93 -18.95 -17.92 1.03 0.59 
   Deep 3 -17.97 -18.03 -18.05 -17.84 0.21 0.12 
 Nov Shal 3 -18.31 -18.23 -18.48 -18.21 0.27 0.15 
    Deep 3 -18.25 -18.24 -18.56 -17.94 0.62 0.31 
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Table 30. δ15N descriptive statistics by month and depth for each taxon. 

δ15N Descriptive Statistics By Month*Depth       
      N Mean Med Min Max Rng SD 

Calanoid April Shal 3 6.38 6.19 5.91 7.03 1.13 0.59 
Copepod   Deep 3 4.74 4.63 4.54 5.06 0.52 0.28 
 May Shal 3 5.39 5.49 4.80 5.88 1.08 0.55 
   Deep 3 5.44 5.23 5.10 5.99 0.89 0.48 
 July Shal 2 5.63 5.63 4.07 7.18 3.11 2.20 
   Deep 3 5.55 5.67 5.08 5.88 0.80 0.41 
 Sept Shal 3 4.27 4.24 3.94 4.64 0.70 0.35 
   Deep 3 5.29 5.43 4.26 6.17 1.91 0.96 
 Nov Shal 3 4.91 4.65 4.57 5.52 0.95 0.53 
    Deep 3 4.72 4.66 3.96 5.56 1.60 0.80 
Chaet April Shal 3 6.50 6.35 6.30 6.85 0.56 0.31 
   Deep 3 6.84 6.69 6.40 7.43 1.03 0.53 
 May Shal 3 5.96 5.88 5.61 6.40 0.79 0.40 
   Deep 3 6.74 6.78 6.22 7.22 1.00 0.50 
 July Shal 2 4.91 4.91 4.70 5.12 0.42 0.30 
   Deep 3 6.48 6.52 6.26 6.65 0.39 0.20 
 Sept Shal 3 6.15 6.20 5.62 6.63 1.01 0.51 
   Deep 3 6.17 6.02 6.02 6.47 0.45 0.26 
 Nov Shal 3 5.45 5.57 4.78 6.00 1.23 0.62 
    Deep 3 5.41 5.28 5.09 5.85 0.76 0.39 
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Figure 42. Calanoid copepod and chaetognath density values (#/m3) by month and depth. 
The box indicates the values of the first quartile, median, and third quartile. The whiskers 
indicate the next values below the first quartile and above the third quartile. 
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Figure 43. Calanoid copepod and chaetognath δ13C values (‰) by month and depth. The 
box indicates the values of the first quartile, median, and third quartile. The whiskers 
indicate the next values below the first quartile and above the third quartile. 
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Figure 44. Calanoid copepod and chaetognath δ15N values (‰) by month and depth. The 
box indicates the values of the first quartile, median, and third quartile. The whiskers 
indicate the next values below the first quartile and above the third quartile. 
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The ANOVA results indicated that calanoid copepod δ13C and chaetognath δ15N 

were significantly different between months and depth (F(1, 9) = 11.72, p<0.001, and 

F(1,9) = 5.717, p = 0.001, α = 0.05, respectively). Kruskal-Wallis ANOVA by Ranks 

results indicated that calanoid copepod density and chaetognath δ13C were significantly 

different between months and depth (H (9, 30) = 20.561, p=0.0415, H(9, 29) =  23.798, 

p=0.005, α = 0.05, respectively). The multiple comparisons and Tukey HSD did not show 

any significant differences in calanoid copepod densities, so an even less conservative 

test, the Fisher FSD, was used to determine where specific differences may lie. The 

shallow tow in April was significantly different from the shallow tows in May, July, 

September and November. The deep tow in April was significantly different from the 

shallow tow in May, July, September, and November, as well as different from the deep 

tow in September. Tukey HSD showed that calanoid copepod δ13C was significantly 

different for the shallow April, deep April, shallow and May tows compared to both 

September and November shallow and deep tows. The shallow April tow was also 

significantly different from the deep July tow. The deep May tow was significantly 

different from the September and November shallow tow, as well as the November deep 

tow. Tukey HSD showed that chaetognath δ13C was significantly different in April and 

May, shallow and deep, compared to July, September, and November, shallow and deep 

tows. Tukey HSD for chaetognath δ15N showed that April and May deep tows were 

significantly different from July shallow, and November shallow and deep tows. April 

shallow was significantly different from July shallow, and July shallow was significantly 

different from July deep (Tables 26 - 27).
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Table 31. Parametric and non-parametric ANOVA results by month and depth for each 
taxon. P values < 0.05 indicate a significant difference. 

Parametric and Nonparametric ANOVA Results by Month*Depth 
α = 0.05       
 Test H/F values p value 
Copepod Density (#/m3) Kruskal-Wallis ANOVA (9, 30) = 20.561 0.015 
Copepod Density (#/m3)** One-way ANVOA (1, 9) = 2.44635 0.046 
Chaetognath Density (#/m3) Kruskal-Wallis ANOVA (9, 30) = 13.783 0.130 
Copepod δ13C (‰) One-way ANVOA (1, 9) = 11.72 < 0.001 
Chaetognath δ13C (‰) Kruskal-Wallis ANOVA (9, 29) =  23.798 0.005 
Copepod δ15N (‰) One-way ANVOA (1, 9) = 1.781 0.139 
Chaetognath δ15N (‰) One-way ANVOA (1, 9) = 5.717 0.001 
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Table 32. Parametric and non-parametric post-hoc analysis results of calanoid copepods 
by month and depth. P values < 0.05 indicate a significant difference. 

Parametric and Nonparametric Post Hoc Results  
Test Dependent Variable Month*Location p value 

Fisher LSD Calanoid Copepod Density April-Shallow May-Shallow 0.021 
   July-Shallow 0.015 
   Sep-Shallow 0.035 
    Nov-Shallow 0.040 
  April-Deep May-Shallow 0.006 
   July-Shallow 0.004 
   Sep-Shallow 0.010 
   Sep-Deep 0.030 
      Nov-Shallow 0.012 
Tukey HSD Calanoid Copepod δ13C April-Shallow July-Deep 0.024 
   Sep-Shallow 0.001 
   Sep-Deep 0.005 
   Nov-Shallow 0.000 
    Nov-Deep 0.001 
  April-Deep Sep-Shallow 0.005 
   Sep-Deep 0.018 
   Nov-Shallow 0.000 
    Nov-Deep 0.003 
  May-Shallow Sep-Shallow 0.008 
   Sep-Deep 0.031 
   Nov-Shallow 0.000 
    Nov-Deep 0.006 
  May-Deep Sep-Shallow 0.027 
   Nov-Shallow 0.001 
      Nov-Deep 0.020 
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Table 33. Parametric and non-parametric post-hoc analysis results of chaetognaths by 
month and depth. P values < 0.05 indicate a significant difference. 

Parametric and Nonparametric Post Hoc Results  
Test Dependent Variable Month*Location p value 

Tukey HSD Chaetognath δ13C April-Shallow July-Shallow 0.001 
   July-Deep 0.049 
   Sep-Shallow 0.001 
   Sep-Deep 0.000 
   Nov-Shallow 0.001 
    Nov-Deep 0.000 
  April-Deep July-Shallow 0.001 
   July-Deep 0.013 
   Sep-Shallow 0.000 
   Sep-Deep 0.000 
   Nov-Shallow 0.000 
    Nov-Deep 0.000 
  May-Shallow July-Shallow 0.002 
   Sep-Shallow 0.001 
   Sep-Deep 0.000 
   Nov-Shallow 0.001 
    Nov-Deep 0.001 
  May-Deep July-Shallow 0.000 
   July-Deep 0.009 
   Sep-Shallow 0.000 
   Sep-Deep 0.000 
   Nov-Shallow 0.000 
      Nov-Deep 0.000 

Tukey HSD Chaetognath δ15N April-Shallow July-Shallow 0.018 
  April-Deep July-Shallow 0.003 
   Nov-Shallow 0.021 
    Nov-Deep 0.017 
  May-Deep July-Shallow 0.005 
   Nov-Shallow 0.038 
   Nov-Deep 0.030 
    July-Shallow July-Deep 0.020 
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4.2.3.7. Density and Stable Isotope Results by Location*Depth 

When breaking down the location only statistics by depth, the highest mean 

calanoid copepod density (#/m3) and mean chaetognath density (#/m3) values were found 

at the deep tow for all locations (Copepod: Inshore, 8.7 SD=8.3, n = 5; Middle, 4.3 

SD=3.9, n = 5; Offshore, 11.0 SD=4.6, n = 5; Chaet: Inshore, 5.1 SD=3.2, n = 5; Middle, 

2.0 SD=2.3, n = 5, Offshore, 1.6 SD=0.9, n = 5). Calanoid copepod mean δ13C (‰) was 

highest in the shallow tow Inshore and Offshore (-19.9 SD=1.2, n = 4; -20.0 SD=0.6, n = 

5, respectively). Mean calanoid copepod δ13C (‰) is highest in the deep tow at the 

Middle station (-20.1 SD=0.6, n = 5). Chaetognath mean δ13C (‰) was highest in the 

shallow tow at the Middle and Offshore stations (-18.8 SD=0.8, n = 5; -18.7 SD=0.7, n = 

5, respectively). Mean chaetognath δ13C (‰) was highest in the deep tow Inshore (-19.0 

SD=1.0, n = 5). The mean calanoid copepod δ15N (‰) was highest in the shallow tow at 

the Middle station (5.6 SD=1.2, n = 5) and the mean calanoid copepod δ15N (‰) was 

lowest in the deep tow Inshore and Offshore (5.1 SD=0.3, n = 4; 5.1 SD=1.1, n= 5). The 

highest mean chaetognath δ15N (‰) values were found at the deep tow for all locations 

(Inshore, 6.1 SD=0.6, n = 5; Middle, 6.5 SD=0.6, n = 5; Offshore, 6.3 SD=0.8, n = 5) 

(Table 28, Figures 45 - 47). Kruskal-Wallis ANOVA by Ranks showed that calanoid 

copepod density values were significantly different (H(5, 30) = 12.933, p = 0.024, α = 

0.05). Multiple comparisons and Tukey HSD showed no significant differences, so the 

Fisher LSD post-hoc test was used. Fisher LSD showed a significant difference between 

the shallow tow at the Middle station and the deep tow at the Offshore station (p = 0.017, 

α = 0.05). There was also a significant difference between the shallow Offshore tow and 

the deep Offshore tow (p = 0.146, α = 0.05) (Tables 29 - 30).
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Table 34. Descriptive statistics by location and depth for each taxon. 

Descriptive Statistics By Location*Depth           
        N Mean Med Min Max Rng SD 
Den Cope In Shal 5 5.87 2.42 0.25 19.64 19.39 7.89 
#/m3    Deep 5 8.65 4.22 2.98 22.57 19.59 8.28 
  Mid Shal 5 2.00 0.51 0.17 7.92 7.76 3.34 
    Deep 5 4.34 2.99 1.18 11.17 9.99 3.92 
  Off Shal 5 1.76 0.70 0.08 5.88 5.80 2.41 
    Deep 5 10.96 11.29 5.11 15.50 10.39 4.57 
 Chaet In Shal 5 3.41 3.10 0.24 6.40 6.16 2.92 
    Deep 5 5.14 6.39 1.46 8.35 6.90 3.21 
  Mid Shal 5 1.16 1.35 0.16 2.35 2.19 0.87 
    Deep 5 1.96 1.23 0.41 6.06 5.66 2.33 
  Off Shal 5 0.66 0.24 0.11 2.28 2.18 0.92 
      Deep 5 1.62 1.18 0.88 2.63 1.75 0.86 
δ13C Cope In Shal 4 -19.93 -20.03 -21.10 -18.57 2.53 1.22 
(‰)    Deep 5 -20.11 -19.82 -21.31 -19.32 2.00 0.86 
  Mid Shal 5 -20.17 -20.46 -21.34 -18.60 2.74 1.08 
    Deep 5 -20.06 -19.99 -20.68 -19.47 1.21 0.56 
  Off Shal 5 -20.04 -19.78 -20.74 -19.40 1.34 0.62 
     Deep 5 -20.13 -20.04 -20.69 -19.55 1.14 0.46 
 Chaet In Shal 4 -19.25 -19.39 -19.98 -18.23 1.75 0.82 
    Deep 5 -18.95 -18.67 -20.13 -17.84 2.29 1.00 
  Mid Shal 5 -18.77 -18.48 -19.72 -17.93 1.79 0.83 
    Deep 5 -18.98 -19.17 -19.90 -17.94 1.97 0.95 
  Off Shal 5 -18.68 -18.40 -19.63 -17.92 1.71 0.72 
      Deep 5 -18.93 -18.62 -19.74 -18.03 1.71 0.75 
δ15N Cope In Shal 4 5.15 5.08 4.66 5.49 0.83 0.33 
(‰)    Deep 5 5.22 5.37 3.94 6.19 2.25 0.94 
  Mid Shal 5 5.58 5.67 4.63 6.17 1.54 0.58 
    Deep 5 5.58 5.91 4.24 7.18 2.94 1.19 
  Off Shal 5 4.69 4.54 3.96 5.88 1.93 0.74 
    Deep 5 5.10 4.65 4.07 7.03 2.96 1.14 
 Chaet In Shal 4 6.09 6.17 5.62 6.40 0.79 0.36 
    Deep 5 6.15 6.26 5.28 6.78 1.50 0.56 
  Mid Shal 5 5.84 5.88 4.70 6.85 2.16 0.80 
    Deep 5 6.49 6.65 5.85 7.22 1.38 0.56 
  Off Shal 5 5.69 5.61 4.78 6.63 1.85 0.78 
      Deep 5 6.35 6.47 5.09 7.43 2.34 0.84 
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Figure 45. Calanoid copepod and chaetognath density values (#/m3) by location and 
depth. The box indicates the values of the first quartile, median, and third quartile. The 
whiskers indicate the next values below the first quartile and above the third quartile. The 
stars represent the far outside values. Open circles represent the outliers. 
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Figure 46. Calanoid copepod and chaetognath δ13C values (‰) by location and depth. 
The box indicates the values of the first quartile, median, and third quartile. The whiskers 
indicate the next values below the first quartile and above the third quartile. The stars 
represent the extreme values. Open circles (when present) represent the outliers. 
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Figure 47. Calanoid copepod and chaetognath δ15N (‰) values by location and depth. 
The box indicates the values of the first quartile, median, and third quartile. The whiskers 
indicate the next values below the first quartile and above the third quartile. 

 

Mean 51 5N V alues by Month and Depth 

Ch,otogn,th, Doo p Ch,otogn , th, Sh,lIow 
0 00 oro 

, ro ~ $ , ro 

~ 6 '" ~ $ oro oro , 
~ 

, 
~ , , 

oro oro El 
. ro . ro 

.ro .ro 
,s ", ~...... ¢# ,,,'" ","" // "''''1#,"" 

If' ", .,. " 
0.00 "'"' 0.00 "'"' 

Copepod, Deep Copepod, Shallow 
oro 000 

, ro , ro 

~ .ro 

~ 
.ro 

6 , $ ~ ~ 
, 

0 , • 
oro 

'" 
oro 

$ . ro . ro 

.00 .00 

/t'$~l'// 
'" ,," 

/ti"'/// 
J!' ..-

~ .. 0.00"'"' 



120 
 

Table 35. Parametric and non-parametric ANOVA results by location and depth for each 
taxon. P values < 0.05 indicate a significant difference. 

Parametric and Non-parametric ANOVA Results by Location*Depth 
α = 0.05    
 Test H/F value p value 
Copepod Density (#/m3) Kruskal-Wallis ANOVA (5, 30) = 12.933 0.024 
Copepod Density (#/m3)** One-way ANVOA (1, 5) = 2.198 0.088 
Chaetognath Density (#/m3) Kruskal-Wallis ANOVA (5, 30) = 10.585 0.060 
Copepod δ13C (‰) One-way ANVOA (1, 5) = 0.04 0.999 
Chaetognath δ13C (‰) One-way ANVOA (1, 5) = 0.24 0.941 
Copepod δ15N (‰) One-way ANVOA (1, 5) = 0.735 0.605 
Chaetognath δ15N (‰) One-way ANVOA (1, 5) = 0975 0.454 

 

Table 36. Parametric and non-parametric post-hoc analysis results by location and depth 
for each taxon. P values < 0.05 indicate a significant difference. 

Parametric and Non-parametric Post-Hoc Analysis 

Test Dependent Variable Location*Location 
p 

value 
Fisher LSD Calanoid Copepod Density Middle-Shallow Offshore-Deep 0.017 

    Offshore Shallow Offshore-Deep 0.015 



121 
 

4.2.3.8. Density and Stable Isotope Results by Current 

Using the previously analyzed ADCP data, descriptive statistics were calculated 

for density and stable isotopes in each of the currents. For both calanoid copepod and 

chaetognath densities, the highest densities (#/m3) were found in the SSCC and the lowest 

were found in the FC. (Copepod: SSCC, 11.9 (SD=9.9, n = 3), FC, 2.9 (SD=4.1, n = 15); 

Chaetognath, 5.4 (SD=0.4, n = 3), FC, 1.3 (SD=1.6, n = 15)). For both calanoid copepod 

and chaetognath δ13C values, the lowest were found in the SSCC and the highest in the 

FC (Copepod: SSCC, -20.5 (SD=1.0, n = 3), FC -19.9 (SD=0.8, n = 14); Chaetognath: 

SSCC -19.3 (SD=1.3, n = 3), FC -18.7 (SD=0.7, n = 14)). Calanoid copepod δ15N was 

highest in the SSCC (5.3 SD=0.2, n = 3) and lowest in the Interm (5.2 SD=0.8, n = 12). 

Chaetognath δ15N was highest in the SSCC (6.4 SD=0.4, n = 3) and lowest in the FC (5.8 

SD=1.6, n = 14) (Table 31, Figures 48 - 50). 

The Kruskal-Wallis ANOVA by Ranks indicated that both calanoid copepod 

density and chaetognath density showed significant differences by current (H(2, 29) = 

8.402, p = 0.015, H(2. 29) = 7.427, p = 0.024, α = 0.05, respectively) (Tables 32 - 33). 

The multiple comparisons analysis showed a significant difference in calanoid copepod 

density between the FC and the Interm (p = 0.04, α = 0.05). The multiple comparisons 

analysis did not show any significant difference for chaetognath density, so the less 

conservative Tukey HSD post-hoc analysis was used. Results showed there was a 

significant difference between the FC and the SSCC (p = 0.04, α = 0.05). 
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Table 37. Descriptive statistics by current for each taxon. 

Descriptive Statistics By Current  
      N Mean Med Min Max Rng SD 

Dens Copepod FC 15 2.87 1.20 0.08 15.50 15.42 4.06 

(#/m3)  Interm 12 7.45 5.58 1.18 19.64 18.46 5.84 
  SSCC 3 11.85 10.01 2.98 22.57 19.59 9.92 
 Chaet FC 15 1.32 0.88 0.11 6.39 6.28 1.63 
  Interm 12 2.82 1.91 0.41 7.54 7.13 2.47 
   SSCC 3 5.40 6.39 6.02 6.78 0.76 0.38 
δ13C Copepod FC 14 -19.88 -19.80 -20.83 -18.57 2.26 0.75 
(‰)  Interm 12 -20.21 -20.27 -19.25 -21.34 2.09 0.71 
   SSCC 3 -20.47 -20.68 -21.31 -19.43 1.88 0.96 
 Chaet FC 14 -18.69 -18.52 -19.98 -17.92 2.06 0.65 
  Interm 12 -19.08 -19.38 -19.90 -17.94 1.96 0.80 
   SSCC 3 -19.28 -19.86 -20.13 -17.84 2.29 1.25 

δ15N Copepod FC 14 5.22 5.09 3.96 7.18 3.22 1.01 
(‰)  Interm 12 5.18 5.18 3.94 6.19 2.25 0.79 
   SSCC 3 5.32 5.46 5.06 5.49 0.43 0.23 
 Chaet FC 14 5.79 5.94 4.70 6.63 1.93 1.63 
  Interm 12 6.39 6.41 5.38 7.43 2.15 0.64 
    SSCC 3 6.40 6.40 6.02 6.78 0.76 0.38 
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Figure 48. Density values (#/m3) by current for each taxon. The box indicates the values 
of the first quartile, median, and third quartile. The whiskers indicate the next values 
below the first quartile and above the third quartile. The stars represent the far outside 
values. Open circles represent the outliers. 
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Figure 49. The δ13C values (‰) by current for each taxon. The box indicates the values of 
the first quartile, median, and third quartile. The whiskers indicate the next values below 
the first quartile and above the third quartile. 
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Figure 50. The δ15N values (‰) by current for each taxon. The box indicates the values 
of the first quartile, median, and third quartile. The whiskers indicate the next values 
below the first quartile and above the third quartile. 
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Table 38. Parametric and non-parametric ANOVA results by current for each taxon. P 
values < 0.05 indicate a significant difference. 

Parametric and Non-parametric ANOVA Results by Current   
α = 0.05    
  Test H/F values p value 

Copepod Density (#/m3) Kruskal-Wallis ANOVA (2, 29) = 8.402 0.015 
Chaetognath Density (#/m3) Kruskal-Wallis ANOVA (2, 28) = 7.427 0.024 
Copepod δ13C (‰) One-Way ANOVA (2, 28) = 1.099 0.348 
Chaetognath δ13C (‰) Kruskal-Wallis ANOVA (2, 28) = 1.661 0.436 
Copepod δ15N (‰) One-Way ANOVA (2, 28) = 0.032 0.969 
Chaetognath δ15N (‰) One-Way ANOVA (2, 28) = 3.304 0.053 

 

Table 39. Parametric and non-parametric post hoc results by current for each taxon. P 
values < 0.05 indicate a significant difference. 

Parametric and Non-parametric Post-Hoc Results by Current 
Test Dependent Variable Current p value 
Multiple Comparisons Calanoid Copepod Density FC (Interm) 0.040 

Tukey HSD Chaetognath Density FC (SSCC) 0.040 
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4.2.3.9. Density and Stable Isotope Results by Water Mass 

Using the previously analyzed CTD data, descriptive statistics were calculated for 

density and stable isotopes in each of the water masses. Calanoid copepod density was 

highest in the Other water mass and lowest in the YW (5.1 SD=4.4, n = 4, 3.3 SD=5.0, n 

= 6, respectively. Chaetognath density was highest in the YW and lowest in the CEW 

(2.3 SD=2.8, n = 9, 1.5 SD=1.0, n = 5, respectively. Calanoid copepod δ13C values were 

highest in the YW and lowest in the Other water mass (-19.4 SD=0.6, n = 8, -19.7 

SD=0.4, n = 4, respectively). Chaetognath δ13C values were highest in the CEW and 

lowest in the Other water mass (-18.1SD=0.5, n = 5, -18.5 SD=0.6, n = 4, respectively). 

Calanoid copepod δ15N was highest in the Other water mass and lowest in the CEW (5.8 

SD=0.3, n = 4, 4.0 SD=0.6, n = 5, respectively). Chaetognath δ15N was highest in the 

Other water mass and lowest in the YW (6.3 SD=0.4, n = 4, 5.4 SD=0.6, n = 8, 

respectively) (Table 34, Figures 51 - 53). 

One-way ANOVA results indicated that chaetognath δ15N values differed by 

water mass (F(2, 16) = 6.870, p = 0.008, α = 0.05) (Table 35 and 36). The Tukey HSD 

pos-hoc results indicated that there was a significant difference between the YW and 

Other water masses, and the YW and CEW water masses (p = 0.021, p = 0.023, α = 0.05, 

respectively) (Tables 35 - 36). 
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Table 40. Descriptive statistics by water mass for each taxon. 

Descriptive Statistics by Water Mass 
      N Mean Med Min Max Rng SD 
Density Copepod YW 9 3.33 0.70 0.08 15.50 15.42 4.96 
#/m3  CEW 5 3.23 2.42 1.20 7.70 6.49 2.58 
   Other 4 5.11 4.05 1.18 11.17 9.99 4.35 
 Chaet YW 9 2.34 1.46 0.11 7.54 7.43 2.78 
  CEW 5 1.48 1.35 0.53 3.10 2.57 0.98 
    Other 4 2.21 1.18 0.41 6.06 5.66 2.61 
δ13C Copepod YW 8 -19.44 -19.48 -20.46 -18.57 1.90 0.63 
‰  CEW 5 -19.59 -19.60 -20.04 -19.25 0.79 0.29 
   Other 4 -19.73 -19.73 -19.99 -19.47 0.52 0.24 
 Chaet YW 8 -18.36 -18.32 -18.67 -18.12 0.55 0.19 
  CEW 5 -18.13 -17.93 -18.95 -17.84 1.12 0.46 
    Other 4 -18.45 -18.34 -19.17 -17.94 1.24 0.57 
δ15N Copepod YW 8 4.96 4.66 3.96 7.18 3.22 1.03 
‰  CEW 5 4.50 4.26 3.94 5.43 1.49 0.58 
   Other 4 5.82 5.78 5.56 6.17 0.61 0.27 
 Chaet YW 8 5.35 5.20 4.70 6.26 1.57 0.56 
  CEW 5 6.19 6.20 5.62 6.63 1.01 0.40 
    Other 4 6.26 6.27 5.85 6.65 0.81 0.39 
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Figure 51. Density values (#/m3) by water mass for each taxon. The box indicates the 
values of the first quartile, median, and third quartile. The whiskers indicate the next 
values below the first quartile and above the third quartile. The stars represent the far 
outside values. Open circles represent the outliers. 
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Figure 52. The δ13C values (‰) by water mass for each taxon. The box indicates the 
values of the first quartile, median, and third quartile. The whiskers indicate the next 
values below the first quartile and above the third quartile. The stars represent the far 
outside values. Open circles represent the outliers. 
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Figure 53. The δ15N values (‰) by water mass for each taxon. The box indicates the 
values of the first quartile, median, and third quartile. The whiskers indicate the next 
values below the first quartile and above the third quartile. The stars represent the far 
outside values. Open circles represent the outliers. 

 



132 
 

 
Table 41. Parametric and non-parametric ANOVA results by water mass for each taxon. 
P values < 0.05 indicate a significant difference. 

Parametric and Non-parametric ANOVA Results by Water Mass   
α = 0.05    

  Test H/F values 
p 

value 

Copepod Density (#/m3) Kruskal-Wallis ANOVA (2, 18) = 1.530 0.465 
Chaetognath Density (#/m3) Kruskal-Wallis ANOVA (2, 18) = 0.019 0.99 
Copepod δ13C (‰) One-way ANOVA (2, 16) = 0.490 0.62 
Chaetognath δ13C (‰) Kruskal-Wallis ANOVA (2, 17) = 3.615 0.153 
Copepod δ15N (‰) One-way ANOVA (2, 16) = 3.084 0.078 

Chaetognath δ15N (‰) One-way ANOVA (2, 16) = 6.870 0.008 
 

Table 42. Parametric and nonparametric post hoc results by current for each taxon. P 
values < 0.05 indicate a significant difference. 

Parametric and Non-Parametric Post-Hoc Results by Water Mass 
Test Dependent Variable Water Mass p value 

Tukey HSD Chaetognath δ15N YW (Other) 0.021 

    YW (CEW) 0.023 



133 
 

5. Discussion 

5.1. Preservation Effect  

This study addressed the effect of multiple types of common preservation 

methods on the carbon and nitrogen stable isotope ratios of common zooplankton species. 

All the preservation media used were carbon based and did not contain a nitrogen group 

(Ethanol: C2H6O; Formalin: H2C(OH)2 (aqueous formaldehyde)). The preservation 

methods that utilized only ethanol showed significant increase in calanoid copepod and 

chaetognath δ13C values when compared to the control preservation method (frozen).  

Alcohol has been used as a lipid extractor since the first methods of lipid extraction were 

described by Folch et al. (1957) and then again by Bligh and Dyer (1959). The increase in 

δ13C in both taxa for both treatments involving ethanol can be explained by lipid loss. 

Tissues and organisms high in lipid content will have a more negative (depleted) δ13C 

than those low in lipid (DeNiro and Epstein, 1978, Tieszen et al., 1983). When the 

organisms were preserved in ethanol, the lipids are extracted and the δ13C values become 

more positive (enriched). This was in accordance with the results reported by Syvaranta 

et al. (2008) who studied calanoid copepods, cyclopoid copepods, and cladocera, the 

results by Sweeting et al. (2004) who examined the muscle tissue of Atlantic cod, and 

also the results summarized by Kelly et al. (2006) who studied the effects on the muscle 

tissue of the Arctic char. 

In a study by Kelly et al. (2006), the stable isotope analysis indicated that the δ13C 

of the formalin used for preservation was very much depleted (-58.5‰).  The δ13C of 

individual formalin samples varies depending on the manufacturer (-37.8‰ to -52.5‰) 

as Edwards et al. (2002) found, but depleted in regards to many organisms’ tissue δ13C. 
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The aldehyde group in the δ13C depleted formalin binds to the nitrogen group in protein, 

glycoprotein, nucleic acid, and phospholipids, leading to depletion in the overall δ13C 

tissue values. Organisms higher in these biochemical components should show a greater 

depletion in δ13C as more δ13C depleted formalin attaches to the nitrogen groups by cross-

linking the polymers of formalin and protein (Helander, 1994, Kiernan, 2000). The 

results did not show a decrease in δ13C values so it is possible that neither formalin, 

attaching to these biochemical components, nor the presence of excess preservation 

media on the organisms occurred. This indicates that formalin fixation does not have a 

large effect on the δ13C values of calanoid copepods and chaetognaths along the southeast 

continental shelf of Florida during the fall, and the observed standard deviation was most 

likely due to the natural variation in zooplankton δ13C values. 

Non-quantified observation of the sample indicated that copepods were the 

majority of the sample, so initial expectations were that the bulk zooplankton 

preservation trends were going to follow the same trends as the calanoid copepod 

treatment trends. The observed decrease in δ13C values of the bulk zooplankton sample 

due to formalin treatment may be attributed to other organisms in the sample that may 

have different biochemical composition that allows for formalin binding. Also, the 

method used to collect  the bulk sample after treatment may have allowed residual 

formalin to remain in the sample prior to analysis. Individual calanoid copepods and 

chaetognaths were picked and rinsed prior to analysis, while the bulk sample was pipetted 

into a dish and rinsed as a whole, possibly diluting the formalin rather than rinsing it off. 

Analysis of the treatment effects on δ15N values showed that all treatments led to 

an increase in δ15N compared to the control, with only a significant increase in 
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chaetognath δ15N values. The most common lipid types found in zooplankton are 

triacylglycerols, wax esters, diacylglycerol ethers, and phospholipids (Lee and Hirota, 

1973). Of these lipids, the phospholipid is the only group that contains a nitrogen group. 

Protein, glycoprotein, nucleic acid, and phospholipids are the major categories of 

biochemical components that have a nitrogen group. Similar to the δ13C values, the 

greatest changes were observed between the control and the treatments involving ethanol 

(ethanol only and formalin/ethanol combination). As previously stated, alcohol is a lipid 

extracting agent. Most lipids, except for phospholipids, do not contain a nitrogen group. 

If the ethanol treatments were extracting phospholipids from the zooplankton, then the 

trend would be for the δ15N to become depleted, not enriched. Perhaps ethanol treatments 

affect the δ15N of one or more of the biochemical components by removing the 

isotopically light components preferentially over the heavier ones, similar to the concept 

that heavier isotopes are incorporated into tissues and light isotopes are preferentially 

discarded by respiration and egestion. 

The effect of treatments was highly variable in this study and it is possible that the 

effect varies due to the biochemical components of the zooplankton present at the time of 

acquisition. Especially because of the observed changes in δ15N, it can be hypothesized 

that isotopic shifts in the study were due to biochemical extraction, as the preservation 

media was carbon based and did not contain a nitrogen group. In order to determine with 

relative accuracy the magnitude and direction of the isotopic change due to preservation, 

the ratios of specific biochemical components must be determined before preservation 

begins. Biochemical composition is known to change due to many factors, including food 

availability, prey selection (herbivorous, carnivorous, and omnivorous), reproductive 
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cycle, geographic location, and seasonal changes that affect these factors (Lee and Hirota, 

1973, Sargent et al., 1981, Bhat and Wagh, 1992, Choe et al, 2003). Stable isotope 

analysis should be done on specific lipids, wax esters, proteins, and other biochemical 

components over various seasons to determine which component(s) are isotopically 

altered. 

5.2. Physical Analysis of Currents and Water Masses 

Analysis of ADCP data indicated that there was a fast moving, northward flowing 

current present along the transect for all months of the study, which was assumed to be 

the Florida Current. The western boundary of this current meandered from month to 

month along the 10 km wide transect, which is characteristic of the Florida Current (Lee 

et al., 1981, Zantopp et al., 1987) . A subsurface counter current of unknown origin was 

also present in the ADCP data, but this current was not present during all months 

sampled. Counter currents have been previously documented but at depths of 500-800m, 

not 50-200m, as observed in this study (Duing and Johnson, 1971, Stepien, 1980). The 

CTD data collected during some of the months indicated that two specific water masses 

were present: Continental Edge Water and Yucatan Water. Continental Edge Water is 

located on the continental margin and Yucatan Water is located on the Insular margin in 

the Straits of Florida, and both water masses occupy the water column from surface to the 

bottom. The boundary between these two water masses is delineated by the western 

boundary of the Florida Current (Bsharah, 1957, Wennekens, 1959). Data from this study 

supported this premise, as Continental Edge Water occupied the entire transect during 

September, when the western edge of the Florida Current was at the Offshore station. 

Yucatan Water occupied the entire transect during July and November when the western 
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boundary of the Florida Current was at the Inshore station. During September, the SSCC 

was present at the Inshore station and the temperature and salinity profiles identify this 

water as Continental Edge Water, identical to the northward flowing water around it. This 

indicated that this particular counter current was not a spin-off eddy of the Florida 

Current because it did not exhibit characteristics of Yucatan Water, which is found in the 

Florida Current at this latitude. 

5.3. Biological Analysis of Currents and Water Masses 

Regardless of the current, water mass or location sampled, the monthly variation 

in density for both calanoid copepods and chaetognaths was an overwhelming factor. 

Highest overall densities were found in April and May, while the lowest overall densities 

were found in July and September. Summer is generally a nutrient-limited time for 

phytoplankton growth in tropical and subtropical waters (Pasciak and Gavis, 1974, 1975), 

but passing spin-off eddies of the Florida Current may provide nutrients for a short-lived 

phytoplankton bloom, and subsequent zooplankton bloom (Lee et al., 1981, Yoder et al., 

1981).  

Both calanoid copepods and chaetognaths are continuous spawners in tropical 

waters, so food availability is a major factor in determining zooplankton blooms. There is 

a possibility that zooplankton samples collected during this study may have been from 

isolated zooplankton blooms, giving larger than expected density values and possible 

explanation for seasonal variation. Zooplankton are known to have an inherent patchy 

distribution both horizontally and vertically and, therefore, multiple year sampling must 

be done in order to determine if this observed trend was a seasonal trend or if they were 
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anomalous events (Omori and Hammer, 1982; Legendre and Demers, 1984; Daley and 

Smith, 1993.)  

Overall, the highest densities of calanoid copepods and chaetognaths were found 

at the Inshore station, and were lower at the Middle and Offshore stations. These findings 

are in accordance with the premise that production is higher in the near shore waters and 

substantially diminishes just 10 km offshore (Turner et al, 1979b), as the Inshore station 

was location 6.5 km offshore and the Middle station was located 12.5 km offshore. 

Calanoid copepod and chaetognath densities in this study have demonstrated 

typical patterns of tropical/subtropical, coastal production trends. Further discussion of 

these patterns in conjunction with the previously defined physical results will provide a 

detailed suggestion of the biological characteristics specific to the southern Straits of 

Florida.  

Calanoid copepod and chaetognath density was highest in the SSCC and lowest in 

the Florida Current. When the Subsurface Counter Current was not present, the density 

values were highest in the Intermediate water when compared to the Florida Current. 

Upon initial investigation, it was hypothesized that the greater density of zooplankton in 

the Subsurface Counter Current was caused by entrapment from the shelf in a passing 

eddy, based on previous observations in other studies that focused on the eddies produced 

by the meandering Florida Current (Hopkins et al., 1981; Mauchline, 1998), but when 

combining the information from ADCP data and CTD data, it was concluded that the 

Subsurface Counter Current was not part of a passing eddy. The Subsurface Counter 

Current has temperature and salinity properties of the Continental Edge Water around it, 

and not properties of Yucatan water, which is characteristic of the Florida Current. 
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Water flowing through the Straits of Florida has been known to reach 

temperatures as low as 7oC, and have origins in the South Atlantic (Wennekens, 1959). It 

is possible that the cold water that was found during the deep tow at the Middle station 

during July, September and November (OTHER water mass) may be this South Atlantic 

cold water. Further analysis of these waters needs to be done to determine their actual 

origin. There is some intrusion of Western Atlantic water into the Straits of Florida but 

most occurs through the Old Bahama Channel, north of the sampling stations, so it is 

unlikely that the cold water that is observed has Western North Atlantic origins. High 

densities of especially calanoid copepods (chaetognaths were a little more variable) were 

observed in the Other water mass, but analysis of densities by location and also by depth 

indicated that the highest densities occurred at the deep tow for all stations during all 

months. Therefore, the high densities of calanoid copepods and chaetognaths observed in 

the Other water mass are characteristic of the deep water at the sampling location, and not 

specific to a particular water mass. 

5.4. Stable Isotope Analysis of Currents and Water Masses 

The preservation study proved that the stable isotope values obtained cannot be 

used because the formalin/ethanol treatment altered the stable isotope ratios. If carbon 

isotopes had been usable, pelagic zooplankton would have expected to have a depleted 

13C value while the more coastal organisms would have been enriched, as found by Perry 

et al. (1999). If colder and deeper water was being transported into the Straits of Florida 

(the OTHER water mass), the δ13C values of the zooplankton would be expected to be 

depleted relative to the Continental Edge Water and the Yucatan Water. If the Subsurface 

Counter Current was entraining coastal populations, those δ13C values should have been 
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more enriched compared to the Florida Current, and possibly the Intermediate water, as 

well. 

Even though the δ15N values were not as altered as much as the δ13C values, no 

correction factor could be determined and therefore, these samples could not be used to 

help identify currents and water masses because it is unclear why the δ15N values 

increase, as they were expected to decrease., The δ15N values, in combination with the 

δ13C values, were going to be used to distinguish different foraging patterns within 

different currents and water masses. In combination with calanoid copepod and 

chaetognath densities, the δ15N values would have given some insight as to how feeding 

habits changed with varying prey availability. Copepods have been shown to be selective 

feeders that prey upon organisms with higher protein content (Cowles, 1988). Varying 

types of prey may show different δ15N values based on their biochemical content. The 

δ15N values would also have been utilized to identify the source of nitrogen, either 

recently upwelled nitrate or regenerated ammonia. Organisms that utilized nitrate will 

have higher δ15N values than organisms that utilize ammonia. 

6. Conclusions 

6.1. Preservation Effect 

Originally, a preservation study was going to be conducted using frozen 

zooplankton samples that were collected at the same time as the preserved samples, but 

there were too many variables that could have skewed the results. The ring net towed just 

below the surface would collect different populations with possible different species 

composition. Secondly, the samples to compare were collected at different locations, with 

some populations being influenced by coastal waters and some populations being 
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influenced by Florida Current waters. Finally, the density found in each ring net sample 

was not high enough to produce repetitive samples. Preservation of the zooplankton in 

formalin and ethanol rendered the use of the samples, specifically δ13C, useless to 

identify different currents or water masses. In the preservation study, zooplankton 

samples collected from an area just south of the sampling transect yielded results that 

indicated it was not possible to provide a universal correction factor to previously 

sampled and preserved zooplankton. Further studies need to be done to determine which 

biochemical components are affected most by the preservation media. Variations in 

biochemical composition due to season, food availability, and reproductive cycle indicate 

that a correction factor may vary based on different biochemical ratios, and may not be 

species’ specific. 

6.2. Currents and Water Masses 

Variation in the calanoid copepod and chaetognath densities from month to month 

was vast, with the lowest densities being found during late summer, but there was a still a 

distinct differences between individual currents and water masses. The Florida Current 

had lower densities of both taxa than the Intermediate water and the Subsurface Counter 

Current. The higher densities of both taxa in the Subsurface Counter Current and the 

Intermediate water could have come from deep water populations being transported with 

the Florida Current or cross shelf flow from more coastal regions. 

The presence of the Subsurface Counter Current in association with an onshore 

meander of the Florida Current is harder to explain, but it might be independent of the 

Florida Current. Water mass formation in the Caribbean and Gulf of Mexico and 

intrusions of Western North Atlantic water masses influence the water masses found in 
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the Straits of Florida. The temperature-salinity data used in this study gave a basic idea of 

the water masses found at the E-W transect. Using carbon stable isotopes, dissolved 

oxygen levels, nutrient levels, and potential density will provide additional information 

about the water masses present in the Straits of Florida. Greater plankton densities, found 

in waters with low δ13C (sw) levels in conjunction with high levels of nutrients (nitrate and 

phosphate), could indicate a plankton bloom due to upwelled, deep water. Measuring 

nitrate and ammonia levels will determine if production in the water masses is new 

production or regenerated production. Zooplankton sampling and isotopic analysis during 

each month, and multiple year sampling regimes will help to determine if the results from 

this study are anomalous and if the trends seen here dictate a seasonal pattern. Also, 

identification of calanoid copepod and chaetognath species will aid in determining 

whether they are deep water populations, upwelled during onshore flow, or if they are 

coastal populations being pulled from the coastal waters. Overall, the physical data in this 

project identified two distinct water masses off the coast of southeast Florida, Continental 

Edge Water and Yucatan Water. The vertical boundary of these two water masses is the 

western front of the Florida Current, with the Continental Edge Water occupying the 

continental margin and the Yucatan water occupying the insular margin of the Straits of 

Florida. The physical data also confirmed that the aperiodic flow reversal (Subsurface 

Counter Current) was not an extension of the Florida Current, but an independent 

southward flow. Zooplankton density information confirmed that the lowest densities are 

found in the Florida Current (Yucatan Water) and high densities are found in the coastal 

waters (Continental Edge Water), including the Subsurface Counter Current.
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