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The problem of multimodal functional optimization has been addressed by much research
producing many different search techniques. Niche Genetic Algorithms eseam¢hat

has attempted to solve this problem. Many Niche Genetic Algorithms use sonoé type
radius. When multiple optima occur within the radius, these algorithms have a difficul
time locating them. Problems that have arbitrarily close optima crgadater problem.

This paper presents a new Niche Genetic Algorithm framework called Dynadirs
Species-conserving Genetic Algorithm. This new framework extendmgxi@enetic
Algorithm research.

This new framework enhances an existing Niche Genetic Algorithm in tws. wss the
name implies the radius of the algorithm varies during execution. A uniforosreain
cause issues if it is not set correctly during initialization. A dynandicsacompensates

for these issues. The framework does not attempt to locate all of the optimagtea si
pass. It attempts to find some optima and then uses a tabu list to exclude thosk areas
the domain for future iterations. To exclude these previously located optima, the
framework uses a fitness sharing approach and a seed exclusion approachw This ne
framework addresses many areas of difficulty in current multimodal éunadti

optimization research.

This research used the experimental research methodology. A seriesiof cla
benchmark functional optimization problems were used to compare this framework to
other algorithms. These other algorithms represented classic and dlicrentGenetic
Algorithms.

Results from this research show that this new framework does very well imgpca
optima in a variety of benchmark functions. In functions that have arbitrasgg cl

optima, the framework outperforms other algorithms. Compared to other NideticSe
Algorithms the framework does equally well in locating optima that are notaailyitr

close. Results indicate that varying the radius during execution and the use ofst tabu |
assists in solving functional optimization problems for continuous functions that have
arbitrarily close optima.
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Chapter 1

I ntroduction

This introductory chapter is organized into seven sections. The first sectios define
the problem that this research addressed. The second section describeartte geaé
The third section provides an overview of the approach. The fourth section explains the
relevance and significance. The fifth section describes the barriers agsltissuneed to
be overcome by this research. The sixth section provides definitions of terms tised i

dissertation. The final section is a summary of this chapter.

Problem Statement
Genetic Algorithms (GA) have a difficult time solving problems with mulitoleect
answers. When traditional GAs attempt to solve multimodal problems they often
converge to only one of the possible correct or good solutions. A current area afiresea
in GAs is called Niche Genetic Algorithms (NGA), which hopes to address thtepr.
NGAs can be used to solve problems that seek local optima where multiple exist.
Currently there are many NGAs. Two prominent approaches to developing R&GAs a
crowding and sharing (Deb & Goldberg, 1989). In crowding algorithms, members of one
population coexist with members of the next population. Older individuals of the
population are selected for removal based on how similar they are to newer members. A
variety of NGAs use some type of crowding scheme (Cavicchio, 1970; De Jong, 1975;

Jelasity & Dombi 1998; Li, Balazs, Parks & Clarkson, 2002; Ling, Wa, Yang & Wang



2008; Raghuwanshi & Kakde, 2007). The second approach is through fitness sharing. In
sharing schemes, the fitness of an individual is dependent on its distance to other
individuals in the population. This increases the chance that species will form around
niches by rewarding genetic isolation. There are many methods basediog sha

schemes (Beasley, Bull & Martin, 1993b; Bernier, 1996; Goldberg & Richardson, 1987,
Holland, 1975). While not every NGA is a crowding or sharing method, most fall into

one of these two categories.

I N PN T T u _______ LI

Figurel. Graph ofy =xsin@®

Both of these approaches use some form of distance in determining what individuals
perform crossover or which individuals are promoted into the next generation. Téere ar
some domains where distance is not a good indicator of niches (Ando & Kobayashi,
2005). Clearly these approaches are good if there are significant esstetaeen

niches. What is unclear is the effectiveness of these approaches when niohes bec



arbitrarily close. Consider functional optimization problems for continuous fungtions
specifically, classes of functions that have local optima that becomeahpittose. No
matter what distance a NGA expects between niches there exists antagedamain in
which niches are smaller than this distance. Figure 1 shows a graph of one such,functi
y = xsin(®). Asx gets larger the local maximums or optima become arbitrarily close

together.

Resear ch Goal

The goal of this research was to develop a new NGA that can address these types of
problems for functional optimization of continuous functions. This NGA is a framework
based on an existing NGA, but allows different components to be used in combination to
create different algorithms. This new approach is not dependent on a static dilebe ra
parameter that could provide poor results if selected wrong. As part of this goal the
algorithm should be flexible enough to solve other types of problems that current
traditional NGAs solve. This research goal will expand our current understanding of
NGAs.

This dissertation addressed of few areas that make up the goal. To accdraplish t
goal a new NGA was developed and tested against existing NGAs. Théehatethis
research addressed are as follows:

e To develop a new NGA that will solve for arbitrarily close optima

e To compare this new NGA to existing NGAs to determine its effectiveness

These two research goals complement the goals defined in this chapter.



There were two hypotheses to this research. The first hypothesis wasahag|
optima in phases increases a NGAs ability to find optima. In the first gread&xA
finds some optima. Once some optima are located, they are used to encourage
exploration in other areas of the domain. Multiple attempts to find optima are peaform
Each attempt leverages already located optima, which should make it @soaite
other optima because there is less of the domain space to search. This process continue
until all of the optima are located.

The second hypothesis was that many NGAs miss optima, especiallyigrioivae
optima, because they use a static radius. Many current NGAs have a pathaias
used to determine if individuals are within a neighborhood. If the distance between
optima is smaller than this radius, the NGA has a difficult time locatiraf #ie optima.
The value that this parameter is set to greatly affects the results abthe The second
hypothesis was that a dynamic radius could compensate for poor radius choices.
Allowing the radius to change as the algorithm runs may allow it to adapt to oosditi
and find more optima.

These two hypotheses complement each other. The research hypothesis was that
better results can be obtained by allowing dynamic radius and restrictasya the
domain where optima have been located. This allows investigation across the entire
domain which should produce better results. Both hypotheses should increase the

number of optima discovered by the NGA.



Approach

The new approach for solving multimodal optimization problems used existing
methods in combination to enhance a traditional GA. The new approach is a NGA
framework that is based on Species Conserving Genetic Algorithm (SCG&)4L,

2002). The framework is presented in a modular form and has different components that
can be used in combination to create different variations of the algorithm.

SCGA enhances the traditional GA with seed selection and seed conservation steps.
Seeds are identified as the fittest member within a given radius. Seedsseeved into
the next generation through a seed conservation step. Seed conservation has the seed
replace the weakest individual in the new generation within the radius of the seged. Thi
ensures that these strong individuals that are tracking different optimeeseevied.

The new framework does not attempt to find all of the optima within a single pass of
the algorithm. Traditional GAs perform a loop with each iteration creating a new
generation of the population. Environmental pressures force the population to converge.
Multimodal optimization creates a difficult problem for GAs. The new approach
generates a certain number of generations in hopes of finding some optima. These
optima are recorded and the environmental parameters change. These chemiges al
the fitness of individuals is determined and what individuals can be seeds. This
encourages future generations to avoid these optima. This allows future genesations t
explore other areas of the domain and locate other optima. The process of locating some
optima and then changing the fitness is performed multiple times. There is aloopte

and an inner nested loop. The inner loop performs a typical SCGA algorithm. Once it



completes, seeds and optima are recorded and changes are made to the algorithm
parameters. The steps consisting of the inner loop, recording and changiag of t
algorithm’s parameters are performed in an outer loop. While traditional 8As a
single loop, this new approach uses nested loops to find some of the optima that enhances
its ability to locate all of the optima.

The new framework also changes the radius used to define species. In SCGA a radius
is defined and used throughout the algorithm. As other research has shown there is a
limitation to algorithms of this type (Ando & Kobayashi, 2005). Poor choices for the
radius produce poor results. The new approach changes the radius as the algorithm runs.
The algorithm attempts to compensate for poor radius choices. After each inner loop of
the algorithm completes, adjustments are made to the radius. Varying the radius
mitigates the issue of incorrectly set radius.

The final difference between SCGA and this new framework is the usalnf Bst.
A tabu list comes from the tabu search method and is a list that contains previously
evaluated areas of the domain. The tabu list is used by the algorithm to aveidrdees
in the future and concentrate on areas of the domain that have not been searched. After
each completion of the inner loop, the seeds and optima from that pass are recorded on a
tabu list. This listis used in future loops of the algorithm to encourage exploration b
avoiding these areas.

As optima are located, the algorithm adjusts to encourage exploration into cdlser are
of the domain. This is done in two ways. The algorithm can determine that a potential
individual is too close to a member of the tabu list. This will disqualify the ithalai

from becoming a seed. The algorithm may also adjust the fitness to indivielagiiser



to how close they are to individuals on the tabu list. This will decrease their cloinces
becoming seeds. Both of these tactics are possible within the new framework.

To validate the new approach, it was compared against other NGAs using a skt of wel
established benchmarks. The benchmarks came from a variety of NGA reseaafh. Al
the benchmarks were minimization and maximization functional optimization preblem
A new benchmark was also presented. These benchmarks were used to compare the ne
approach to other NGAs.

The new approach was compared to other NGAs in solving the benchmarks that were
defined. A variety of performance criteria were used in this comparison including
proportions of peaks located and average fitness of the last 50 generations. For each
benchmark the new approach was compared to multiple other NGAs. These other NGAs
had been selected to cover a wide range of NGA research from modern methogs to ear
algorithms. In many cases the new approach was compared against pyeublished
results in other NGA research. In other cases NGAs were implemented totebtali
results. The performance criteria allowed the new approached to be edagainst
other NGA methods.

The new framework leveraged a variety of existing methods to introduce a new
combination of concepts to create a NGA framework. The use of a tabu lisdAa N
has been used before (McLoughlin & Cedeno, 2005; Ting & Ko, 2008; Tsai, Tseng,
Chiang, & Yang, 2009). The use of a dynamic radius has also been used in other
algorithms (Jelasity & Dombi, 1998). The combination of a tabu list and dymadhics
applied to the SCGA algorithm is new. This new framework was compared aghgrst

NGAs using well defined benchmarks and criteria. Comparing it againgtuwedh



established NGAs showed that this new approach can solve multimodal optimization

problems.

Relevance and Significance

The study of GAs is important because GAs are very useful search techniques. The
have been used in almost every field of study. Much literature has been dedicated t
outlining uses for GAs (Coello, 2000; Dianati, Song & Treiber, 2002; Sheikh,
Raghuwanshi & Jaiswal, 2008). For example, GAs and NGAs have been used in
Electrical Engineering to design electromagnetic systemsf(Jtofrmisano & Martone,
2000). In the field of Knowledge Discovery they have been used as a claBsifier&
Hasse, 2000). For pattern matching, NGAs can be used to match handwriting (Oliveira,
Sabourin, Bortolozzi & Suen, 2002; Stefano, Cioppa & Marcelli, 1999). NGA research is
useful to many fields of study.

Because GAs and NGAs are applicable to many fields of study, tese#ne subject
has continued uninterrupted for many decades. Early researchers develgped sim
algorithms for multimodal optimization (Deb & Goldberg, 1989; Goldberg &
Richardson, 1987; Mauldin, 1984). These algorithms solved many multimodal
optimization problems. A second generation of algorithms were developed that
addressed limitations of the previous algorithms (Li et al., 2002; Ling et al., 2008;
Raghuwanshi & Kakde, 2007). Some research addressed the limitation that many
algorithms require tuning parameters (Bernier, 1995; Fonseca & Fleming, 1993).

Researchers continue to investigate NGAs.



NGA research continues to this day and is an important area of researcharalArtif
Intelligence. Experts in the field believe that developing new NGAs is useful a
justification exists for continued investigation. These new NGAs can be usedrin othe

areas of research to solve multimodal optimization and search problems.

Barriersand Issues

There were two barriers to this research. The first barrier was prernahvergence
which traditional GAs exhibit when attempting to locate multiple optimum. Thendec
barrier was optimum location and preservation. Let us consider how each ofrdasse a

was addressed by this research.

Premature Convergence

One barrier to developing a NGA is to prevent global convergence. A GA naturally
converges to a local optimum. This is appropriate for many types of problems, but there
are problems that have multiple optima. Traditional GAs will converge to a single
optimum, ignoring the other ones. The key to develop a NGA is to overcome this
pressure to converge. The NGA needs to allow local convergence within niches. De
Jong (1975) calls this premature convergence.

Two forces act on the generations of a traditional GA. Crossover of individuals puts
pressure on the population to converge through different individuals having different
probabilities of reproducing (De Jong, 1975). The algorithm exploits fit individuals in
the creation of each generation. An opposite force works against this exploitation.

Mutation alters individuals, which allow exploration of new areas of the domain



10

(Beasley, Bull & Martin, 1993a). NGAs need to balance the two forces of etipfora
and exploitation. Too much exploration will decrease the performance of the search,
turning it into a random search (Holland, 1992). Limiting exploration too much, in favor
of exploitation, leads to premature convergence (De Jong, 1975). Successful NGAs
balance exploration and exploitation to locate multiple optima.

As a GA generates individuals using crossover, the amount of the domain that is being
searched decreases. This is referred to as genetic drift and remagesf dine search
space so greatly that even mutation cannot put them back (De Jong, 1975). This
eliminates other possible solutions to the problem. In problems that have aeimegte
answer this convergence helps in solving the problem by eliminating argmesdafmain
in which the correct answer does not exist. But in multi-objective problems, ihatensi
other optima.

There are two methods in GA research that could address this problem. One is to have
a very large population si2¢ If N is very large, the GA has much more time to locate
other optima before the genetic drift closes the search space. Howeverddiolea
performance problems (De Jong, 1975). A second approach is to have a very high
mutation rate. This would allow the expanding of the search space when genetic drift
happens. The problem with very high mutation rates is that it prevents convergence,
which is the ultimate goal of the GA and the way that the GA finds the solution (De Jong
1975). This is why De Jong, Holland, Goldberg and other researchers believe that
traditional GAs will not solve multimodal problems (De Jong, 1975; Holland, 1975;

Goldberg & Richardson, 1987).
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Optimum Preservation

The second barrier to this research was optimum preservation. This barrier can be
thought of in two parts. The first part is optimum location, identifying the afdhe
domain worth preserving. Because the domain has not fully been searched when
optimum location is applied, this is difficult for the NGAs. The second part is how to
preserve or conserve these areas. Because of crossover and mutationjtttere is |
guarantee that these areas of interest will be represented in the neatigen&ptimum
preservation is essential in NGAs.

Optimum location attempts to identify individuals within a population that can
eventually lead to an optimum (De Jong, 1975). These individuals are normally
individuals at, or close to, an optimum. Selection in traditional GAs focuses on the fittes
members. But in multimodal optimization problems, it is possible that lessrfibare
are also tracking a local optimum. A single generation of a population represernts a ve
small part of the domain. Locating these individuals makes optimum location
challenging.

Optimum preservation is used to ensure that the optima located are not dfiminate
the population through convergence. Convergence pressures of GAs can eliminate
optimum after they are discovered. The method to ensure that an optimum is preserved
can be direct or subtle (Li et al., 2002). There are direct approaches like promoting a
individual of interest into the next generation. More subtle approaches can be to adjust
the individual's fitness to increase its chances of being selected fannansfRegardless

of the method, these located optimum need to be preserved into the next generation.
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Optimum preservation is a barrier that every successful NGA needs to overcome.
Some part of the algorithm needs to identify interesting individuals in the population and
allow their representation in future generations (Li et al., 2002). There arety v&
methods that can be employed for optimum preservation. These methods will be

described in the literature review of Chapter 2.

Definition of Terms
This dissertation uses a variety of terms. Many terms are generallyg kntdve GA
field. The following list of terms should provide an overview of terms used in this

dissertation.

Baldwin Effect The Baldwin Effect is a biological theory that the fithess of an
individual can be changed by environmental factors (Baldwin, 1896).

Cluster. A cluster is a set of items that share something in common. Within a cluster
items should have commonality and items in different clusters should have défrenc
(Sheikh, Raghuwanshi & Jaiswal, 2008).

ConvergenceConvergence is a process in which new generations of a population
have decreased genetic diversity. This typically occurs around an optimum.

Crossover Crossover is a genetic operation that takes two individuals of a population
and by interchanging genes between the two individuals creates two new individua

Evolutionary Algorithms Evolutionary algorithms are a classification of algorithms

based upon natural evolution. There are four subclasses of evolutionary algorithms:
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Evolutionary Programming, Evolutionary Strategies, Genetic Algorithms andt@®
Programming (Dianati, Song & Treiber, 2002).

Fitness Fitness is a measurement assigned to an individual of a population that
relates to how well the individual copes with environmental pressure (De Jong, 1975).

Genetic Algorithm A Genetic Algorithm is a specific type of search method that was
developed by Bremermann (1958). The algorithm models the domain as a series of gene
values. An initial generation of the population is created, normally randomly, akdiffe
combinations of these gene values. Genetic operations are applied to the generation to
create a new generation. Over time the population converges to the optimum of the
domain.

Genetic Drift Genetic Drift is the change in probability or frequency that a certain
gene value appears in a population (De Jong, 1975). As populations evolve certain gene
values become more prevalent.

Inversion Inversion is a genetic operation in which the ordering of the genes change
(Holland, 1975).

Mutation Mutation is a genetic operation in which a gene value is randomly changed
based upon the mutation rate.

Niche Genetic AlgorithmA Niche Genetic Algorithm is a specific type of Genetic
Algorithm that promotes genetic diversity (Mahfoud, 1995).

Pareto Front The Pareto Front is the set of non-dominant optimal values for a multi-
objective optimization problem (Alba, Dorronsoro, Luna, Nebro & Bouvry, 2005).

Particle Swarm OptimizatianParticle Swarm Optimization is a specific search

technique that simulates swarm intelligence.
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Premature Convergenceé’remature convergence is when a Genetic Algorithm
converges at such a rate that optima are removed from the search space (De Jang, 1975)
Seed A Seed is a dominant individual within a certain area of the domain in a
population (Li et al., 2002).
Selection Selection is a process of selecting individuals of a population to reproduce.
SpeciesThe term species has different definitions in NGA research. In thigchsea
the Li et al. (2002) definition will be used. Species are individuals within a papulati

whose distance is less than some, pre-define parameter (Li et al., 2002).

This section contains definitions of terms used in this dissertation.

Summary

This research had a few specific goals. The research produced a new NGA
framework. This framework allows for the creation of multiple variatione@NGA
algorithm. The problem that the new NGA addresses is functional optimization for
continuous functions. Within this area, the goal is to solve for functions that have
arbitrarily close optima. These types of functions are especiallgudiffor NGAs. A
secondary goal was for the algorithm to solve other types of optimizationpsoble
equally well as other NGAs. The new NGA framework was developed to accomplish
these goals.

The approach that was taken created a new NGA framework that applieg exist
techniques to NGA research. The NGA uses multiple passes in an effort to émoate s

optima and uses those optima in locating the other ones. The algorithm varies the radius
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used in determining seeds. A tabu list is used to store located optima and seeds, so the

areas of the domain are not revisited.
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Chapter 2

Review of theLiterature

This literature review covers the history and current state of NGAroeselt is
organized into five sections. The first section describes research tlat/ent to this
research, but that is not an NGA. NGA research is organized in the next ttressse
There are sharing methods, crowding methods and a section for methods that do not fal

into either of these groups. Finally, there is a summary section.

Relevant Research Other than NGAs

The framework presented in this paper leverages many other conceptsmg existi
NGA research. However, some concepts of the framework come from otherhresearc
areas. This section provides a literature review of other research thafhestial in

developing this framework.

Tabu Search

The new algorithm presented in this paper uses aspects of the tabu search. A tabu
search is an optimization technigue used to avoid local optima (Glover, 1989; Glover,
1990a). It has been used to solve several optimization problems (Glover, 1990b; Hansen,
1997). The tabu search has an associated memory structure that is used to store previous
moves in the optimization process. This list is used to prevent the algorithm from

returning to previously obtained optima.
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A tabu search begins with a possible solution to the optimization problem. Each
iteration of the algorithm will apply an operation that will move from one solutide sta
to a new one. Table 1 shows the part of the tabu search algorithm that determines if a
move should be made.

Table 1. Tabu Search Decision
Line Number Pseudocode
Select a move
If the move is on the tabu list then
If the move satisfies the aspiration condition
Make the move
Else
Select another move

Else
Make the move

O~NO U WN P

The operation is added to the tabu list. Future iterations of the algorithm prevent the
operation from being applied, unless an aspiration condition is met. The aspiration
condition determines if the move is superior to the current solution. By using the tabu list
the tabu search avoids local optima and locates the optimal solution to the problem.

The tabu search uses a short-term memory structure to track previous moves (Gl
1990b). This memory structure is used to prevent the algorithm from revisiting
previously visited states. The tabu list can be finite or infinite in lengthni# tiabu list
only stores a certain number of previous moves. When the list is full the oldest niove wi
be removed when a new move is added. The algorithm prevents these moves from being
made in the future. If the tabu list is finite, then the move can only be made after the
previous move is purged from the tabu list. The tabu list encourages exploration.

The aspiration condition is used in a tabu search to override the tabu list (Glover,

1990b). If a move is on the tabu list, it is normally prohibited. But before the potential
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move is eliminated, it is compared to an aspiration condition. If the move theets
aspiration condition, the move is performed. This allows superior moves from being
eliminated because they are tabu.

The tabu search is a useful search technique. Previous research has shown that
combining the tabu search with evolutionary algorithms can increase its@cciliabu
searches have been combined with GAs (McLoughlin & Cedeno, 2005; Ting & Ko,

2008; Tsai, et al., 2009). They have also been combined with Evolutionary Programming
algorithms (Rajan & Mohan, 2004). The tabu search can provide valuable insight into

solving multimodal optimization problems.

Fitness Sharing Methods

A common approach to solving multimodal optimization problems is through fitness
sharing. While methods for fitness sharing vary, they all alter thesgitioection in
some way to encourage genetic diversity. In multimodal functional optimization
problems, fitness is normally directly related to the objective functio&héming
Methods distance to other individuals is incorporated into the fitness function to
encourage exploration. This prevents a single optimum from dominating the population.

Some of the earliest approaches for NGA algorithms are sharing methods.

Holland, J. H.
Holland (1975) provides a formal framework for GA research. While it does not
provide a specific NGA algorithm, it does describe some of the earlier fahassg

concepts. Holland describes a two-armed bandit to represent the problem that can be
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solved by NGAs. A two-armed bandit is a slot machine that has two handles, instead of
one. Each handle has a different payout. Players may elect to pull therigfit

handle. Ideally, every player would select to pull the handle with the highest payout, but
there is a catch. For a given turn all of the players that select a givda harsd share

the payout. With this new rule the problem is not obvious which handle the players
should select. Each handle is a niche and by dividing the payout, or fithess, bditween a
individuals within a niche allows the GA to solve the problem. By defining the fithess
function in such a way as to reflect other individuals in the niche, allows a tradi@énal

to solve for multimodal optimization problems. This is some of the earliestehspar

fithess sharing.

Goldberg and Richardson

Another seminal work in NGA is Goldberg and Richardson (1987). This NGA
introduces a sharing function. In traditional GAs fitness functions determine the
probability a member of a population will reproduce. In a multimodal problem once a
traditional GA discovers a niche, it converges on it, ignoring other possible niches. A
sharing function is used to reduce this convergence by using the sharedditness
determine the probability that a member will reproduce. Shared fithed&zpsna
individuals that are close to other individuals in the population and rewards isolated
individuals. This allows the NGA to locate other niches.

In the Goldberg and Richardson (1987) method the algorithm is the same as a
traditional GA, except for determining the fitness function. The algoritles ashared

fitness functiorthat accepts the distance between two members as an input parameter.
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These functions must conform to three properties. The function's output must benbetwe
zero and one. When the distance is zero, the output must be one. When the distance
approaches infinity, the output must be zero. When shared fithess is computed for
individual p, aniche counis calculated by summing the sharing function of all the other
members of the population with respecptoThe shared fitness is the individual’s raw
fitness divided by the niche count.

While the Goldberg and Richardson (1987) fitness sharing algorithm can take many
forms, their research presents an example of the algorithm. The examplgsitte
locate the five local optima of the functié) = sin® (5.1x x + 0.5) wherex is between
0 and 1. The shared fitness function selected was the power law function, which is

shown below.

:1_(,d j if d <oshare

oshare

sh(d) =
=0 otherwise
The parametersshareanda are set to 0.1 and 1 respectively. The niche countor

individuali is represented by the following function.

m=  Zshd(x.x,)

In the niche coun; is individuali andx; spans all individuals in the populatidh The
shared fitness of an individual is simfify=f; / m, wheref;" is the shared fitnesf,is the
raw fitness anan is the niche count. The research results showed that traditional GAs

only found one optima of the function. The sharing fitness algorithm found all five
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optima and had an equal number of individuals at each optimum (Goldberg &

Richardson, 1987).

Sequential Niche Technique

The Sequential Niche Technique (SNT) is a search technique that can be applied to a
GA (Beasley, Bull & Martin, 1993b). It attempts to locate one optimum at a timee O
an optimum is located the technique adjusts the search algorithm to locate another
optimum. The technique is successful because it reduces the search problem intp locati
a single optimum.

When applying SNT to a GA, the traditional steps of a GA are used. The fitness
function, which typically is the objective function, is modified. This modified fitness
function is used in the algorithm. After the algorithm runs, the best individual islegcor
on a list. The modified fitness function is changed by addoheyating functiorfor the
fittest individual that was located. THerating functiorcan take many forms, but its
affect is to decrease the fitness around the located individual. This exclsd@ethof
the domain as a place for likely optima. Future runs of the GA seek out other optima.
SNT also has aolution threshold If the fittest individual after each run is more fit than
thesolution thresholdit is considered an optimum. The algorithm for SNT is shown in
Table 2.

SNT allows search algorithms to use previous knowledge about the problem to
simplify it. This approach is attributed to other functional optimization relsgackley,

1987). It is a useful technique that allows search algorithms to take copnpbdems
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like multimodal functional optimization and break them into a series of much simpler
problems of single functional optimization.
Table 2. Sequential Niche Technique Algorithm

Line Pseudocode
Number

Assignmodified fitness functioto objective function

While not termination condition
Run traditional GA usingiodified fitness function
After GA runs record the optimum that it finds
Depress optimum area in thedified fitness function
If optimum in step 4 is larger thaalution threshold

display it as a solution
End loop

OO WNBE

\‘

Bernier's BDM and BPM

The Bernier (1996) method uses a Minimum Spanning Tree (MST) for fithesgysharin
It is used in each iteration of the NGA to adjust the fitness of individuals. Tleetear
algorithms for the method: Biggest Different Method (BDM) and Biggest Pioport
Method (BPM). BDM and BPM use Prim’s MST algorithm although any MST
algorithm might be used.

The Prim’s MST algorithm is used to determine a ffewjth minimum total weight
from a graph(G. Graphs have verticeg, and edged, that connect two vertices. Every
edge has an associated weidfit, Because an edge connects two vertices, we can
represent it asu( V) whereu andv are vertices. Prim’s algorithm begins by randomly
selecting a vertex for the trde Then it computes the weight from every verteX o
every vertex not iff and selects the one with the minimum weight. The selected vertex
and associated edge are added. t&rim grows the minimum tree, starting with a single

vertex, into a MST.
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Bernier adapts MST to GAs. Individuals are represented by vertices. i efe
the edge between two individuals is defined as their Euclidean distance. Bernier
hypothesis is that by removing some number of the largest edges of the MSTE Mfiat
will be trees around each niche. Bernier offers two methods to determinedgbat e
should be removed. The BDM looks at the longest 15% of the edges in the MST. It sorts
these edges in descending order according to their wei¢hj, w(e) ... w(g). The
algorithm computes the weight difference between consecutive edgess so(e;) —
w( &), Az = w(e) —wW(8), ... An-1) = W(En-1)) — W(8). Finally the algorithm locates the
largestA, Ax. All of the edges, vg) through wé,) are removed leavingx +1 trees.
Each tree corresponds to a niche. The BPM is very similar to the BDM. drodtea
comparing differences between edges, it compares proportions. The top 15% of edges
are sorted in descending order. Proportions are computed by dividing consecutsye edge
p1 = w(er) w( &), p = W(e) / W(8),, ...Pm-1) = W(En-1) / W(). The edges with the
largest proportion are removed. BDM and BPM adjust the fitness of the individuals
around niches using standard fitness sharing techniques.

Results from Bernier’s algorithm are very impressive. In six benchmattofusc
BDM and BPM located nearly 90% of the optima. A goal of this research wasgdiople
a NGA that does not need parameters. What is unclear is how the MST parameter of
15% affects the final results. It would seem that if there were moreafitam 15% of
the number of individuals in the population, this algorithm would have difficulties. If
there were more optima than 15% of the population, then some optima would not have
their fithess adjusted through fitness sharing. Another case could be asiwiadire

there were relatively few optima but a very large population size. Considenngrsy
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edges could lead the algorithm into forming too many niches. Perhaps this p@&centag

should be a parameter.

Fitness Sharing Summary

This section describes many fitness sharing NGAs. Some very importagptsonc
come out of fitness sharing methods. All of the algorithms use the idea of altering
fitness function to guide the direction that the next generation will take. SNvOuces
a concept of locating a single optimum and then using the fitness function to exatude i
future generations. Fitness sharing is a useful technique to encourage explraiss

the domain space.

Crowding Methods

Crowding methods are another common approach to developing NGAs. Crowding
methods replace members of one generation with members of a previous generation
based upon their similarity. They promote genetically diverse individualsnaodrage
exploration across the domain space. A variety of crowding methods have been

successful with multimodal functional optimization problems.

Cavicchio

Cavicchio’s (1970) research looks at selection schemes to solve multimodal
optimization problems. This research is some of the earliest work in the NGA a
Cavicchio introduces a series of selection schemes. In Cavicchio’'s NGtaia cer

number of the fittest individuals are carried over into the next generation. The number of
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individuals carried over into the next generation is a parameter of the algorithm.
Offspring also have to compete to be placed into the next generation.

Cavicchio (1970) introduces threeeselection Schemedhe first scheme is based on
an observation that many offspring are fit enough to be placed into the nextiganerat
but not more fit then their parents. Allowing this seems to be counterproductive. So, the
first scheme requires offspring to be more fit than both of their parents to be ieloduc
into the next generation. The second scheme enhances the first scheme, but adds the
requirement that the worst parent is to be removed from the population. The third
scheme only requires an offspring to be more fit than one of its parents. Ri@s&ec
one of the earliest forms of NGAs.

Because of hardware limitations of the 1970s, tests on Cavicchio’s algorithm were
limited to very few individuals. In many cases population sizes were between 10 and 20
individuals (Cavicchio, 1970). Little research has been published with benchmarks on
Cavicchio’s NGA since the original research. It is difficult to deterrhim& this NGA

would perform with more modern benchmarks.

De Jong

Some of the earliest works to address the problem of GAs converging globally eve
on multimodal domains were from De Jong (1975) and Holland (1975). De Jong's Elitist
Model R2 introduces the strategy of including the best members of one generdtien i
next generation. After each generation is created, its least fit meatbeeplaced by an
equal number of the fittest members of the previous generation. The Elitist Ribde

replaces only one member from the previous population, but this idea can be expanded to
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some predetermined fixed number of individuals. This influence can be seen in later

NGAs (Li et al., 2002).

1]

0 1

Figure2. Graph off(x) = 4(x— 0.5¥

It is easy to see why an elitist strategy would work for domains that havly égua
optima. Consider the equatif®) = 4(x— 0.5f, where 0 <= <= 1 as shown in Figure
2. Here there are two optima of equal fitness. A traditional GA will converge to one
optimum or the other, but not both. An elitist strategy would preserve individuals of both
optima. If considering an equation li&) = 2.8(x — 0.6f, where 0 <= <= 1, elitist
strategies seem less useful. This equation is shown in Figure 3. Here¢here lacal

optima,x = 0 andx = 1. Howeverx =1 is a local, but not global optimum.

0
0 1

Figure3. Graph off(x) = 2.8 — 0.6}
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An elitist strategy will probably not preserve individuals neaixthel local optimum.
These equations come from Goldberg and Richardson (1987).

Another NGA method described by De Jong (1975) is the Crowding Factor Model R5.
The Crowding Factor Model R5 simulates an environment in which parents and offspring
live together. To keep the population size stable, the system allows certais packat
This is done in crowded areas of the domain. In this method populations overlap one
another. The Crowding Factor R5 method uses two param@&ergeration gaps the
proportion of a population that is produced each generation. In De Jong's example it was
0.1, which means that the NGA produces enough individuals to increase the population
size by 10% each generation. The second parameterasothéing factor For each
new member of the population, an old member must be removed. The crowding factor is
the number of old members considered for removal for each new member. In De Jong's
example it was three. This NGA will randomly evaluate three old memtreesi¢h new
member. Of the three old members the one that is genetically similar to timeemeber

is removed.

Genetic Algorithm with Species

Genetic Algorithm with Species (GAS) extends the crowding method concept by
defining species (Jelasity & Dombi, 1998). Species are groups of individuals that are
tracking a common optimum. Like other crowding methods GAS only allows crossover
with individuals within the same species. This algorithm allows the populatiorosize t
expand and contract for each generation. It also introduces the concept of inslividual

dying off. Traditional GAs have a generation die when the next generatozaied.
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GAS allows fit individuals to live longer than weak ones by allowing them to be
members of multiple generations.

In GAS a species is defined as the tripbet, (S (Jelasity & Dombi, 1998). The
variableSis the population that makes up the speciesoaadhe individual with the
maximum fitness within the species. GAS uses a decreasing radiusquetierR,
defines the radius values as it decreagesiust always be greater than the maximum
distance between two individuals and should approach 0. There is an index associated
with the various radii, called the radius index. In the spécgethe radius index when
the species was defined. The radius for a given triplét 9 is R(l).

The algorithm shown in Table 3 outlines the steps that GAS uses to create a new
generation (Jelasity & Dombi, 1998]J.is the current population amdP is a parameter
that determines how largecan becomeMP is not the size of, rather the upper limit to
the size off. The algorithm for generatiohwill loop until the size off is greater than
MP. Within the loop two parents are selecigtiandp2. They produce two offspring,
olando2 Parents and offspring are put back into the population.

Table 3. Genetic Algorithm with Species Algorithm

Line Pseudocode
Number
1 While (population size of < MP)
2 Select two parentsl andp2 within the
sameq |, §

Create two offspringl and @

Putpl, p2, 01 ando2 back in populationT
End while loop
Dying off phase
Fusion

~No ol h W
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When the size af reached/P, the algorithm initiates a dying off phase. GAS uses a
transformed fitness functidhto determine which individuals should die (Jelasity &
Dombi, 1998). The functiofi is defined as the following equation.

_ f(e)— f(weakest individual _in _S)

re SizeO{S)

For a given individuag, f'(e) is calculated as the difference betwearfitness and the
fitness of the weakest individual 8) divided by the size & So, species with large
population size will have a greater chance of having members die.

GAS has a process to decrease the number of species. This iBusilbed After the
dying off phase, GAS evaluates the existing species. If two are too lobysare
combined into a single species. A parameter is definsttiat which is a radius index
that determines how close two species must be in order to be merged into a single
species. When two species are merged all of their members become maitterseew
species. If two species,( |1, S) and 0, 12, S) are fused, the new o is theor 0, that
has the greatest fitness. The ri@aithe minimum of; andl,. The new S is the union of

S andS,.

Species Conserving Genetic Algorithm

Li et al. (2002) developed a NGA method called Species Conserving Genetic
Algorithm (SCGA). It investigates how the concepebfismcan be applied to NGAs.
This method differs with traditional GAs in two ways. Once a population isecheat
species are defined around individuals cadleelds A step to preserve species into the

next generation is added to the usual selection, crossover and mutation found in GAs.
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These two enhancements to the traditional GA algorithm allow SCGA to loa#tplen
optima.

Once a population is established using SCGA, species seeds are determined. This is
done by evaluating each individual of the population from the fittest to the ledstdit.
other species seed exists within a predefined distance, then the individual is atided to t
list of species seeds. Because it begins with the fittest individuals, ieseribat the
seeds of the species are the most optimal members within the radius.

Table 4 shows the SCGA seed selection algorithm. In this algofsisrthe set of
species seeds and is the distance that defines a species.

Table 4. Species Conserving Genetic Algorithm Seed Selection

Line Pseudocode
Number
1 Initialize algorithm by settinks= &
2 While (there are individuals in the population that have not

been evaluated)
3 Find the best unevaluated individudl,
4 Set found = false

5 For every individuat in Xsdo

6 Markx has having been evaluated
7 If distance (x*, X¥ 65/2 then

8 Set found = true

9 Break for loop

10 End If

11 End for loop

12 If found = false then

13 Addk* to Xs

14 End If

15 End while loop

After the next generation is created, SCGA conserves species. Eachamrgdadred
to individuals in the next generation within the radius of the seed. If the seed iitmore
than the weakest individual in this area, the seed replaces the individual. Ifréheoe a

individuals in the species of the next generation, the seed replaces the ledsftiditial
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of the next generation. By conserving these species, pressure is cregbeevibatis
global convergence and allows multiple optima to be generated. When the NGAsfinishe
the fittest species seeds are the optima.

Table 5 shows the SCGA species conserving algorithm. Like the algariffeble
3, Xsis the set of species seeds apbk the distance that defines a species.

SCGA has one drawback. It requires a parameter that defines the distanite fr
seed that a species covers. The ideal radius value depends on the problem instance. That
is often unknown before the NGA runs. Li et al. (2002) addressed this drawback in their
research. Itis their belief that it is better to have the parameter geothean too small.
They recommend that the user informally compare the domain to one that is known. The
input parameter should be set to double the distance between the optima of the known
domain (Li et al., 2002).

Table 5. Species Conserving Genetic Algorithm Species Conservation

Line Pseudocode
Number
1 Mark all individuals as not being evaluated
2 For allx in Xsdo
3 Select the least fit individugin the area of the domain

that isss/2 fromx

If there is a y that meets this condition then
If (f(y) < f(x)) then

Replace y with x

End if

Else
Select the least fit individuain the new generation
Replace y with x

Mark x has having been evaluated

End for loop

PR e
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Genetic Algorithm with Species and Sexual Selection

Raghuwanshi and Kakde (2007) developed a method called Genetic Algorithm with
Species and Sexual Selection (GAS3) that is a sexual GA, which means thatlitdes
the notion of gender into the NGA. GAS3 also uses the concept of species, which
corresponds to niches. Species are formed around strong members. GAS3 also uses
population overlapping, meaning that some members of a generation stay in the
population pool with the next generation. The GAS3 algorithm has four steps that it
performs on each species.

1. The first one is theelection planwhich determines the female member of the
species. This is the member of the species with the highest fitness. All of the
other members are males.

2. Then it performs thgeneration plan The generation plan creates a set of
offspring by randomly selecting males to reproduce with the female.

3. Inthereplacement plathe original group and the offspring group are merged
together.

4. This new group goes through apdate planwhich determines the female and
males and removes the least fit members so the size of the population is constant.

Occasionally, GAS3 will reevaluate the species. If some species gerfayming well,
they will be merged with other species.

GAS3 has many interesting characteristics. Gender plays an impolantthe

algorithm. Having only one female individual, does not seem to model most biological
species. Overlapping generations assists in the algorithm preventirgtymem

convergence. GAS3 (Raghuwanshi & Kakde, 2007) was tested against a large set of 13
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benchmark functions. Published results show that the algorithm performs very well

against many commonly used multimodal functional optimization problems.

Crowding Clustering Genetic Algorithm

Crowding Clustering Genetic Algorithm (CCGA) is a NGA developed to solve
functional optimization problems for both local minimums and maximums (Ling et al.,
2008). Similar to other methods, CCGA accomplishes this by promoting some members
of one generation into the next generation to prevent genetic drift.

CCGA begins each iteration with typical selection, crossover and mutationayserat
Each child is grouped with a parent who it is closest to, using some distance
measurement. This leaves each parent associated with zero or more indimithels i
child generation. Each of these setsatuater Thecluster centers the fittest
individual in the cluster. This may be the individual with the smallest or largesitiviej
value depending on if this is a minimization or maximization problem. The objective
value of the fittest member is thenter value The largest distance between the cluster
center and the other individuals in the cluster isctoster radius Clusters are sorted
descending by the fitness of the cluster center. This ensures that mahtheront of
the list are the fittest. The sorted list of clusters is evaluated. Eachagrigermoved
into a second list calleserved clustersWhen a cluster is added to the reserved cluster
list, the cluster radius is referred to asrbgerved cluster radiusEither of two
conditions can move a cluster into the reserved cluster list. The cluster is added to t
reserved cluster list if its cluster center is outside all of theiegistserved cluster radii.

The second condition for moving a cluster to the reserved cluster list iatikiies the
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peak detection requirement, which is described later. When a cluster is addedsto the |
of reserved clusters, iteserved cluster radius set. This reserved cluster radoas be

set to the minimum of the radius of the cluster being added or minimum distancédrom t
cluster center to another reserved cluster center. A new generatiortes trgsaking

the cluster centers of the reserved cluster and generating enough ynthstnibuted
individuals to keep the population size stable. Each iteration of the algorithescaeat
new reserved cluster list. These steps repeat until some predefined numineratiges

is reached.

Table 6. Crowding Clustering Genetic Algorithm

Line Pseudocode
Number
1 Create initial population uniformly distributed across solution space
2 Use traditional GA selection, crossover and mutation to create a new
generation
3 For each paren®;, construct P;, CS}
4 For each cluster, CS}
5 Set CCto the fittest individual within eack, CS}
6 Set CRo the largest distance between individualsRp €S}
and CR
7 End for loop
8 Sort clusters descending according to their objective value
9 SetRC=0@
10 For each clustel, CS}
11 If (D(CCj, RCCi) > RCRI for all RCCi in RC) or
(Peak(CCj, RCCi) = 1) then
12 Put CCjinto RC
13 Set the RC for CCj to min(CRj, D(CCj, RCCi))
14 End if
15 End for loop
16 Generate (population size — RC size) of uniformly distributed
individuals for the next generation
17 Repeat steps 2 through 16, until the termination condition is met

Table 6 shows the CCGA algorithm for a minimization functional optimization

problem. In this algorithm the parent generatioR;jsvhere] = 1, 2, ..., population size.
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CS is the set of children closest to fftle parent. CG is the cluster center ai€R is the
radius cluster associated with ftie parent.RCis the set of reserved cluster®RG is
theith reserved cluster radius.

Peak detection in CCGA is another way that a cluster can be added to the list of
reserved clusters. It attempts to determine if individuals are tradKiegent peaks. A
cluster satisfies the peak detection condition if the fund¥eak(CC, RC§ returns 1 for
allj=1, 2, ... reserve cluster size. In these equations the cluster ce&d@tiejth
reserved cluster centerRCG andf is the objective function. The equation for the peak

detection is defined by the following equation for minimization problems.

i f(cm RCG) s f(CC)+ f(RCQG)

2 2
PeakCC,RCG) =

0, otherwise

For maximization problems peak detection is defined by the following equation.

i f(CC+2RCGj< f(CC)+ f(RCG)

2

PeaCC,RCG) = 0, otherwise

The CCGA algorithm is used to determine functional optimization. More spdygifical
it is used to search for functional minimums. Experiments performed byeLilg

(2008) show that CCGA out perform other crowding methods.
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Crowding Summary

Crowding methods take very direct approaches to maintain genetic diversdy. Af
locating individuals of interest, crowding methods put these individuals into the next
generation. There is no chance that these individuals will not be represented in future
generations. Fitness sharing methods take a very subtle approach to explotagypn. T
only increase the chance the interesting individuals will be used for crossover.
contrast crowding methods take direct approaches to encouraging exploration.

This section highlights many crowding methods. Early crowding methodgy/simpl
select interesting individuals and put them in the next generation. More recedingrow
methods have complex algorithms to determine what individuals deserve to be preserved.
Crowding methods closely resemble biological systems by combining pareht

children in the same generation.

Other Niche Genetic Algorithm Methods

While most NGAs fall into one of the two categories of fitness sharing odicrgw
schemes (Deb & Goldberg, 1989), there are some NGAs that do not exhibit either
characteristic. Some of these NGAs are hybrid methods or are trad@idsdhat were
created for special purposes that happen to solve multimodal optimization. Thase N
provide unique looks at NGA research and introduce different approaches to multimodal

optimization of continuous functions.
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Fitness-based Neighbor Selection

Ando and Kobayashi’s (2005) method of Fitness-based Neighbor Selection (FNS)
addresses many known limitations of NGAs. Many NGAs have parametersdtdbne
be set in order to solve multimodal optimization problems. Often this is a radius that
needs to be set to a value less than the distance between two species. Thisrmaramet
difficult to set prior to knowing where the optima are.

Ando and Kobayashi (2005) observed that integrals can be used to determine which
peaks individuals are tracking. This observation is incorporated into the FNShatgorit
When trying to decide if an individu&lis a neighbor oB1 or B2, comparing the integral
betweenA andB1to the integral betweeh and B can be helpful. The one, assuBig
with the largest integral has a greater probability of being neighbonsaieimization
problems. This observation is true based on integrals measuring area beneath the
objective function. The greater the area indicates that the objective fundcisgel
thatA andB1 are in the same neighborhood.

However, calculating integrals in higher dimensional space can be angimaglas
locating local optima. FNS estimates these calculations using the Widgdxdtm Test
(Wilcox, 1945). FNS creates two sets of offspring. The first set of offspringwebe
A andB1. The second is betweénand B. The fithess of these two sets of offspring is

used to define neighborhoods using the Wilcox Rank-sum Test.

Enhanced Evolutionary Tabu Search
The Enhanced Evolutionary Tabu Search (EE-TS) is a metaheuristic technique that

combines a Tabu Search with a GA (McLoughlin & Cedeno, 2005). This hybrid
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technique which combines a Tabu Search and GA, is used in the research to solve the
Quadratic Assignment Problem (QAP). The QAP is a problem that attempts taizeini
cost when placing facilities into locations. Facilities accrue a costllmashow far they

are from other facilities, but the costs may not be uniform. The QAP problem is
somewhat different then traditional functional optimization problems. Most tigw;|
including EE-TS, place facilities one at a time. As the algorithm runs noliéida are
placed into different locations. At the beginning of the algorithm an individuasepts
one facility to location mapping. Then, as the algorithm runs, an individual regresent
more facility to location mappings. Finally the individual representsailities mapped

to locations.

Tabu Searches are designed to prevent revisiting the same solution repeatedly.
Repetition can occur when a series of optimal moves revisits a previous solugon sta
(Glover, 1990b). If this happens the algorithm could enter an infinite loop or fail to
explore promising regions of the domain. The Tabu Search uses a memory stoucture t
record previous solution states and prevents them from being revisited (Glover, 1990b).
EE-TS also evaluates for repetition to encourage exploration of the domain.

EE-TS begins with an initialization phase like other GAs (McLoughlin & Cedeno,
2005). As the algorithm runs it keeps track of a current candidate. As long asorepetit
is not occurring, the algorithm evaluates the neighborhood and selects a movd that wil
increase the fitness the most. A move consists of swapping two facilitites. the
move is identified, tournament selection picks an individual. Crossover is performed
with this individual and the current candidate. If the child is fitter than thenturre

candidate with the identified move applied to it, the child becomes the current candidat
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Otherwise, the current candidate with the identified move applied to it, is theun@ntc
candidate. This loop continues until the termination condition is met. After each loop
the algorithms uses the tabu list to determine if repetition is occurrinigis Bccurring,
the algorithm identifies an individual through tournament selection. The new current
candidate is the winner of the tournament and the old candidate. Finally, the tebu list
cleared. The loop repeats.

Table 7 shows the EE-TS algorithm (McLoughlin & Cedeno, 2005). In this algorithm
i* is the current candidate ans a possible new current candidate. The variebtape
is used to indicate if repetition is occurring. The variableEsmpionandmoveare
temporary variables to hold the winner of the tournament selection and a possiele

Table 7. Enhanced Evolutionary Tabu Search Algorithm

Line Pseudocode
Number
1 Generate initial populatiof,
2 Seti andi* to the fittest individual irP
3 Setescapedo true if detection of repetition is discovered,

otherwise set to false
If escape= false then
Semoveto the best move
Sethampionto winner of tournament selection
Sethild to crossover of andchampion
If fitness¢hild) < fitness ofi with movemoveapplied to it then
Set to child
Else
Seitto i with movemoveapplied to it

Sethampionto winner of tournament selection
Set to crossover of andchampion

Reset the tabu list and solution history

If fitness() < fitness(*) then

Set* =i

4
5
6
7
8
9
10
11
12 Else
13
14
15
16
17
18 Repeat steps 3 through 17 until termination condition
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The EE-TS algorithm performs equally well as other QAP algorithtasalue is that
it locates the optima in fewer steps or iterations (McLoughlin & Cedeno, 2005augec
it is designed for the QAP problem, it is not suited for multimodal functional
optimization. EE-TS represents a new class of hybrid GAs that incorporatesesheh

techniques into them.

Hybrid Genetic Algorithm and Particle Swarm Optimization

Recently hybrid algorithms have increased in popularity. Kao and Zahara (2008)
created an algorithm that combines GAs and Particle Swarm Optimiza8@).(P
Hybrid approaches to multimodal optimization have shown promise by combining the
best aspects of different types of algorithms.

PSO is another type of search algorithm. Unlike GAs that eliminate indivaftexs
each generation, the individual in PSOs remain throughout the algorithm. Individuals
move throughout the domain space to locate optima. Each individual tracks where in the
domain space they have been and has the ability to communicate these locations to other
individuals in the swarm. Individuals also have the ability to adjust their posititee i
domain based upon communication from other individuals in the domain. As a group,
the swarm converges to the optima.

Kao and Zahara’'s (2008) algorithm uses both a GA and a PSO. It begins by randomly
generating a population. Half of the population that has the greatest fitnsssl i a
standard GA. After the next generation is created, it is used to communittatbevi
second half of the population through PSO techniques. Ideally the offspring of the GA

will have higher fitness than the second half. As a result the second hatijusi their
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positions in the domain based upon their previous knowledge and the communication
from the offspring of the first half. After they have adjusted their positiotisel

domain, the two halves are combined and reevaluated. This process continues until a
termination condition is met.

Kao and Zahara's (2008) GA and PSO algorithm is shown in Table 8. Crossover is
done by generating a uniform random nuni¥errhenN proportion of the alleles are
taken from one parent and\Lproportion from the other. The functibmiform(0, 1) is
the function that generates the uniformly distributed random number between 0 and 1. In
this algorithm the parametBris the population size and tk's are individuals.

Table 8. Genetic Algorithm and Particle Swarm Optimization Algorithm
Line Number Pseudocode
1 Generate initial population of sige
While termination condition is not met do

2
3 Sort individuals by their fithess

4 Perform the following steps on the fittB&2 individual
5

6

Foralj =1toP/2 -1 do
Create individuglusing Uniform(0, 1) proportion of
alleles and (1 — Uniform(0, 1)) proportioxoi alleles

7 Ad to next generation

8 End for loop

9 Create individualusing Uniform(0, 1) proportion o0&/,
alleles and (1 — Uniform(0, 1)) proportiorxpélleles

10 Addk to next generation

11 End perform block

12 Apply 20% mutation on next generation

13 Adjust theé’/2 least fit individual by PSO

14 Add these individual into the next generation

15 End while loop

This hybrid approach is novel and leverages the strengths of both GA and PSO
methods. GAs are very effective at taking a set of fit individuals andrgyeat

generation of more fit individuals. PSOs are effective at adjusting weabengof the
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population to increase their fitness. The two algorithms work fluidly togethecéate

optima.

Cellular Genetic Algorithms

Cellular Genetic Algorithms (cGA) were originally developed in thily d®90’s to
run GAs using parallel machines (Whitley, 1993). To take advantage of parallel
processors the domain space was divided into squares. Individuals were only allowed to
mate with individuals within its square or neighboring squares. By creatingithis g
across the domain space, crossover for each generation could be performdtein para
This allowed GAs to converge much faster than traditional methods, which made them
more practical for solving real world problems. This approach is based upon cellular
automata (Whitley, 1993).

Table 9. Cellular Genetic Algorithm

Line Number Pseudocode
1 While not termination condition
2 Forx = 1 tow
3 Fory = 1 toh
4 Get list of neighbors for individua| ¥)
5 Select paremig andp2 from list of neighbors
6 Create individuafrom p1 andp2
7 Mutate)
8 If fitness$) > fitness(individualf, y))
9 Replace individuglf) with i
10 End for loop
11 End for loop
12 End while loop

The basic cGA algorithm is shown in Table 9 (Alba, Alfonso & Dorronsoro, 2005).
This algorithm assumes that the domain space has been divided into a grid ofwvidth,

and heighth. For each individual in the grid, the algorithm determines a list of
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neighbors. In cGAs an individual is considered to be its own neighbor. A selection step
identifies two individuals from this lisp1l andp2. A new individualj, is created using
crossover. A mutation function will determine if mutation is needed based upon a
mutation rate. If it is determined that mutation should occur, the function will perfor

the mutation. If the new individuais more fit then the original individual, it will

replace it. The algorithm evaluates every individual in the population. It wilihcent

this process until a termination condition is met.

Because individuals are restricted to mating only with individuals close to ¢eks
prevents premature convergence and can be used for multimodal optimization problems
(Nebro, Durillo, Luna, Dorronsoro, & Alba, 2006). This form of selection prevents
individuals in one area of the domain from dominating other niches. Because of recent
advancements in computational power, the parallel aspects of cGAs have beed eclips
by their ability to solve multimodal optimization problems. A variety of enbarents
have been made to cGAs and multimodal optimization.

Anisotropic Selectiom cGAs assigns probabilities of replacement to the squares
around an offspring (Simoncini, Verel, Collard & Clergue, 2006). Individuals within a
square perform a typical GA with selection, crossover and mutation. The offdpemg
replaces some of the old generation’s individuals. Different probabilieessargned to
different geometric directions used in selection. There is a probabilitydleation will
be made using a north or south square. There is a probability that selection witldbe ma
using an east or west square. The final probability is that the center sgubesused
for the selection. These probabilities guide the direction of the searchlacdharea of

the domain. A control parameter,is used to influence these three probabilities. The
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following probabilities are used in determining the direction for selectionqi&tini et
al., 2006).

Probability of center cell p.=0.2

North or south cell

SN

1_
East or west cell (Tp°)(1— o)

Once the direction is determined, tournament selection is used to select the ihévidua
crossover. If the individual in the new generation is better than the individuzteskeler
replacement, it will be replaced.

There are two cGAs that attempt to solve multiobjective optimization prablems
These algorithms are Cellular Multiobjective Genetic Algorithm (€A and
Multiobjective Optimization Cellular Genetic Algorithm (MOCell) (AlBaDorronsoor,
2008). Both algorithms are very similar and use the same general approach.

MOCell is another type of cGA (Nebro et al., 2006). MOCell usteto front
which is an alternate population that contains optimal non-dominant individuals. The
Pareto front has a maximum size and maintains genetic diversity. In Me(eelien,
crossover and mutation take place according to normal cGA principles. Thengfts@
added into the next generation. Offspring may also be added to the Pareto front. When
this Pareto front hits its maximum size, individuals are replaced usiraywaing
method, which increases genetic diversity (Nebro, Durillo, Luna, Dorronsor®&, Al
2009). The final step in MOCell is to randomly replace members of the population with
individuals from the Pareto front. This feedback ensures that dominant areas of the
domain do not eclipse other optima. cMOGA is the same as MOCell, except it does not

contain the feedback step (Alba et al., 2005).
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cGAs research has shown that they are very effective in solving multimodal
optimization problems. Although research in other NGA areas has been around twice as
long as cGAs, results of cGA research are very impressive. Multiple methodsdeave

developed based upon cGA principles.

Novel Sexual Adaptive Genetic Algorithm

GAS3 is not the only NGA that incorporates the concept of gender. Novel Sexual
Adaptive Genetic Algorithm (NSAGA) has genders also (Zhang, Zhao & Wang).2009
But it more evenly divides the number of males and females. Similar to biological
organisms, individuals in NSAGA have gender based upon genetic characteristges. Thi
gender selection more closely resembles genders in biological species

NSAGA leverages an early evolutionary theory called the Baldwin ¢Battwin,
1896). This theory proposes that an individual’s fitness is not always limited to their
biological characteristics. It is possible that through environmental muésean
individual can increase its fitness. In an NGA however, environmental influarcest
defined. NSAGA uses other individual’s fitness to be this environmental influence. The
Baldwin effect provides a new approach to NGAs.

NSAGA computes fitness as the weighted sum of three types of fitness: imess f
evaluation fitness and acquired fitness (Zhang et al., 2009). The first part ohélss fs

the innate fithesdF. This fitness excludes environmental influences. In NSAGA innate

fitness is defined as the following, wh foinis the minimum fitness ai fmaxis the

maximum fitness for generatidn
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F(X) = foin
IF (X) = ﬁ

The second type of fitness is the evaluation fitnEBs, This fitness includes influences
from the individual's parents. In the fitness function belavandw, are parameters that

weight each parent’s influence agdndxy, are the individual’s mother and father,

respectively.IF is the innate fitness defined previously.

IF(x)—IF(xf)JrW IF (X) - IF (x,)
IF (%) ©IF(x,)

EF(X) =w,
The final type of fitness is the acquired fitne&E, This fitness derives from the
Baldwin effect. Individuals within a niche may increase or decrease tineisgiby some
factor, between 0 and 1, of the average innate fitness of the members of theThiche

shown in the following equation wheceandPy,, are parameters amdd is a random

number.

£ :{ f,(X)+c- £, if rnd <=Py
f,(X)—c- .7, otherwise

The equation that reflects the Baldwin effect isdus the third fithess function. The
acquired fitness is given by the function belowd#d et al., 2009).
fr(x) - f,

ymin

AF(X) =

With the acquired fitness function individuals nteve their fithess increase or decrease
based upon the factors previously outlined. Thalfiithess of an individual is a
weighted sum of the innate, evaluation and acquiteess functions.

Fitness (x) =61 IF(x) + p2 EF(X) + 3 AF(X)
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1, p2 andps are weights placed on each type of fitness.

Gender determination is an important part SAGA. It has great consequences
because individuals may only mate with individuafi$he opposite gender. Selecting an
existing gene would divide genders to differentaref the domain. This is not desired.
Gender is determined randomly thus giving all ardale domain the ability to have
both genders (Zhang et al., 2009). The paranfgtex the probability that an individual
is a male.Py gives the algorithm more flexibility in controltythe proportion of males
and females. Gender determination helps NSAGAegpvesinteresting areas of the
domain for exploration.

The final important aspect of NSAGA is theestibn process. The selection process
goes beyond just limiting heterosexual selecti@rparametePejiism IS Used to determine
the fittest members of the population. NSAGA uselifferent selection method for elite
and non-elite individuals. For the elite individkiaelection is done according to rank
within the group. Of the remaining individualsesgtion is done through tournament
selection.

NSAGA is a very unique NGA that resembles ratselection more than many other
NGAs. Incorporating gender and the Baldwin effeekke NSAGA a novel algorithm.
Rather than extending existing fitness sharingrowding methods, NSAGA takes a

more accurate approach to modeling biological eiaiu

Other Niche Genetic Algorithm Summary
This section briefly describes some NGAs taainot be categorized as fitness

sharing or crowding methods. Some NGAs have cleniatic so different than standard
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fithess sharing and crowding methods, that thisltbategorization has been defined.
This other type of category introduces new concepiéGAs and the multimodal
optimization problem.

The algorithms described in this section idtrce many new approaches to NGAs.
Some of them are hybrid methods that combine theeqat of GAs with other search
techniques, like PSO. Others model biological tieso like the Baldwin effect. cGAs
solve multimodal optimization problems through kimg selection to neighbors. These

methods take a different approach to NGA research.

Summary

This chapter provides an extensive literataxgew of NGAs. The first section
describes relevant literature used in this reseiduahis not an NGA. Three other
sections describe different types of NGAs. A ugrf methods from classical NGAs to
modern methods have been presented. NGAs are iporganized into two groups.
Sharing methods adjust fithess to encourage exmaraCrowding methods replace
individuals with individuals of the previous genoa based upon distance
measurements. There are some NGAs that don’ttiyifadl into either category. These
algorithms are presented in a separate section.

This literature review provided the foundatfonthis research. Many of the methods
here are compared to the new framework that isspted. Some of the concepts used in
previous research are used in the creation oféheframework. These cases will be

described in Chapter 3.
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Chapter 3

M ethodology

Chapter 3 describes the methodology for #search. The research method will be
described, followed by the new framework that wdltested. The benchmark equations
and performance criteria are defined. The nextdeaions describe the formatting for
presenting of the results and the resources ratjtorperform the research. The chapter

concludes with a summary of the framework and noktloyy.

Resear ch Method Employed

An experimental research methodology was tsednduct this research. A new
framework was developed and compared against egiatgorithms using benchmark
equations and performance criteria. The experiatieasearch methodology provided a
basis to evaluate the performance of the new frasrlew

While the framework is new, many ideas andcepts are based upon existing
algorithms. Chapter 2 describes existing NGA neseaConclusions derived from this
body of knowledge were reflected in the new framwd he experiment was used to

test the hypothesis used to develop the new framewo
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Specific Procedures Employed

A new NGA was needed to solve the types oheqns described earlier and shown
in Figure 1. This new NGA leveraged other NGAs aadrch methods. This new
algorithm most closely resembles SCGA (Li et @02). At a very high level the
algorithm did not attempt to find all optima iniagle pass. It defined some search areas
to investigate. Once defined, it let the NGA rarfihd optima within these areas. These
optima were placed on a tabu list, which prevethed from being revisited. The

algorithm found optima in parallel each time itidetl a set of searchable domain spaces.

DSGA Algorithm

A traditional GA performs three general stepsreate each generation. Selection,
crossover and mutation allow the GA to convergernt@ptimum. The SCGA augments
the traditional GA to include seed selection aretlssonservation (Li et al., 2002). The
new algorithm, Dynamic-radius Species-conservingdgie Algorithm (DSGA), also
uses this seed selection and seed conservatiooagbpout differs from SCGA in three
important ways. First, DSGA incorporates a tabtith track optima and encourages
exploration in other areas. Second, DSGA varies/etlue of the radius. Two strategies
will be presented for varying the radius. Thirds®A has two different strategies for
seed selection. These two variations will encoiexploration. The variations of this
framework will be presented later in this section.

Groups of individuals are formed around arfémber, called a seed. These groups
cover a search area in the domain. A predefingidisas used around seeds to define

which members are grouped with the seed. Everygeneration redefines the seeds and
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areas. By conserving these search areas, DSGfefoguaultiple optima and prevents a
single dominant optimum from eclipsing the otheesin

Table 10. DSGA Parameters

Abbreviation Name Description
N Population size Number of individuals in each gatien
M Mutation Rate Odds of gene mutating
IS Initial Sigma Initial value for sigma
SD Sigma Delta The amount that sigma will be changexdhe
iteration
RLC Reevaluate Loop The number of times that the NGA will loop
Count before it reevaluates the seed radius
CL Convergence Limit  The number of individuals neettedetermine

that convergence has taken place

Table 10 shows the parameters of the algorithike traditional GAs, there is a
population sizeN, and a mutation rat&). Similar to SCGA (Li et al., 2002), DSGA
uses a radius parameter. The radius is the minidistance a strong individual must be
away from all other clusters in order to createw kluster. In DSGA sigma is the
radius of the clusters. It is called the initimjnsa, because the sigma varies as the
algorithm runs. This radius is changed by the sigi®elta SD,to search for new optima.
The Reevaluate Loop CoumLC, is the number of times that the NGA loops before
allowing the search areas and radius to be redkfilghen determining if an optimum
has been located the algorithm looks for ideniidividuals. If there ar€L or more
identical individuals, the algorithm concludes thatoptimum has been located.

Table 11 shows the new algorithm, DSGA. Diesions of the seed selection, seed
conservation and radius altering approaches axided later in this section. Unlike
other GAs, DSGA has two loops. The inner loopgsid through 10, perform a typical
GA with the enhancement of seed selection and aaegkrvation. Once this loop is

finished the algorithm records any optima as ar@d pair of the optima and the radius
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in the tabu list, line 11 and 12. Optima are aogdin values which haveL or more

identical individuals, line 11. Seeds that areomtmums are also added to the tabu list,

but optima are marked as such. In line 18, theisa@ssociated with the seeds, is altered

and the GA is run again. This will occur in theerydoop, lines 2 through 19, and ends

when a termination condition is met. The algorithamies the size of the radius to locate

other optima.

Table 11. DSGA Algorithm

Line Number Pseudocode

1 Initialization

2 While not termination condition

3 For (intr = 1;r <=RLC, r++)

4 Begin

5 Seed Selection

6 Selection

7 Crossover

8 Mutation

9 Seed Conservation

10 End For Loop

11 If there exists an individudwith CL or more identical
individuals then

12 Addd, o) pair tobest_Xs

13 Mark paird, c) as optimum

14 Replacd and all of the identical individuals tbwith

randomly generated individuals

15 End if

16 Add §, o) pair tobest_Xdor all sthat are seeds

17 Replace all individuatswith randomly generated
individuals

18 Alter radius

19 End

This algorithm differs from SCGA in many impamt ways. SCGA selects a single

radius size and performs the algorithm in a sitapg (Li et al., 2002). DSGA varies the

radius to locate other optima. This new algorities also been augmented with a tabu

list to prevent already located optima from beisgdias seeds in the future. These
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changes should allow the algorithm to locate otptima that may have been missed in
earlier iterations.

DSGA performs an initialization phase to ceetliie first generation and initialize the
tabu list. Table 12 shows the initialization step$e variabldest_Xgs the tabu list.
Originally, the seed radius, is set tdS. This value will change b$D as the algorithm
runs.

Table 12. DSGA Algorithm Initialization

Line Pseudocode
Number

Set listbest_Xd0 @
Set listgenerationto @

For (inti = 1;i <=N; i++)

Begin
Create new string
Randomly generate genesyor
Addy to generation

End For Loop

Setc to IS

Boo~ouabwnr

DSGA Seed Selection

Seed selection is a critical part of locatipgima. Each generation defines its own
seeds. This algorithm for seed selection is shiowirable 13. In line 1, it begins with an
empty list of seeds. It is beneficial to makefitiest individual in each niche a seed, but
the algorithm also needs to explore other areéiseoflomain. So the algorithm evaluates
individuals in an order defined bysaed evaluation orderin@eq function. Possible
implementations foseowill be presented later in this section. Eachvitial is
evaluated as a candidate for seed selection bastsdfunction. The algorithm
determines if an individual is withim distance to a currently established seed. led se

exists withino distance, the individual is not a seed, but a nermbthe seed’s species.



54

If no established seeds exist within thdistance of this individual, it will become a
seed. The only exception to this rule, which isvah in lines 16 and 17, is if the
individual is on the tabu list. Here it has alrpd@en determined that it has been
investigated and conservation of it is not needéeds prevented from being a seed.

Table 13. Seed Selection

Line Pseudocode
Number
1 Set listseeddo @
2 Sortgenerationdescending bgeofunction
3 For (intk = 0; k < size ofgeneration k++)
4 Begin
5 SeK to thek-th individual ingeneration
6 Set booleafound= true
7 For (intm = 0; m < size ofseedsm++)
8 Begin
9 SeM to them-th individual inseeds
10 If distanc&(, M) < o then
11 Sdound totrue
12 Break
13 Else
14 Sdoundto false
15 End For Loop
16 Iffound= false and is not in best_Xs
then
17 AdK to seeds
18 End For Loop

This seed selection algorithm is identicab©@GA except in two areas. In line 16
DSGA prevents individuals on the tabu list fromd®ing seeds in the future. This is
done because these areas of the domain have abbeadynvestigated. Using the tabu
list encourages the algorithm to explore othersamgdahe domain. In line 2 individuals
are sorted by a function callsda DSGA uses two strategies to investigate unerplor
areas of the domain. One strategy uses a stafitteasks sharing approach; the other

excludes individuals from becoming seeds if theytap close to individuals on the tabu
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list. Each strategy is implemented by using ddfeseofunctions. In SCGA individuals
are only sorted by fitness. These differencesailitiw the algorithm to find other

optima.

DSGA Seed Conservation

Once seeds are established there needs tmbare to preserve them into the next
generation. This is called seed conservation sistiown in Table 14. After each
generation is created, it goes through a seed p@tgm step. Each seed from the
previous generation replaces a weak individuahertew generation. First the algorithm
looks at individuals in the new generation, whicé &ithinc distance of the seed. If
there are individuals in the new generation, whieket this condition the seed replaces
the weakest individual of this list. If there a@ individuals within the seed’s radius,
then the seed replaces the weakest individuakeiméw generation. Every seed is
promoted into the next generation, but this dogsmean that this seed will be a seed in
the next generation. It will have to be evaluasdany other individual.

Table 14. Seed Conservation for each Generation

Line Pseudocode
Number
1 For (intp = 1; p <= size ofseedsp++)
2 Begin
3 SeP to thep-th individual inseeds
4 Findy such that it is the least fit individual with

distancg(P) <=o
Ify exists and is less fit tharP
Replacg with P
Else
Replace the least fit individual in nganeration withP
End For Loop

O 00 ~NO 01
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DSGA uses many of the steps of SCGA to comseeeds after each generation is
created. The only exception is that Euclidearadist is used in this algorithm. The seed
conservation phase of recording seeds does ndtiex@3€GA. This should allow the
algorithm to investigate other areas of the don@iocate other optima.

Besides the algorithm parameters shown inel20| two components of the
algorithm may vary. There are two strategies tierahe radius after the inner loop of the
algorithm and two strategies to encourage furtikptogation of the domain. The
different combinations of strategies allow the DSfesdmework to create multiple
algorithms. The two components of the DSGA franwvadlow it to be used in many

domains.

Varying Radius Strategies

We will consider two strategies to vary thdiug used in DSGA. This step is shown
in Table 11, line 18. In this step of the algamtithe radius will be changed by a
constant value of sigma del@D. The two strategies differ in the way that théiua is
changed bysD. One strategy consistently increases or decréhseadius. A second
strategy may increase or decrease the radius asghiethm runs.

In the first strategy the radius is increagedecreased b$D. It will either always
increase or always decrease the radius. The methdd start the radius very small and
increase it incrementally after the inner loop ctetes. In this strategy the radius would
start alS and be increased I8Din every pass of the outer loop. Eventually tius
would increase to such a size that only one seeddiae formed. This condition would

be the termination condition shown in Table 11elth Or the method could start with a
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very largelS and decrease it IyD as the algorithm runs. Here the termination ciordli
is not so obvious. A natural termination conditiwould be to terminate the first time the
inner loop completes but does not find any addai@ptima.

The second strategy is to increase or dectbasmadius bysD at the end of the inner
loop. At the end of the inner loop the algorithntl decide if the radius should be
increased or decreased . There are many possible methods that could &é tas
determine how to vary the radius. One possibibtythis approach is to base the radius
change on the number of optima located. If nonogtare located in the inner loop, then
decreasing the radius will allow more seeds to fana should increase the chance of
optima location. If optima are located, the apploaould increase the radius. As in the
previous approach the termination condition wowddathen the inner loop does not
locate any additional optima. These two strategilesv DSGA flexibility in locating

optima.

Exploration Approaches

The second component of the DSGA frameworloerages exploration in areas of
the domain where optima have not been found. Tvedegies will be presented. Both
strategies fulfill this through the seed selectiothe algorithm. Each approach
accomplishes exploration by defining differeebfunctions. Oneeofunction
implements a fitness sharing algorithm. The otrer excludes individuals from
becoming seeds that are too close to individualhenabu list.

The first strategy eliminates individuals theg too close to existing seeds. It uses the

ordered paifo, r) on the tabu list. The optimumasand the radius when the optimum
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was located is. In future iterations of the algorithm the radiadl change. The variable
I’ is the current value of the radius when the stsategxecuted. This approach
excludes individuals from becoming seeds if thestashce is within min( r’) of an
element on the tabu list. In the equation belasvthe individual being evaluated for seed
selection{l is the current tabu list; is the current radius artis Euclidean distance.
For all ordered paifo, r) on the tabu list, the function will return the mdual’s fitness
if the distance betweemandi is greater than the min(¢’). If the distance is less than
min(r, r'), the function returns 0. This ensures thatitidsvzidual will not be a seed.
This equation foseois given below:

fitness(i), if and only if there does not exast(o,, r;) < tl, such

seq r (i) = that d(cg, i) = min (1, ')
' 0, otherwise

The SCGA algorithm evaluates individuals in ordetheir fithess. Thiseofunction
performs the same functionality for DSGA, excemlitninates individuals within a
minimum ofr andr’ distance of a seed on the tabu list.

The second strategy is very similar to Goldlerd Richardson’s (1987) sharing
function. A sharing function is an alternate wayetermine fitness, called shared
fitness. It weighs fithess based on the distahatthe individual is to other individuals.
In this approach fitness will be weighted basedhendistance that the individual is to the
individuals on the tabu list. The function candadined many ways with its goal being
to weigh individuals higher, the farther away tmegide from the individuals on the tabu
list. This approach does not necessarily havatitomgest individuals as seeds; rather it

selects individuals as seeds that are worth iryesstig.
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The DSGA framework can support a variety @&rsig functions for the second
strategy. Goldberg and Richardson’s (1987) fitressing function can easily be
adapted to encourage exploration in DSGA. Theenadunt can be defined as the

following:

tabuSize

m= 3 shd(.0))

The parameters for this equation are describechap@r 2. The only difference is that
d(i, g) is the Euclidian distance betweieand thgth individual on the tabu list. The
functionseowould be defined as the objective function divitlgdthe niche count for
individuali.
objective_ function(i)

m

sedi) =

This niche count will be smaller for individualstiuer away from the seeds on the tabu
list. They will be more likely to be selected faossover and be represented in future

generations. This encourages exploration.

Set of Benchmark Optimization Problems

After the algorithm was implemented, it wasleated against a set of benchmarks.
These benchmarks are examples of multimodal opditioiz problems. Prior literature
shows a variety of test functions that can be tigeslve multimodal optimization
problems with NGAs. Some of the functions are SnugAndo & Kobayashi, 2005),
Rosenbrock (Raghuwanshi & Kakde, 2007) and Acklaéyg et al., 2008; Raghuwanshi
& Kakde, 2007). However, one function is used noftn. This function is given

below:
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f (X) = sin® (5.12x + 05)
This function was first used in Goldberg and Ridsan (1987) and this function, with
minor modifications, has been used in many othezarch papers (Bernier, 1996; Lee,
Cho & Jung, 1999; Miller & Shaw, 1996; Yin & Germay093).

Bernier (1996) generalized the Goldberg areh&idson (1987) equation. The new

eguation shown below can generate many differgrastyf test cases.

f(X) = Rc™ sin® (kzxP)
By defining different values fdR, ¢, p andk, this equation can generate many interesting
test cases similar to the one shown in Figure He @arameter determines the rate of
decay of each oscillation of the sine wave. Intwasesk determines the number of
peaks.R controls the height of the highest peak and iscs#t

Since the goal of this research was to devalopw NGA that can solve problems
with arbitrarily close optima, while doing equaliell with other optimization problems,
test functions were needed to be selected in tasareas. Each function was
associated with one of the goals. These equatsieshown in Table 15.

Six test functions were based on Bernier'®@)9est functions. These are shown in
Table 15 as F1 through F6. For the parameter, (0, phe six groups of parameters were
{(0, 1, 5); (0, 3,5); (0, 2, 10); (1, 3, 10); 2,5); (2, 1, 10)}. The algorithm attempted to
locate the local maximum of these six functiontie§e benchmarks have been used to
test other NGAs that attempt to solve problemssf type.

The final two test functions completed the datinction F7 in Table 15 is a general
test case. Function F7 has a surface of high sithsa global and three local minimums

in the center. This function was used to test gh&mang, Gao and Dong’s NGA



(2008). This test case tests general NGA funclignaFinally, function F8 is the

function shown in Figure 1. As seen in Figurehis function has ever increasing optima

that become arbitrarily close.

Table 15. Test Functions

Equation Domain Goal
F1  max f(x)=sin’(6m) 0<x<1 General
F2  max f(x)=sin®(Gnx°) 0<x<1 General
F3  max f(X)=sin® @0x*) 0<x<1 General
0<x<1 Arbitrarily
F4  max f(X)=1" sin® 00°) Close
Optimum
0<x<1 Arbitrarily
F5  max f(X) =22 sin®(Gax?) Close
Optimum
2 <x<1 I
F6  max f(X) =22 sin® 10mx) 0<x Genera
2 . X . -3<x<3 General
F7  min: f(X,y) = 2x° — 105x +€—xy+y _3<y<3
0<y<10 Arbitrarily
F8  maxy = xsin(®) Close
Optimum

These eight test functions cover a wide rafgifferent multimodal functional

optimization problems. Some are general test dhse¢€an determine how a NGA

handles typical functional optimization problen@ther test cases address functional

optimizationwhen optima are arbitrarily close. Use of thesefions as benchmarks is

supported by a wide variety of literature.

Performance Evaluation

This section describes the performance gotldisfresearch. Eight benchmark

functions have been presented. The first seveahmearks are used in other literature

using a variety of performance criteria. DSGA wampared against one or more NGAs
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that cite each benchmark. Most research uses tenkh that highlight the algorithm’s
performance. Comparing DSGA against other algoritivy using each algorithm’s
benchmarks was an appropriate test.

The first six benchmarks were used in Bersi€l996) research. This research had
four performance criteria. The first criterion dseas thex?like deviation. Ideally an
NGA should have individuals distributed over thakserelevant to the fitness of the
peak. Thex’-like deviation is a measurement of how much a aijmn deviates from
this distribution. Because DSGA removes optimanftbe population once they are
discovered and discourages them from being redisike criterion is not appropriate for
DSGA. The next two criteria measure the proportibthe peaks that were located and
the proportion of individuals outside the peak#ie proportion of peaks is the number of
optima located divided by the number of optima.e Phoportion of individuals outside
of the peaks is the number of individuals not tragkan optimum divided by the total
number of individuals. The final criterion was teerage fitness of the individuals in
the last 50 generations.

The results of Bernier’s (1996) research vikecaverage of 10 runs for each of
Bernier’'s algorithms: Biggest Difference Methodldiggest Proportion Method. Each
run of the algorithm generated 200 generationspaulation size of 100. The results
for the criteria were the average of the last Sfegations for each benchmark.

Benchmark F7 has three local minimums andgboigal minimum, which is (0, 0).
This benchmark was used in Zhang, Shang, Gao and’®2008) hK Triangulation
NGA. In this NGA there is a tuning parameltehat indicates the precision of the

algorithm. The results of this research show tir@mum points or most fit individuals
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around the three local optima, excluding the (n®)imum. The performance criterion
was the objective value of the fittest individuedand each niche. For this research
DSGA used the same performance criterion and campegsults against the hK
Triangulation NGA forh = 0.1.

Benchmark F8 is a function that has not be&oduced in previous literature. Even
though it is very close to Bernier’'s benchmarkspresent research has been conducted
using it. This paper hopes to introduce this fiomcas a future benchmark. The
performance criteria used for benchmark F8 wereltree criteria defined by Bernier
(1996). These are the proportion of peeks locagtemhortion outside of the peeks and
average fitness. These three performance critexiar different characteristics of NGA
behavior.

For comparison DSGA was compared against oruwf other NGAs. When
benchmarks have previously published work, restdts the previous research were
used in the comparison. Three additional NGAs wees in this research. The NGAs
are Goldberg and Richardson’s (1987) algorithm, Kiad Zahara’s (2008) algorithm and
SCGA (Li et al., 2002). These three algorithmsenszlected because they represent a
variety of NGAs from a classic algorithm, like Gb&tg and Richardson (1987) to a new
algorithm, Kao and Zahara (2008). There are ndighdxd results for these three
algorithms and the benchmark functions. As pathisfresearch these algorithms were
implemented and run against all eight benchmarktfans. The published and newly
obtained results were used to evaluate DSGA agtiadienchmarks.

Considering there are three approachegftying the radius and two strategies for

encouraging exploration, there are six distinct lomations of strategies for DSGA.
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Each of the six strategies of DSGA were implemeatad attempted to locate the optima

of all eight benchmark functions. The performaaceerion for each benchmark has

been described in this section. This research tedorresponding population size,

number of runs, number of generations and perfoceanteria as the algorithm that it is

being compared against. The results of the sixbooations of DSGA strategies were

compared to the published results of the reseateti i this section using the

performance criteria shown in Table 16.

Table 16. Benchmark Algorithm Comparison

Algorithms Compared Against Performance Criteria

F1

F2

F3

Bernier Biggest Difference Method Proportion of peaks
Bernier Biggest Proportion MethodProportion of points outside of peaks
Goldberg and Richardson’s FitnessAverage fitness
Sharing
Kao and Zahara Genetic Algorithm
and Particle Swarm
Optimization
Species Conserving Genetic
Algorithm

Bernier Biggest Difference Method Proportion of peaks
Bernier Biggest Proportion MethodProportion of points outside of peaks
Goldberg and Richardson’s FitnessAverage fitness
Sharing
Kao and Zahara Genetic Algorithm
and Particle Swarm
Optimization
Species Conserving Genetic
Algorithm

Bernier Biggest Difference Method Proportion of peaks
Bernier Biggest Proportion MethodProportion of points outside of peaks
Goldberg and Richardson’s FitnessAverage fitness
Sharing
Kao and Zahara Genetic Algorithm
and Particle Swarm
Optimization
Species Conserving Genetic
Algorithm
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Table 16. Benchmark Algorithm Comparison Continued

Algorithms Compared Against Performance Criteria

F4

F5

F6

F7

Bernier Biggest Difference Method Proportion of peaks
Bernier Biggest Proportion MethodProportion of points outside of peaks
Goldberg and Richardson’s FitnessAverage fitness
Sharing
Kao and Zahara Genetic Algorithm
and Particle Swarm
Optimization
Species Conserving Genetic
Algorithm

Bernier Biggest Difference Method Proportion of peaks
Bernier Biggest Proportion MethodProportion of points outside of peaks
Goldberg and Richardson’s FitnessAverage fithess
Sharing
Kao and Zahara Genetic Algorithm
and Particle Swarm
Optimization
Species Conserving Genetic
Algorithm

Bernier Biggest Difference Method Proportion of peaks
Bernier Biggest Proportion MethodProportion of points outside of peaks
Goldberg and Richardson’s FitnessAverage fitness
Sharing
Kao and Zahara Genetic Algorithm
and Particle Swarm
Optimization
Species Conserving Genetic
Algorithm

Zhang, Shang, Gao, and Dong Fitness of best individual for each niche
hK; Triangulation Algorithm Proportion of peaks
Goldberg and Richardson’s Fitness
Sharing
Kao and Zahara Genetic Algorithm
and Particle Swarm
Optimization
Species Conserving Genetic
Algorithm
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Table 16. Benchmark Algorithm Comparison Continued

Algorithms Compared Against Performance Criteria
Goldberg and Richardson’s FitnesdProportion of peaks
Sharing Proportion of points outside of peaks
Kao and Zahara Genetic AlgorithmAverage fitness
F8 and Particle Swarm
Optimization
Species Conserving Genetic
Algorithm

All of the algorithms shown in Table 16 hawépshed results for the performance
criteria with three exceptions. Goldberg and Ridean’s Fitness Sharing method, Kao
and Zahara Genetic Algorithm and Particle Swarmr@pation algorithm and SCGA
did not have published results for these perforraamiteria. As part of this research
these three algorithms were implemented. The imefgations were run in an attempt to

solve the benchmark functions.

Format for Presenting Results

The results of this research were presentéaeiiorm of tables. There are eight
performance benchmark optimization problems sdiefttethis research. Each has
between one and three performance criteria. T$dteecontain one table for each
benchmark optimization problem. The rows of tHedare the selected algorithms
chosen for comparison, along with the six differemmbinations of DSGA. The
columns of the table are the performance critenidtfe selected benchmark optimization
problem. This method of presenting results allbevssomparison between DSGA and

other NGAs.
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Resour ces Required

There were few resources needed to conductebearch. The NGAs were
developed in the Java programming language andrrandesktop PC. This included
implementations of DSGA, Goldberg and Richardséiitisess Sharing method, SCGA
and the Genetic Algorithm and Particle Swarm Optation algorithm. Because this
research was conducted through running trialsisfrtbw algorithm against other NGAs,
no additional resources were needed. These resowere obtained to complete this

research.

Summary

While DSGA is not a tabu search, there areynpamallels between the two
techniques. Like the tabu search, DSGA investigdifésrent areas of the domain space.
New areas to investigate are selected based oropseareas. A tabu list is used to
discourage redundant exploration of previously stigated areas of the domain. Unlike
the tabu search, DSGA has no aspiration level.GAdhe only way to determine if a
tabu move is superior is to create multiple gemamatbased on the move. This makes
aspiration levels difficult in GAs.

DSGA uses a tabu list, but not a complete &dauch to encourage exploration. As
shown in Chapter 2 a tabu search contains a tabin laddition to an aspiration
condition. DSGA does not have an aspiration camdit The aspiration condition is not
needed, because in DSGA moves are not completatinated for being on the tabu list.
The seed selection algorithm encourages exploratiother areas of the domain, but

does not prevent convergence to any specific drieea@omain.
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This new algorithm was designed to locateroatin functional optimization problems
that have arbitrarily close optima. While it cacdte multiple optima in a single pass, it
uses multiple passes to locate all of them. Adteet of optima are located, a tabu list is
used to ensure that these optima are not revisifad frees the algorithm to locate other
optima. In problems that have arbitrarily closémp, it is important to prevent an
optimum from eclipsing nearby optima. This algamitattempts to overcome this

problem by the exploration approaches describe&disnchapter.
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Chapter 4

Results

Chapter 4 presents the results of this rekeartis first section describes the
parameter settings and implementation methods. ré\ffrevious research did not
publish parameters, values are selected. Paraibtdrare only specific to some
algorithms are also covered. There is a sectiordoh of the eight benchmark
functions. Finally, there is a summary section.

Two of the criteria used in this researchraeasurements of recall and precision.
Recall, defined as the number of optima identifiedded by the total number of optima,
is a measure of the algorithm's ability to discomgtima. Bernier (1996) described this
as the proportion of peeks found. Precision, @efias the total number of individuals
tracking optima divided by the total number of wduals, is a measure of the
algorithm’s accuracy. Bernier (1996) described #s the proportion of individuals
outside of the peek. Algorithms with a high prdapor of individuals outside of the peek
make it more difficult to determine what the optiare. These two measures provide

insight into the usefulness of the algorithms.

Parameter Settings and | mplementation M ethods
NGAs have many parameters and implementatethods. Chromosome

representation, population size and single or iplelfpoint crossover decisions can
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greatly affect the results of experiments in evohary algorithms (Burke, Gustafson &
Kendall, 2004). NGA research often includes aiseaif the best parameter settings for
a given algorithm. When comparing algorithms igortant to keep parameters
consistent across experiments.

When previously published results were avéaldtr an algorithm, they were used
instead of implementing the algorithm. This ocedrwith Biggest Difference Method,
Biggest Proportion Method and hKriangulation Algorithm. Results for Fitness
Sharing; Genetic Algorithm and Particle Swarm Optation; DSGA Increasing Radius,
Seed Exclusion (DSGA (R+, S-)); DSGA Decreasingiadseed Exclusion (DSGA (R-
, S-)); DSGA Dynamic Radius, Seed Exclusion (DS®A,(S-)); DSGA Increasing
Radius, Fitness Sharing (DSGA (R+, FS)); DSGA Dasireg Radius, Fitness Sharing
(DSGA (R-, FS)); and DSGA Dynamic Radius, Fitnekarthg (DSGA (R, FS)) were
obtained from implementing these algorithms as qiatttis research.

Parameter settings and implementation metfoydbese results were determined by
the following method. First, if results were shofsmm previously published research,
then parameter settings and implementation metfiodsthat research were used for the
given benchmark. Second, in cases where the uevesearch did not state all
parameters, ones were selected for the entire bear&h Third, some algorithms have
additional parameters that do not apply to othe ASIGIn this case parameter values
were selected and used consistently across théimank for all algorithms that have this
parameter. This method of parameter selectionldhpovide the most impartial

comparison.
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Previous Research Parameters and Implementations

All results in this section came from the iemplentation of the algorithms with two
exceptions. Results shown for Biggest Differencetiddd and Biggest Proportion
Method came from Bernier (1996) research. Reshlbsvn for the hK Triangulation
Algorithm came from Zhang, et al. (2008). All pighled parameter values and
implementation considerations for these algorithvase used in this research.

Functions F1 through F6 were used in Berrii®86). The results shown in the
following sections for Bernier’s Biggest Differeltethod and Biggest Proportion
Method came directly from Bernier (1996). Berr(itt996) used 30 chromosomes for
each individual. The research used a populataaii 100 and created 200 generations.
The probability of a gene mutating was 0.001. Befitetermining if an individual is
tracking an optimum a threshold must be definedrnr (1996) used 0.1, which is the
threshold used in this research. Any individualk ik within 0.1 of an optimum is
considered tracking the optimum. These contrgi@meters were used for all of the
other algorithms used in F1 through F6.

Zhang, et al. (2008) did not publish paramsé&ttings or implementation
considerations that can be used in this reseaksha result the parameter setting and
implementation considerations will be describe el@ecause there are no consistent
parameters between the hKriangulation Algorithm and the other algorithrtgs
difficult to compare the results. It is possildtattother parameter values could change

the results of the implemented algorithms.
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Common Parameters and Implementations

When previously published research did novigievalues for some parameters or
implementation considerations, they were seleateldheld consistent for all algorithms
in the benchmark. In some cases they were helsistent across all of the benchmarks.

This section describes the parameters selectdtiforesearch.

Chromosome Representation

All of the algorithms implemented for this @asch used binary chromosome
representation, although DSGA can support binadyflrating-point representation.
This representation evenly divides the domain spaceding greater precision as the
number of chromosomes increases. Binary chromosepresentation is a common
method of representing individuals in a GA. Thisthod of representation is often
selected for its simplicity (Pang, 2006).

Binary chromosome representation allows fgrmimber of chromosomes to cover
an area of the domain. Assuming there are binaryncosomed,_1b, ... by, an upper
bound ofUB and a lower bound &fB, the following equations shows the

implementation of this representation (Janikow &Milewicz, 1991).

ZNQT

x=LB+==01% (UB-LB)

The equation begins at the lower boun, The facto(UB-LB)is the length of the
domain that needs to be covered. Based upon \wwhatnosomes are active a portion of
the spanning area is added to the lower bound.fdllosving factor of the equation

produces a number between 0 and 1.
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b 2"
2" -1
The precision of the equation can be represente¢dedfollowing equation. Thax term
is the smallest value thaican change.

_UB-LB
2" -1

AX

As the number of bitg), increases the domain is divided into smallerisestgiving
greater precision.

All of the algorithms in the research usedssnver as a genetic operation. GAs can
use single-point or multiple-point crossover. @éflthe implemented algorithms in this

research used single-point crossover.

Fitness Function
Table 17 shows the fithess functions uset@sé trials for the research.

Table 17. Fitness Fumusi

Benchmark Function Fitness Function

F1 F1

F2 F2

F3 F3

F4 F4

F5 F5

F6 F6

F7 1/(F7+1)
F8 F8 + 10

In the case of F1 through F6 the fitness functias #he benchmark function itself.
These are all maximization problems. F7 is a mimétion problem. In this case the
benchmark function of the fitness function showtdrverse to each other. Benchmark

function F8 has negative values, which can causesssues for the selection process
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(Beasley, Bull & Martin, 1993a). The fitness fuoct for F8 was (F8 + 10). For the

range ofx equal O to 10, this ensures all fithess valuepasdive.

Other Parameters

Function F7 was previously used in Zhang e{24108). This research did not provide
parameters. As a result there were no controlnpatexs for F7. The algorithms
implemented by this research used a populationd$is8, created 100 generations and
had a gene mutation rate of 0.15625. FunctiondéBrio previously published results.
All of the algorithm results for F8 used these sgakmameters.

All of the results from the algorithms implemted as part of this research were the
average of 10 trials. Benchmark function F7 hastarion of the best individual for
each niche. The results shown in the researcthéoalgorithms are the average of the
best individual for each niche. Not all of the@ithms implemented were able to locate
all of the optima in all trials. Although it is hepecifically stated in Zhang et al. (2008),

it is assumed that this algorithm located all @& tptima.

Algorithm Specific Parameters and Implementations

Some parameters are specific to certain NGAsome cases they may span multiple
NGAs used in this research, but not all of themhewthis occurred values were
selected, often from previous research, and heldistent across the benchmark. This

section addresses algorithm specific parameters.
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Genetic Algorithm and Particle Swarm Optimizaticard&meters

Genetic Algorithm and Particle Swarm Optimi@athas three additional parameters
(Kao & Zahra, 2008). When updating a weak memb#r thie stronger member, two
constantsC1 andC2, are needed. These constants are weights tadters when
computing the new velocity. Kao and Zahra (20CG8) them set to 2. This research kept
the values at 2. The other parameter in this aghgarwas the weight for the weak
individual. This determines how much of the weadtividual was maintained after the
Particle Swarm Optimization step. Kao and Zah298) calculated this as 0.5 2
whereZ is a uniform random number between 0 and 1. fdssarch kept this
calculation as well. These are the additional patars for the Genetic Algorithm and

Particle Swarm Optimization algorithm.

Fitness Sharing Parameters

Four algorithms used a fitness sharing meth®dtdberg and Richardson’s Fitness
Sharing, DSGA (R+, FS), DSGA (R-, FS) and DSGA(RS). These algorithms all
implement Goldberg and Richardson’s (1987) algaorithThe implementation of these
algorithms used the power law function, describbe@hapter 2, as the fitness sharing
function. The parametesshareando were set to 0.1 and 1 respectively, which were the

same parameter values as in Goldberg and Richdsdd®@87).

Species Conserving Parameters
The SCGA algorithm had additional paramet&mce DSGA was based on SCGA,

these parameters are also needed in DSGA. Thmpteasdefines the diameter of the
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neighborhood. In these triadg was set to 0.2, which makes a radius of 0.1. $GB
this parameter wd$. This radius was used for all benchmark functieven F7 and F8

which have large domain areas.

DSGA Specific Parameters

DSGA has additional parameters to the SCGArdlgn. In DSGA the radius changes
as the algorithm runs. The Sigma Defi®, determines the change in the radius. The
SD parameter was set to 0.015 in all trials. DSGgd ddas a parameté&t.C. RLCor
Reevaluation Loop Count determines how many inogps of the algorithm should be
performed before the radius is reevaluated. &istfior F1 through FRLCwas set to 50.
This divides the total number of generations, 20, four groups. In trials for F7 and
F8 RLCwas set to 25. This divided the total numberesfegations, 100, into four
groups. After everiRLC number of generations DSGA analyzes the last géonar
seeking optima. If ther€L number of identical individuals, the individualgkced on
the tabu list and considered an optin@l. was set to two in all trials. DSGA specific
parameters used in the following trials are desctifbove.

One of the methods to vary the radius of tl&&B framework is to increase or
decrease the radius based upon information aftdr iggration of the inner loop
completes. While there are many different ways tifia can be implemented, one
consistent method was used in this research. Aé&eh iteration of the inner loop
completes the algorithm checks to see how manyishals were added to the tabu list
through convergence. If two or more individualgevadded to the tabu list, the radius

was increased b$D. Otherwise, it was decreased®y. This implementation was
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selected to increase the chance of finding optithéewer than two areas of the domain
converged, decreasing the radius would allow meeels to be identified in future
generations and should preserve more areas obthaid.

In most GAs the final generation containsap@ma that the GA has located. That is
not the case with DSGA. DSGA removes optima framgopulation through the use of
the tabu list. Therefore the final generation wdt contain the optima located. The tabu
list contains the optima. The data provided fbbahchmarks for the criterion of
proportion of peeks located for DSGA came from yzialy the tabu list, not the last
generation. The data provided for the F7 critefibest individual in each niche also
came from the DSGA tabu list. The data for alleottriteria for DSGA came from the
population.

This section describes all of the parametsesiun this research. Controlled
parameters are the parameter values used in pgearch. When prior research provided
parameter values, they were maintained throughbtritads. Some algorithms required
additional parameter values. These values have described. When a parameter
existed in multiple algorithm, the parameter vakss kept consistent across all trials for

a given benchmark function.

Results of Algorithmson F1

Benchmark function F1 is a sine wave with fxenly distributed local maximums all
of equal magnitude. The results for the Biggestedence Method and Biggest
Proportion Method come from Bernier (1996) researtable 18 shows the results for

F1. Figure 4 is a chart of the precision and texfahe algorithms.
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Algorithm Recall Precision Average
fitness

Bernier Biggest Difference Method 0.9800 0.7044 66@L5
Bernier Biggest Proportion Method 1.0000 0.6012 29098
Gold_berg and Richardson’s Fitness 0.9000 0.6570 0.8590
Sharing
Kao and_Zahara Genetic Algorithm 0.2000 0.9890 0.9855
and Particle Swarm
SCGA 0.9800 0.9250 0.9630
DSGA (R+, S-) 0.9800 0.9376 0.9714
DSGA (R-, S-) 0.9800 0.9158 0.9754
DSGA (RA, S-) 0.9400 0.9537 0.9859
DSGA (R+, FS) 0.9800 0.9568 0.4839
DSGA (R-, FS) 0.9800 0.8749 0.9667
DSGA (RA, FS) 0.9800 0.9425 0.9754
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Figure4. Chart of Recall and Precision for F1

Bernier’s (1996) algorithms did not outperfoathof the other algorithms in all

criteria. No algorithm tested could locate as mpegks as Biggest Proportion Method,

100%. However, SCGA and five of the six DSGA aitjons located 0.9800 of them,

which is the number that Biggest Difference Metlfimaghd. The algorithm that had the

fewest individuals outside of the peeks was theeBemrlgorithm and Particle Swarm

Optimization algorithm. The algorithm with the hagt average fithess was DSGA\(R

S-). However, DSGA (R+, FS) had the lowest avefdgess.
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Results of Algorithmson F2

The F2 function also is a sine wave that haslbcal maximums all of equal
magnitude. However, in F2 the optima are increggioloser together. Table 19 shows
the results of the average of 10 trials for funtti2. Data provided for Biggest
Difference Method and Biggest Proportion Method esrfrom Bernier (1996). Figure 5
shows a chart of the precision and recall.

Table 19. Results for Equation F2

Algorithm Recall Precision Average
fitness

Bernier Biggest Difference Method 0.8220 0.8095 90414
Bernier Biggest Proportion Method 1.0000 0.7187 50756
Gold_berg and Richardson’s Fitness 0.9400 0.7400 0.8808
Sharing
Kao and_Zahara Genetic Algorithm 0.2200 0.9850 09831
and Particle Swarm
SCGA 0.7400 0.9830 0.9801
DSGA (R+, S-) 0.8000 0.9626 0.9888
DSGA (R-, S-) 0.8400 0.9574 0.9862
DSGA (RA, S-) 0.8200 0.9577 0.9894
DSGA (R+, FS) 0.8600 0.9138 0.4897
DSGA (R-, FS) 0.8200 0.9156 0.9806
DSGA (RA, FS) 0.8200 0.9292 0.9834

As in F1 no algorithm could meet Biggest Prtipa Method in locating 100% of the
peeks. The closest algorithm for this criteriorswilae Fitness Sharing method with
0.9400 peeks located. The Genetic Algorithm antidka Swarm algorithm had the
fewest proportion of individuals outside of the kgeout only found 22% of the optima.
In the average fitness criterion all of the DSGgaoaithms did well with the exception of

DSGA (R+, FS).
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Figure5. Chart of Recall and Precision for F2

Results of Algorithmson F3

The function F3 is similar to F2 except thidtas 10 optima instead of five. Table 20

shows the results for function F3 and Figure 6dbart of the results. As stated

previously data for Biggest Difference Method anddg@st Proportion Method comes

from Bernier (1996).

Table 20. Results for Equation F3

Algorithm Recall Precision Average
fithess

Bernier Biggest Difference Method 0.6822 0.6495 480308
Bernier Biggest Proportion Method 0.8880 0.5247 oes7
Gold_berg and Richardson’s Fitness 0.6400 0.6170 0.8477
Sharing
Kao and Zahara Genetic Algorithm
and Particle Swarm 0.1000 0.9840 0.9868
SCGA 0.5800 0.9180 0.9658
DSGA (R+, S-) 0.6200 0.9570 0.8979
DSGA (R-, S-) 0.6700 0.9410 0.9786
DSGA (RA, S-) 0.6300 0.9561 0.9882
DSGA (R+, FS) 0.6900 0.8924 0.4889
DSGA (R-, FS) 0.7400 0.8995 0.9682
DSGA (RA, FS) 0.6600 0.9090 0.9770
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Figure6. Chart of Recall and Precision for F3

Biggest Proportion Method located all of tleks in the function with DSGA (R-,
FS) locating the second most peeks at 0.7400.n Asei previous benchmarks the
Genetic Algorithm and Particle Swarm Optimizatidgoaithm had the least number of
individuals outside of a peek. DSGAARS-) had the greatest average fitness of the last

50 generations with a fitness of 0.9882.

Results of Algorithmson F4

The function F4 is similar to F3 except tha 1.0 optima are even closer together.
Table 21 shows the results of the average of theidl®. Figure 7 is a chart of the
precision and recall for the algorithms for F4.

For this function Biggest Proportion Methodmerforms all of the other algorithms in
proportion of peeks found by at least 0.3. Aslim#er functions the Genetic Algorithm
and Particle Swarm Optimization algorithm produtieslbest results for the proportion

of points outside of the peeks. The algorithm tiat the greatest average fitness in the
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last 50 generations was the DSGA (R+, S-) algoritfithe ranking of algorithms for the

different criteria in F4 is very similar to that B8.

Table 21. Results for Equation F4

Algorithm Recall Precision Average
fitness

Bernier Biggest Difference Method 0.5480 0.7327 40360
Bernier Biggest Proportion Method 0.89866 0.6738 610701
Gold_berg and Richardson’s Fitness 0.5800 0.7170 0.8546
Sharing
Kao and_Zahara Genetic Algorithm 0.1000 0.9800 0.9852
and Particle Swarm
SCGA 0.4600 0.9440 0.9698
DSGA (R+, S-) 0.5200 0.9544 0.9881
DSGA (R-, S-) 0.5200 0.9438 0.9832
DSGA (RA, S-) 0.5100 0.9642 0.9834
DSGA (R+, FS) 0.6500 0.8814 0.4775
DSGA (R-, FS) 0.6400 0.9194 0.9750
DSGA (RA, FS) 0.6300 0.9041 0.9702
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Figure7. Chart of Recall and Precision for F4

Results of Algorithmson F5

Function F5 is the first function that hasimat of different magnitudes. It has five

optima of decreasing fitness. Table 22 showsehalts for function F5 for 10 trials of

the algorithms implemented. Figure 8 is a chathefrecall and precision.
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Algorithm Recall Precision Average
fithess
Bernier Biggest Difference Method 0.9336 0.8598 90831
Bernier Biggest Proportion Method 1.0000 0.8335 80304
Gold_berg and Richardson’s Fitness 0.9400 0.7580 05648
Sharing
Kao and_Zahara Genetic Algorithm 0.2000 0.9790 0.8165
and Particle Swarm
SCGA 0.1000 0.9900 0.8615
DSGA (R+, S-) 0.2000 0.9541 0.8601
DSGA (R-, S-) 0.1000 0.9670 0.8588
DSGA (RA, S-) 0.1000 0.9521 0.8602
DSGA (R+, FS) 0.1000 0.9496 0.4302
DSGA (R-, FS) 0.1000 0.9511 0.8599
DSGA (RA, FS) 0.2000 0.9396 0.8587
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Figure8. Chart of Recall and Precision for F5

Three algorithms did very well in locating geeBiggest Difference Method, Biggest
Proportion Method and Fitness Sharing. Each lac@i®336 or more optima. All of the
other algorithms did poorly finding no more tha 6ptima. SCGA had the most
number of individuals tracking a peek with 0.9%eTalgorithm with the best average

fitness was DSGA (R, S-).
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Results of Algorithmson F6
Function F6 has 10 optima of decreasing fgénekhe results for function F6 are
shown in Table 23. The recall and precision amvshin Figure 9.

Table 23. Results for Equation F6

Algorithm Recall Precision Average
fitness

Bernier Biggest Difference Method 0.7480 0.8247 80606
Bernier Biggest Proportion Method 0.9788 0.7891 108887
Gold_berg and Richardson’s Fitness 0.8800 0.7110 0.6799
Sharing
Kao and_Zahara Genetic Algorithm 0.1000 0.9810 0.9345
and Particle Swarm
SCGA 0.1100 0.9900 0.9860
DSGA (R+, S-) 0.2100 0.9738 0.9759
DSGA (R-, S-) 0.2600 0.9608 0.9816
DSGA (RA, S-) 0.2800 0.9692 0.9739
DSGA (R+, FS) 0.3400 0.9281 0.4885
DSGA (R-, FS) 0.2600 0.9370 0.9822
DSGA (RA, FS) 0.2900 0.9390 0.9708

Once again Biggest Difference Method, Bigdg&siportion Method and Fitness
Sharing did very well at locating peeks and theep#igorithms did not. SCGA did the
best at having the least number of individualsidatsf the peeks and also had the
highest average fithess. The DSGA algorithms dorly at locating peeks, finding no
more than 0.3400 of them. However, they did veeyl at having very high average

fitness of the last 50 generations.



85

1.2
1 || |
L 4 . [ | B [ m = o
og | M -
* m
& Recall
0.6 - .
M Precision
0.4 - .
¢ o ¢ ¢
0.2 2 2
* L
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
BDM  BPM FS GASPO SCGA DSGA DSGA DSGA DSGA DSGA DSGA
R+, S) (R-S) (RA, S) (R+ FS) (R- FS) (RA, FS)

Figure9. Chart of Recall and Precision for F6

Results of Algorithmson F7

The benchmark function F7 has three localno@ti The global optimum is at (0O, 0).
One criterion for this function is the F(x, y) valof the best individual for each of the
three optima. Since this is a minimization problemaller values are advantageous.
The data for the hKTriangulation Algorithm came from Zhang, et al0Q8). The data
for the other algorithms came from the implementabf the algorithms for this

research. The results of this test can be se€&abte 24. Figure 10 shows the recall.
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Figure 10. Chart of Recall for F7



Table 24. Results for Equation F7

Algorithm F(x, y) of best Recall
individual for each
niche

0.000015
0.003706 1.0000
0.003706

Zhang, Shang, Gao and Dong;hK
Triangulation Algorithm

0.527280
0.077355 0.7333
0.94090

Goldberg and Richardson’s Fitness
Sharing

0.415233
SCGA 0.000919 0.7667
0.439676

1.082841
0.000003 0.5333
1.001006

Kao and Zahara Genetic Algorithm
and Particle Swarm

0.318560
DSGA (R+, S-) 0.000545 1.0000
0.320355

0.326982
DSGA (R-, S-) 0.003262 0.5333
0.313548

0.372950
DSGA (RA, S-) 0.001551 0.7000
0.355833

0.324833
DSGA (R+, FS) 0.004004 0.9667
0.324392

0.325207
DSGA (R-, FS) 0.002342 0.6000
0.317107

0.306499
DSGA (RA, FS) 0.002572 0.6667
0.319992
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The algorithms that were implemented did nad &ll of the optima in all of the trials.
This was the reason that the proportion of peeksrimm is included in this results
section. Zhang, et al. (2008) did not specificaligte how many optima their algorithm
located. It is assumed that all trials locatedtakte optima.

After averaging the sum of 10 trials for eatdporithm implemented, the hK
Triangulation Algorithm did the best for optimandda3. Optimum 2 was the global
minimum of (0, 0). For this optimum the Genetigéilithm and Particle Swarm
Optimization algorithm performed best. Of the aitons implemented only DSGA
(R+, S-) found all of the peeks in all 10 trialBhis is impressive since it is only an

assumption that the hKriangulation Algorithm located all of them.

Results of Algorithmson F8

Function F8 has been discussed in Chapted 1sahe best example of the types of
functions that DSGA was developed to solve. Taigfion has arbitrarily close optima.
Between thex values of 0 and 10, there are 16 optima. Most@bptima are within the
radius value of other optima. All of the algorithrfior this benchmark function were
implemented as part of this research. The resfilfse average of 10 trials can be seen
in Table 25.

DSGA overwhelmingly outperformed the otheroaithms in many of the criteria. All
six of the DSGA algorithms found more peeks thanathe other algorithms. The
Genetic Algorithm and Particle Swarm Optimizatidgoaithm had the least number of

individuals outside of a peek and had the highestagye fitness for the last 50
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generations. However, for proportion of pointssaleg of peeks and average fitness, all

DSGA algorithms did better than the Fitness Shaaiggrithm.

Table 25. Results for Equation F8

Algorithm Recall Precision Average
fithess

Gold_berg and Richardson’s Fitness 0.4375 0.2800 16982
Sharing
Kao and_Zahara Genetic Algorithm 0.0875 0.8040 77072
and Particle Swarm
SCGA 0.8625 0.7640 6.7078
DSGA (R+, S-) 0.9625 0.5930 6.4542
DSGA (R-, S-) 0.9688 0.5050 5.9423
DSGA (RA, S-) 0.9313 0.5479 6.6220
DSGA (R+, FS) 0.9500 0.3736 5.4074
DSGA (R-, FS) 0.9500 0.4225 5.7020
DSGA (RA, FS) 0.9563 0.3691 5.4805
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Figure11. Chart of Recall and Precision for F8

Summary of Results

This chapter provides the results of six atpars derived from the DSGA framework

compared to six other NGAs. Research results ¢eoneeight benchmark functional

optimization problems, seven of which had been usgdior research. The benchmark

functions covered many different functional optiatinn problems, including
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minimization and maximization problems and two #m@e dimensional problems. Each
optimization problem used two or three criteria.

Results from the Genetic Algorithm and PagtiSlvarm Optimization algorithm did
poorly for most criteria. These results do notespond to other results for this
algorithm (Kao & Zahra, 2008). Two factors coukpkin this. First the controlled
parameters used in Bernier (1996) may not be teeda@ameter settings for this
algorithm. Perhaps with a different mutation @tgpopulation size this algorithm would
have located more optima. Kao and Zahra (200&8dtbtat higher mutations rates
increase the algorithm’s ability to locate optinfecond, results published in Kao and
Zahra (2008) represented individuals as a vectoeafnumbers instead of a binary
implementation. This research kept the chromos@peesentation as binary since the
other algorithms were coded using binary representa Other research indicates that
chromosome representation can affect results in (@&ub, 1996). This could explain
the poor performance of the Genetic Algorithm aadiBle Swarm Optimization
algorithm.

Each algorithm performed differently agairmss tset of benchmark functions. Some
performed consistently well, others performed ppoAppendix A Table 26 shows how
the algorithms ranked for each benchmark and @itek ranking of one is the best
performing algorithm. Higher ranking algorithmsl diot perform as well as lower
ranking ones for the given criteria. Results shawthis table for function F7 with
criteria of F(x, y) of best individuals for eaclche, shows the results of the sum of the
three best F(x, y) values. While algorithm perfance varied widely, no single

algorithm proved superior.
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Chapter 5

Conclusions, Implications, Recommendations and Summary

This chapter discusses the conclusions, i@fpins, recommendations and summary
of this research. There is a section in this drafjor each of these four topics. The
conclusion section analyzes the results againgtypethesis. The implications section
discusses the impact of this research and theibatitm to the field. The
recommendations section presents future reseagels.idThe summary section

summarizes this research.

Conclusions

The DSGA framework was developed to solve fional optimization problems for
continuous functions when the optima are arbityanlibse. The framework allows for the
creation of multiple algorithms. There are twoegatries of strategies. The first category
is how to change the radius as the algorithm rdrse second category addresses how to
encourage exploration in the domain. The DSGA é&aork provides a foundation for
the building of a variety of algorithms to solve &rbitrarily close optima.

The first goal of this research was to develolgorithm to solve for arbitrarily close
optima. The benchmark function F8 which is showfRigure 1 is an example of one
such function. In this example a majority of theima are within the radius value of

each other. All six DSGA algorithms did well ircktting optima for F8. They located
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93.13% to 95% of the optima. The three other algms tested only located 86.25%,
43.75% and 8.75% of the optima. The DSGA framevi®remarkably good at locating
arbitrarily close optima. Results for F8 indicHtat this goal was met by the DSGA
framework.

The second goal of this research was to dpwvaahcalgorithm that will work equally
well for other types of problems. Excluding F&riawere 20 combinations of
benchmark functions and criteria. Six benchmaricfions had three criteria and one
benchmark function had two criteria. Of these @Mbinations there were six
combinations in which a DSGA algorithm was ranked.oSo, in 30% of the cases a
DSGA algorithm outperformed all other algorithn@f the 14 combinations in which
DSGA was not ranked one, it was ranked two in segenbinations. While DSGA
algorithms did not always rank number one, resdtam to indicate that it does equally
well against other types of problems.

The first hypothesis of this research was finging optima in phases is a better
strategy for locating arbitrarily close optima.| Adsults showed that this is a good
strategy for these types of problems. ConsideD86A (R+, S-) and the DSGA (R+,
FS) algorithms. The beginning radius value wasadd it increased by 0.015 each of the
four phases that the algorithm performed. Thismadhat the four values of the radius
were 0.1, 0.115, 0.130 and 0.145. Of the 16 opton&8 all but two had other optima
within these four radii. Multiple optima withinradius will cause problems for NGAs
(Ando & Kobayashi, 2005). But the two DSGA algbnits located 96.25% and 95.0% of
the optima. This occurred because each phasetbsate optima and removed them

from the search through the two exploration stiatetp allow the algorithm to locate the
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other optima with the remaining phases. The SClgarghm, which performed only
one phase, only located 86.25% of the optima. afiproach to solving arbitrarily close
optima problems in phases is supported by thesdses

The second hypothesis was that traditional @& poorly against arbitrarily close
optima because of their use of a static radiusangimg the radius as the algorithm runs
compensates for the difficulty in solving theseaymf problems. Results from this
research confirmed this hypothesis. DSGA and S@&Avery similar. SCGA has a
static radius and DSGA has a dynamic radius. Wighexception of benchmark function
F1, a DSGA algorithm found as many or more optisi®@GA. In F1 the distance
between optima was greater than the radius. Ag mtima exist within the radius, the
ability for SCGA to locate optima decreased to alalf of what DSGA located.

Varying the radius as the algorithm runs helpeadjusting for poorly chosen radius
values.

Determining which DSGA strategies were the zedifficult. All six of the DSGA
algorithms performed against the benchmarks equadlyy One exception to this
observation is the DSGA (R+, FS) algorithm. THgoathm consistently had an average
fitness about half of what the other DSGA algorithinad. The average fithess criterion
was the average fithess of the last 50 generati®hs is a difficult criterion for DSGA,
because DSGA removes optima from the populatiomwihey are placed on the tabu
list. The DSGA (R+, FS) algorithm did perform watllocating the optima. One
explanation for this low average fitness couldrbéhe order that DSGA (R+, FS) located

the optima. It could have located the fittest mgtifirst and be left with the least fit ones
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in the final generations. With a few exceptiorised DSGA algorithms performed
equally well across the benchmark criteria.

This research has demonstrated that the D3&nAefwork is very effective at solving
problems with arbitrarily close optima. Its alyilib solve other types of problems is
comparable to other NGAs. Many factors attribot®EGA's ability to solve such
problems. Finding optima in phases and then rengotiem from the search space
allows the algorithm to decompose the problem amdldnswers iteratively. The use of
a tabu list to store areas of the domain that ba&esn investigated and found to be
optimal allows DSGA to encourage exploration intieen areas of the domain. Changing
the radius as the algorithm executes compensate®do radius choices that limit other
NGAs. DSGA even proved successful when all ofrlttus values had multiple optima
within them. Results for DSGA showed that it wascessful at solving many types of

functional optimization problems.

Implications

The results of this research can be usefalvariety of areas. The DSGA framework
has been shown to be successful in locating ogftimaroblems with arbitrarily close
optima. When it is known or suspected that a fondbas arbitrarily close optima a
DSGA algorithm would be appropriate in locating maxms and minimums. Results of
this research show that it locates more optima tithar NGAs for these types of
problems.

Another area that the DSGA framework has iogtions in is when there is little or no

knowledge of where the optima are located. Witlpyvaper parameter settings many
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NGAs have difficulty locating optima. DSGA algdnhs do very well locating optima
even when the radius parameter is set incorre@tner NGAs have difficulties locating
optima when a poor radius parameter is selected.

This research also introduced a new benchifoadtion, F8. Results against other
NGAs showed that this function is difficult to selfor many NGAs. This function could

be used in future research to test other NGAs.

Recommendations

While the results of this research supporttyy@otheses, there are still unanswered
guestions about this approach. More research dmuttbne to provide a better
understanding of the value that DSGA has. Thewahg are some areas where more
research is recommended.

DSGA has been tested against eight benchmadtibns. While seven of the eight
functions have been used in other NGA research,AOB43 not been applied to real-
world problems. Future research could be donedb@SGA against real-world
problems like those outlined in Chapter 1: handagitmatching, electromagnetic system
design and data mining classification.

DSGA has a variety of parameters and implcationsiderations. In addition to
traditional GA parameters like population size, tw@mof chromosomes and number of
generations, there are specific parameters likeisaahd radius delta. The fitness sharing
strategy in this researched used the power lawtitmdout many other functions could
be used to implement this strategy. More researtthother parameters and

implementation considerations could be conducted.
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The DSGA framework enhances the SCGA algoritinenhances it based upon a
few principles: locating optima in phases and teecluding optima in future
generations, use of a tabu list to store optimatliciates and changing the radius as the
algorithm runs. All of these have shown to be wgsgful enhancements to the SCGA
algorithm, but they could be applied to other NGA&esearch that applies these
principles to another NGA would provide additioealdence that this approach is
correct.

These recommendations highlight some additiargas of research that could be
undertaken. The DSGA framework has generatedigotithms that prove to be very
useful for some types of problems. However, thayehonly been tested against eight
functional optimization problems. Additional resgacan better define the usefulness of

DSGA.

Summary

GAs can be useful tools for searching largenglex domain spaces. GAs do very
well when searching for a single optimum. But whiggy attempt to locate multiple
optima, they often fail. GAs have two competingcés that act upon the population.
Mutation expands the area of the domain that isgosearched. This exploration
increases the area of the search space. Selactibarossover eliminate areas of the
domain and focus the search on ever shrinking arethe domain. This exploitation
reduces the area of the search space. In everse®@ation and crossover eventually win

out and the population converges.
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Classify NGAs

NGAs are a specific type of GA that employ elanethods to prevent the exploitation
force from removing optima in the domain spacerré€ntly there are many NGAs,
which can be classified as fitness sharing methodsyding methods and other methods.
This research provides multiple examples of aké¢hrategories.

In fitness sharing methods special fitnesstions are used. These functions alter the
fitness of individuals based upon how far theyfewen other individuals in the
population. More isolated individuals are giveefprence to increase their chances of
being selected for crossover. This provides pveden for individuals that are in low
populated areas of the domain.

A second category of NGAs is crowding metholiscrowding methods individuals
from one generation are promoted into the nextige¢iom. These individuals are often
the fittest individuals in a specific area of th@whin. Crowding methods prevent the
exploitation forces of fit optimum from eclipsingeaker optima by directly maintaining
interesting individuals.

There are some NGAs that do not easily fa thie fitness sharing or crowding
categories. The other category groups these meth®dme of these methods are other
GAs that solve multiple optima problems, like CElluGenetic Algorithms. Many
methods in this category are hybrid methods. Thesthods combine GAs with other
search algorithms, like the Particle Swarm Optirtnaraand the Tabu Search. This other
category classifies NGAs that solve multiple optipnablems but do not use fitness

sharing or crowding approaches.
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DSGA Framework

One problem that many NGAs have is that whgim@ become arbitrarily close they
have difficulty locating all of the optima. Mos¥s have some radius parameter.
When searching the domain the parameter is usaetéomine how large an area of the
domain should be to make it worth preserving. algerithm assumes that if two
individuals are within the radius, they are trackihe same optima. But this may not be
the case. An issue arises when no matter how sheathdius is set to; there is some area
of the domain that has multiple optima within thdius (Ando & Kobayashi, 2005).
When this happens one optimum is often preservddranothers are lost. This makes
functional optimization problems of continuous ftians that have arbitrarily close
optima difficult for NGAs to solve.

DSGA is a new NGA framework developed to sdiugctional optimization problems
of continuous functions that have arbitrarily cloggima. The DSGA framework is
based upon the SCGA algorithm. The SCGA algorithancrowding NGA, but was not
developed to specifically address problems of eahly close optima. The
enhancements made to SCGA are supported by ottearad.

SCGA is a crowding NGA. It identifies intenest individuals within a population.
These individuals are called seeds. Seeds getgbednmnto the next generation. Seed
selection begins by sorting a population by theefs of each individual. Individuals are
evaluated from the fittest to the least fit. Aitedparameter is used to define the area
around a seed. As individuals are evaluatedgelf tire not within the radius of an
existing seed, the individual is added to thedfsteeds. SCGA uses normal selection,

crossover and mutation. When the next generasicneiated SCGA replaces members of
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this new generation with individuals on the listseeds. Each seed replaces the weakest
individual in the new generation that is within tlaelius of the seed in the domain space.
After all of the seeds are promoted into the nextegation the list of seeds is empted and
individuals must compete again to be a seed. dllosis SCGA to preserve these
individuals into the next generation.

DSGA enhances SCGA in a number of ways. DS@Gdsaot attempt to locate optima
in a single loop. It runs a series of generatioren attempt to locate some optima.
Optima and seeds are placed on a short term mestracture, called a tabu list. Then it
encourages exploration into other areas of the dotodocate undiscovered optima.
DSGA has a radius parameter, which often is aditiah for most NGAs. DSGA
overcomes the problem of having multiple optimahwitthe radius, by varying the radius
as the algorithm runs. DSGA uses two strategiesity the radius and two methods to
encourage exploration.

DSGA has two strategies for varying the radilidas two parameters concerning the
radius. DSGA has a radius parameter and a raeites parameter. After a series of
generations are created, DSGA changes the raditreebydius delta parameter. The two
strategies for varying the radius are to alwaysaase or decrease the radius and vary the
radius based upon some condition. The conditioraty the radius is arbitrary, but the
strategy was developed to use run-time informatotetermine if the radius should be
increased or decreased.

There are two strategies for encouraging eaptm in DSGA. One is based upon the
fitness sharing method. A fitness function is dedi in such a way that it decreases an

individual’s fitness the closer that the individimto members of the tabu list. This
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differs from other fithess sharing algorithms thaty the fithess based upon how close
individuals are to other individuals in the popidat This encourages exploration into
other areas of the domain. The second strateggnfoouraging exploration prevents
individuals from being seeds. If an individualighin the radius of an individual on the
tabu list, it is excluded from being a seed. Thesestrategies encourage exploration in

DSGA.

Research Results

The research had two goals and two hypotheBes.first goal was to develop an
NGA that could solve problems with arbitrarily obogptima. The second goal was that
this NGA would perform as well as other NGAs fonet types of problems. The first
hypothesis was that finding optima in phases, emee a NGAs chances of finding
arbitrarily close optima. The second hypothesis that NGAs often miss optima in
problems with arbitrarily close optima becausetafis radius. Eight functional
optimization problems for continuous functions wesed to test these goals and
hypotheses.

DSGA was compared to six other NGAs with eiggmichmark functional
optimization problems. Each benchmark function tvamlor three criteria to be judged
against. One specific function had ever increaantgrarily close optima. In one area
of this domain the function had multiple optimahit the radius.

The results of this research support the tyymwotheses and show that the two goals
were met. Each of the six combinations of DSGAtstyies located more optima than

any of the other algorithms tested for the benchkriwarction with arbitrarily close
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optima. It even located more optima than SCGA cishows that the ability to locate
arbitrarily close optima was not inherent in SCGRather this ability came from the
enhancement that this research made in DSGA. heasther seven benchmark functions
DSGA performed equally well as other algorithmdisTresearch indicates that locating
optima in phases works better for arbitrarily clopéima and that static radius often

prevent other NGAs from locating such optima.

Conclusions

DSGA is a new NGA framework that was desigsgekcifically to locate optima in
problems that have arbitrarily close optima. Fatyems in which multiple optima
existed within the radius, all DSGA algorithms Ihmore optima than any of the other
algorithms used. DSGA does a respectable job sigaiher functional optimization
problems. The results of this research show HaDISGA framework does very well
against functional optimization problems.

The DSGA performance comes from two factdrscating optima in phases and then
encouraging exploration away from the located oatisimplifies the problem. This
makes locating optima easier. Varying the radgaitha algorithm runs compensates for
poor radius choices. These two characteristid3BA make it a useful search
technique.

DSGA is a new NGA framework. It was developedolve for functional
optimization of continuous functions when the ogiare arbitrarily close. However,

DSGA results for problems that do not have arhliyratose optima were comparable to



101

other NGAs. The DSGA framework provides a new N&pbroach that leverages

existing NGA research.
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Appendix A

Ranking of Algorithms

Table 26. Ranking of Algorithms

Benchmark Rank Ranked Algorithm
Criteria

Bernier Bigcest Proportion Methc
Bernier Biggest Difference Meth
SCGA
DSGA (R+, &

DSGA(R-, &

DSGA (R+, FS
DSGA(R-, FS
DSGA(RA, FS
DSGA (RA, &

Goldberg and Richardson’s Fitness She

Kao and Zahara Genetic Algorithm and ParticlerGwa

F1 Proportion of
Peeks

OB WNPNNNNDNDDNE

Kao and Zahara Genetic Algorithm and Particle Sw
DSGA (R+, FS
DSGA (RA, &
DSGA(RA, FS
DSGA(R+, &-
SCGA
DSGA (R-, &
DSGA(R-, FS
Goldberg and Richardson’s Fitness She
Bernier Biggest Difference Meth
Bernier Biggest Proportion Method

F1 Proportion of
points outside of
peaks

e
RPRBoo~v~oubrwN R

DSGA (R\, S-)
Kao and Zahara Genetic Algorithm and Particlerf@wa
DSGA (R-, S-)
DSGA (R\, FS)
DSGA (R+, S-)
DSGA (R-, FS)
SCGA
Goldberg and Richardson’s Fitness Sharing
Bernier Biggest Difference Method
Bernier Biggest Proportion Method
DSGA (R+, FS)

F1 Average fitness

'acoooxlcncn.hwwl\)l—\
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Table 26. Ranking of Algorithms Continued

Benchmark
Criteria

Rank

Ranked Algorithm

F2 Proportion of
Peeks

F2 Proportion of
points outside of
peaks

F2 Average fitness

':Soooxlovm.hwmp CO~NODOOUIAWNPR

[
PRoo~v~ourwNnR

Bernier Biggest Proportion Method
Goldberg and Richardson’s Fitness Sharing

DSGA (R+, FS)
DSGA (R-, S-)

Bernier Biggest Difference Method
DSGA (R\, S-)
DSGA (R-, FS)
DSGA (R\, FS)
DSGA (R+, S-)

SCGA
Kao and Zahara Genetic Algorithm and Particler&wa

Kao and Zahara Genetic Algorithm and Particler@wa
SCGA
DSGA (R+, S-)
DSGA (R\, S-)
DSGA (R-, S-)
DSGA (R\, FS)
DSGA (R-, FS)
DSGA (R+, FS)
Bernier Biggest Difference Method
Goldberg and Richardson’s Fitness Sharing
Bernier Biggest Proportion Method

DSGA (R, S-)
DSGA (R+, S-)
DSGA (R-, S-)
DSGA (R\, FS)
Kao and Zahara Genetic Algorithm and Particler@wa
DSGA (R-, FS)
SCGA
Bernier Biggest Difference Method
Goldberg and Richardson’s Fitness Sharing
Bernier Biggest Proportion Method
DSGA (R+, FS)
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Table 26. Ranking of Algorithms Continued

Benchmark
Criteria

Rank

Ranked Algorithm

F3 Proportion of
Peeks

F3 Proportion of
points outside of
peaks

F3 Average fithess

[ [
PRowo~v~oubrwnvnrkr DHoovobhwNRE

[
PRowo~v~ourwNnR

Bernier Biggest Difference Method
DSGA (R-, FS)
DSGA (R+, FS)

Bernier Biggest Proportion Method
DSGA (R-, S-)
DSGA (R\, FS)

Goldberg and Richardson’s Fitness Sharing
DSGA (R, S-)
DSGA (R+, S-)
SCGA
Kao and Zahara Genetic Algorithm and Particla@w

Kao and Zahara Genetic Algorithm and Particle r@wa
DSGA (R+, S-)
DSGA(RA, S-)
DSGA (R-, S-)
SCGA
DSGA (R\, FS)
DSGA (R-, FS)
DSGA (R+, FS)
Bernier Biggest Difference Method
Goldberg and Richardson’s Fitness Sharing
Bernier Biggest Proportion Method

DSGA (R\, S-)
Kao and Zahara Genetic Algorithm and Particler&wa
DSGA (R-, S-)
DSGA (R\, FS)
DSGA (R-, FS)
SCGA
DSGA (R+, S-)
Bernier Biggest Difference Method
Goldberg and Richardson’s Fitness Sharing
Bernier Biggest Proportion Method
DSGA (R+, FS)
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Table 26. Ranking of Algorithms Continued

Benchmark
Criteria

Rank

Ranked Algorithm

F4 Proportion of
Peeks

F4 Proportion of
points outside of
peaks

F4 Average fitness

[ =
PHowo~v~oubrwnhnrkr Joo~Nw~vwoObhwNE

e
PRowo~vourwnek

Bernier Biggest Proportion Method
DSGA (R+, FS)
DSGA (R-, FS)
DSGA (R\, FS)

Goldberg and Richardson’s Fitness Sharing

Bernier Biggest Difference Method
DSGA (R+, S-)
DSGA (R-, S-)
DSGA (R, S-)

SCGA
Kao and Zahara Genetic Algorithm and Particleu$w

Kao and Zahara Genetic Algorithm and ParticlerGwa
DSGA (R\, S-)
DSGA (R+, S-)
SCGA
DSGA (R-, S-)
DSGA (R-, FS)
DSGA (R\, FS)
DSGA (R+, FS)
Bernier Biggest Difference Method
Goldberg and Richardson’s Fitness Sharing
Bernier Biggest Proportion Method

DSGA (R+, S-)
Kao and Zahara Genetic Algorithm and Particler@wa
DSGA (R\, S-)
DSGA (R-, S-)
DSGA (R-, FS)
DSGA - Dynamic Radius; Fitness Sharing
SCGA
Goldberg and Richardson’s Fitness Sharing
Bernier Biggest Difference Method
Bernier Biggest Proportion Method
DSGA (R+, FS)
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Table 26. Ranking of Algorithms Continued

Benchmark
Criteria

Rank

Ranked Algorithm

F5 Proportion of
Peeks

F5 Proportion of
points outside of
peaks

F5 Average fitness

::'SLOOO\IOU'IACDI\)I—‘ oo b~bbDdDWODNPRE
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Bernier Biggest Proportion Method
Goldberg and Richardson’s Fitness Sharing
Bernier Biggest Difference Method
Kao and Zahara Genetic Algorithm and Particlerf@wa
DSGA (R+, S-)
DSGA (R\, FS)
SCGA
DSGA (R-, S-)
DSGA (R, S-)
DSGA (R+, FS)
DSGA (R-, FS)

SCGA
Kao and Zahara Genetic Algorithm and Particler@wa
DSGA (R-, S-)
DSGA (R+, S-)
DSGA (R\, S-)
DSGA (R-, FS)
DSGA (R+, FS)
DSGA (R\, FS)
Bernier Biggest Difference Method
Bernier Biggest Proportion Method
Goldberg and Richardson’s Fitness Sharing

SCGA
DSGA (R\, S-)
DSGA (R+, S-)
DSGA (R-, FS)
DSGA (R-, S-)
DSGA (R\, FS)
Kao and Zahara Genetic Algorithm and Particler&wa
Bernier Biggest Difference Method
Bernier Biggest Proportion Method

Goldberg and Richardson’s Fitness Sharing
DSGA (R+, FS)




107

Table 26. Ranking of Algorithms Continued

Benchmark
Criteria

Rank

Ranked Algorithm

F6 Proportion of
Peeks

F6 Proportion of
points outside of
peaks

F6 Average fitness

[ =
PHowo~voubrwNnr JoovwouobhwNe

e
PRowo~v~ourwner

Bernier Biggest Proportion Method
Goldberg and Richardson’s Fitness Sharing
Bernier Biggest Difference Method
DSGA (R+, FS)
DSGA (R\, FS)
DSGA (R\, S-)
DSGA (R-, S-)
DSGA (R-, FS)
DSGA (R+, S-)
SCGA
Kao and Zahara Genetic Algorithm and Particleu$w

SCGA
Kao and Zahara Genetic Algorithm and Particler@wa
DSGA (R+, S-)
DSGA (R, S-)
DSGA (R-, S-)
DSGA (R\, FS)
DSGA (R-, FS)
DSGA (R+, FS)
Bernier Biggest Difference Method
Bernier Biggest Proportion Method
Goldberg and Richardson’s Fitness Sharing

DSGA (R-, FS)

DSGA (R-, S-)

DSGA (R+, S-)

DSGA (R, S-)

DSGA (R\, FS)

Kao and Zahara Genetic Algorithm and Particlerf@wa
Bernier Biggest Difference Method
Goldberg and Richardson’s Fitness Sharing

Bernier Biggest Proportion Method

DSGA (R+, FS)

SCGA
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Table 26. Ranking of Algorithms Continued

Benchmark
Criteria

Rank

Ranked Algorithm

F7 F(x, y) of Best
Individual for Each
Niche

F7 Proportion of
Peeks

F8 Proportion of
Peeks

F8 Proportion of
points outside of
peaks

[l OCoOoO~NOUIThWN |l

O~NOOADWNPE OO ~NO U WNPEP

OCoO~NOUITDWNPE

Zhang, Shang, Gao and Dong hK1 Triangulation
Algorithm
DSGA (R\, FS)
DSGA (R+, S-)
DSGA (R-, S-)
DSGA (R-, FS)
DSGA (R+, FS)
DSGA (R\, S-)
SCGA
Goldberg and Richardson’s Fitness Sharing

Zhang, Shang, Gao and Dong hK1 Triangulation
Algorithm
DSGA (R+, S-)
DSGA (R+, FS)
SCGA
Goldberg and Richardson’s Fitness Sharing
DSGA (R\, S-)
DSGA (R\, FS)
DSGA (R-, FS)
Kao and Zahara Genetic Algorithm and Particle rGwa
DSGA (R-, S-)

DSGA (R-, S-)
DSGA (R+, S-)
DSGA (R\, FS)
DSGA (R+, FS)
DSGA (R-, FS)
DSGA (R, S-)
SCGA
Goldberg and Richardson’s Fitness Sharing
Kao and Zahara Genetic Algorithm and Particler@wa

Kao and Zahara Genetic Algorithm and Particler@wa
SCGA
DSGA (R+, S-)
DSGA (R, S-)
DSGA (R-, S-)
DSGA (R-, FS)
DSGA (R+, FS)
DSGA (R\, FS)
Goldberg and Richardson’s Fitness Sharing
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Table 26. Ranking of Algorithms Continued

Benchmark Rank Ranked Algorithm
Criteria

Kao and Zahara Genetic Algorithm and Particler&wa
SCGA
DSGA (R, S-)
DSGA (R+, S-)
DSGA (R, S-)
DSGA (R-, FS)
DSGA (R\, FS)
DSGA (R+, FS)
Goldberg and Richardson’s Fitness Sharing

F8 Average fitness

OCoOoO~NOOUILPA~WNPE
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