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The problem of multimodal functional optimization has been addressed by much research 
producing many different search techniques.  Niche Genetic Algorithms is one area that 
has attempted to solve this problem.  Many Niche Genetic Algorithms use some type of 
radius.  When multiple optima occur within the radius, these algorithms have a difficult 
time locating them.  Problems that have arbitrarily close optima create a greater problem.  
This paper presents a new Niche Genetic Algorithm framework called Dynamic-radius 
Species-conserving Genetic Algorithm.  This new framework extends existing Genetic 
Algorithm research.   
 
This new framework enhances an existing Niche Genetic Algorithm in two ways.  As the 
name implies the radius of the algorithm varies during execution.  A uniform radius can 
cause issues if it is not set correctly during initialization.  A dynamic radius compensates 
for these issues.  The framework does not attempt to locate all of the optima in a single 
pass.  It attempts to find some optima and then uses a tabu list to exclude those areas of 
the domain for future iterations.  To exclude these previously located optima, the 
framework uses a fitness sharing approach and a seed exclusion approach.  This new 
framework addresses many areas of difficulty in current multimodal functional 
optimization research. 
 
This research used the experimental research methodology.  A series of classic 
benchmark functional optimization problems were used to compare this framework to 
other algorithms.  These other algorithms represented classic and current Niche Genetic 
Algorithms. 
 
Results from this research show that this new framework does very well in locating 
optima in a variety of benchmark functions.  In functions that have arbitrarily close 
optima, the framework outperforms other algorithms.  Compared to other Niche Genetic 
Algorithms the framework does equally well in locating optima that are not arbitrarily 
close.  Results indicate that varying the radius during execution and the use of a tabu list 
assists in solving functional optimization problems for continuous functions that have 
arbitrarily close optima.
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Chapter 1 

Introduction 

     This introductory chapter is organized into seven sections.  The first section defines 

the problem that this research addressed.  The second section describes the research goal.  

The third section provides an overview of the approach.  The fourth section explains the 

relevance and significance.  The fifth section describes the barriers and issues that need to 

be overcome by this research.  The sixth section provides definitions of terms used in the 

dissertation.  The final section is a summary of this chapter. 

 

Problem Statement 

     Genetic Algorithms (GA) have a difficult time solving problems with multiple correct 

answers.  When traditional GAs attempt to solve multimodal problems they often 

converge to only one of the possible correct or good solutions.  A current area of research 

in GAs is called Niche Genetic Algorithms (NGA), which hopes to address this problem.  

NGAs can be used to solve problems that seek local optima where multiple exist.   

     Currently there are many NGAs.  Two prominent approaches to developing NGAs are 

crowding and sharing (Deb & Goldberg, 1989).  In crowding algorithms, members of one 

population coexist with members of the next population.  Older individuals of the 

population are selected for removal based on how similar they are to newer members.  A 

variety of NGAs use some type of crowding scheme (Cavicchio, 1970; De Jong, 1975; 

Jelasity & Dombi 1998; Li, Balazs, Parks & Clarkson, 2002; Ling, Wa, Yang & Wang, 
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2008; Raghuwanshi & Kakde, 2007).  The second approach is through fitness sharing.  In 

sharing schemes, the fitness of an individual is dependent on its distance to other 

individuals in the population.  This increases the chance that species will form around 

niches by rewarding genetic isolation.  There are many methods based on sharing 

schemes (Beasley, Bull & Martin, 1993b; Bernier, 1996; Goldberg & Richardson, 1987; 

Holland, 1975).  While not every NGA is a crowding or sharing method, most fall into 

one of these two categories. 

            Figure 1.  Graph of y = x sin(x2) 

     Both of these approaches use some form of distance in determining what individuals 

perform crossover or which individuals are promoted into the next generation.  There are 

some domains where distance is not a good indicator of niches (Ando & Kobayashi, 

2005).  Clearly these approaches are good if there are significant distances between 

niches.  What is unclear is the effectiveness of these approaches when niches become 
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arbitrarily close.  Consider functional optimization problems for continuous functions, 

specifically, classes of functions that have local optima that become arbitrarily close.  No 

matter what distance a NGA expects between niches there exists an area in the domain in 

which niches are smaller than this distance.  Figure 1 shows a graph of one such function,  

y = x sin(x2).  As x gets larger the local maximums or optima become arbitrarily close 

together. 

 

Research Goal 

     The goal of this research was to develop a new NGA that can address these types of 

problems for functional optimization of continuous functions.  This NGA is a framework 

based on an existing NGA, but allows different components to be used in combination to 

create different algorithms.  This new approach is not dependent on a static niche radius 

parameter that could provide poor results if selected wrong.  As part of this goal the 

algorithm should be flexible enough to solve other types of problems that current 

traditional NGAs solve.  This research goal will expand our current understanding of 

NGAs. 

     This dissertation addressed of few areas that make up the goal.  To accomplish the 

goal a new NGA was developed and tested against existing NGAs.  The areas that this 

research addressed are as follows: 

• To develop a new NGA that will solve for arbitrarily close optima 

• To compare this new NGA to existing NGAs to determine its effectiveness 

These two research goals complement the goals defined in this chapter. 
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     There were two hypotheses to this research.  The first hypothesis was that locating 

optima in phases increases a NGAs ability to find optima.  In the first phase the NGA 

finds some optima.  Once some optima are located, they are used to encourage 

exploration in other areas of the domain.  Multiple attempts to find optima are performed.  

Each attempt leverages already located optima, which should make it easier to locate 

other optima because there is less of the domain space to search.  This process continues 

until all of the optima are located.   

     The second hypothesis was that many NGAs miss optima, especially arbitrarily close 

optima, because they use a static radius.  Many current NGAs have a parameter that is 

used to determine if individuals are within a neighborhood.  If the distance between 

optima is smaller than this radius, the NGA has a difficult time locating all of the optima.  

The value that this parameter is set to greatly affects the results of the NGA.  The second 

hypothesis was that a dynamic radius could compensate for poor radius choices.  

Allowing the radius to change as the algorithm runs may allow it to adapt to conditions 

and find more optima.   

     These two hypotheses complement each other.  The research hypothesis was that 

better results can be obtained by allowing dynamic radius and restricting areas of the 

domain where optima have been located.  This allows investigation across the entire 

domain which should produce better results.  Both hypotheses should increase the 

number of optima discovered by the NGA. 
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Approach 

     The new approach for solving multimodal optimization problems used existing 

methods in combination to enhance a traditional GA.  The new approach is a NGA 

framework that is based on Species Conserving Genetic Algorithm (SCGA) (Li et al., 

2002).  The framework is presented in a modular form and has different components that 

can be used in combination to create different variations of the algorithm.   

     SCGA enhances the traditional GA with seed selection and seed conservation steps.  

Seeds are identified as the fittest member within a given radius.  Seeds are conserved into 

the next generation through a seed conservation step.  Seed conservation has the seed 

replace the weakest individual in the new generation within the radius of the seed.  This 

ensures that these strong individuals that are tracking different optima are preserved.   

     The new framework does not attempt to find all of the optima within a single pass of 

the algorithm.  Traditional GAs perform a loop with each iteration creating a new 

generation of the population.  Environmental pressures force the population to converge.  

Multimodal optimization creates a difficult problem for GAs.  The new approach 

generates a certain number of generations in hopes of finding some optima.  These 

optima are recorded and the environmental parameters change.  These changes alter how 

the fitness of individuals is determined and what individuals can be seeds.  This 

encourages future generations to avoid these optima.  This allows future generations to 

explore other areas of the domain and locate other optima.  The process of locating some 

optima and then changing the fitness is performed multiple times.  There is an outer loop 

and an inner nested loop.  The inner loop performs a typical SCGA algorithm.  Once it 
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completes, seeds and optima are recorded and changes are made to the algorithm 

parameters.  The steps consisting of the inner loop, recording and changing of the 

algorithm’s parameters are performed in an outer loop.  While traditional GAs are a 

single loop, this new approach uses nested loops to find some of the optima that enhances 

its ability to locate all of the optima. 

     The new framework also changes the radius used to define species.  In SCGA a radius 

is defined and used throughout the algorithm.  As other research has shown there is a 

limitation to algorithms of this type (Ando & Kobayashi, 2005).  Poor choices for the 

radius produce poor results.  The new approach changes the radius as the algorithm runs.  

The algorithm attempts to compensate for poor radius choices.  After each inner loop of 

the algorithm completes, adjustments are made to the radius.  Varying the radius 

mitigates the issue of incorrectly set radius.   

     The final difference between SCGA and this new framework is the use of a tabu list.  

A tabu list comes from the tabu search method and is a list that contains previously 

evaluated areas of the domain.  The tabu list is used by the algorithm to avoid these areas 

in the future and concentrate on areas of the domain that have not been searched.  After 

each completion of the inner loop, the seeds and optima from that pass are recorded on a 

tabu list.  This list is used in future loops of the algorithm to encourage exploration by 

avoiding these areas.   

     As optima are located, the algorithm adjusts to encourage exploration into other areas 

of the domain.  This is done in two ways.  The algorithm can determine that a potential 

individual is too close to a member of the tabu list.  This will disqualify the individual 

from becoming a seed.  The algorithm may also adjust the fitness to individuals relative 
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to how close they are to individuals on the tabu list.  This will decrease their chances of 

becoming seeds.  Both of these tactics are possible within the new framework.   

     To validate the new approach, it was compared against other NGAs using a set of well 

established benchmarks.  The benchmarks came from a variety of NGA research.  All of 

the benchmarks were minimization and maximization functional optimization problems.  

A new benchmark was also presented.  These benchmarks were used to compare the new 

approach to other NGAs. 

     The new approach was compared to other NGAs in solving the benchmarks that were 

defined.  A variety of performance criteria were used in this comparison including 

proportions of peaks located and average fitness of the last 50 generations.  For each 

benchmark the new approach was compared to multiple other NGAs.  These other NGAs 

had been selected to cover a wide range of NGA research from modern methods to early 

algorithms.  In many cases the new approach was compared against previously published 

results in other NGA research.  In other cases NGAs were implemented to obtain test 

results.  The performance criteria allowed the new approached to be evaluated against 

other NGA methods. 

     The new framework leveraged a variety of existing methods to introduce a new 

combination of concepts to create a NGA framework.  The use of a tabu list in a NGA 

has been used before (McLoughlin & Cedeno, 2005; Ting & Ko, 2008; Tsai, Tseng, 

Chiang, & Yang, 2009).  The use of a dynamic radius has also been used in other 

algorithms (Jelasity & Dombi, 1998).  The combination of a tabu list and dynamic radius 

applied to the SCGA algorithm is new.  This new framework was compared against other 

NGAs using well defined benchmarks and criteria.  Comparing it against many well 
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established NGAs showed that this new approach can solve multimodal optimization 

problems.   

 

Relevance and Significance 

     The study of GAs is important because GAs are very useful search techniques.  They 

have been used in almost every field of study.  Much literature has been dedicated to 

outlining uses for GAs (Coello, 2000; Dianati, Song & Treiber, 2002; Sheikh, 

Raghuwanshi & Jaiswal, 2008).  For example, GAs and NGAs have been used in 

Electrical Engineering to design electromagnetic systems (Cioffi, Formisano & Martone, 

2000).  In the field of Knowledge Discovery they have been used as a classifier (Pozo & 

Hasse, 2000).  For pattern matching, NGAs can be used to match handwriting (Oliveira, 

Sabourin, Bortolozzi & Suen, 2002; Stefano, Cioppa & Marcelli, 1999).  NGA research is 

useful to many fields of study. 

     Because GAs and NGAs are applicable to many fields of study, research in the subject 

has continued uninterrupted for many decades.  Early researchers developed simple 

algorithms for multimodal optimization (Deb & Goldberg, 1989; Goldberg & 

Richardson, 1987; Mauldin, 1984).  These algorithms solved many multimodal 

optimization problems.  A second generation of algorithms were developed that 

addressed limitations of the previous algorithms (Li et al., 2002; Ling et al., 2008; 

Raghuwanshi & Kakde, 2007).  Some research addressed the limitation that many 

algorithms require tuning parameters (Bernier, 1995; Fonseca & Fleming, 1993).  

Researchers continue to investigate NGAs. 
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     NGA research continues to this day and is an important area of research in Artificial 

Intelligence.  Experts in the field believe that developing new NGAs is useful and 

justification exists for continued investigation.  These new NGAs can be used in other 

areas of research to solve multimodal optimization and search problems. 

 

Barriers and Issues 

     There were two barriers to this research.  The first barrier was premature convergence 

which traditional GAs exhibit when attempting to locate multiple optimum.  The second 

barrier was optimum location and preservation.  Let us consider how each of these areas 

was addressed by this research. 

 

Premature Convergence 

     One barrier to developing a NGA is to prevent global convergence.  A GA naturally 

converges to a local optimum.  This is appropriate for many types of problems, but there 

are problems that have multiple optima.  Traditional GAs will converge to a single 

optimum, ignoring the other ones.  The key to develop a NGA is to overcome this 

pressure to converge.  The NGA needs to allow local convergence within niches.  De 

Jong (1975) calls this premature convergence.   

     Two forces act on the generations of a traditional GA.  Crossover of individuals puts 

pressure on the population to converge through different individuals having different 

probabilities of reproducing (De Jong, 1975).  The algorithm exploits fit individuals in 

the creation of each generation.  An opposite force works against this exploitation.  

Mutation alters individuals, which allow exploration of new areas of the domain 
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(Beasley, Bull & Martin, 1993a).  NGAs need to balance the two forces of exploration 

and exploitation.  Too much exploration will decrease the performance of the search, 

turning it into a random search (Holland, 1992).  Limiting exploration too much, in favor 

of exploitation, leads to premature convergence (De Jong, 1975).  Successful NGAs 

balance exploration and exploitation to locate multiple optima. 

     As a GA generates individuals using crossover, the amount of the domain that is being 

searched decreases.  This is referred to as genetic drift and removes areas of the search 

space so greatly that even mutation cannot put them back (De Jong, 1975).  This 

eliminates other possible solutions to the problem.  In problems that have a single correct 

answer this convergence helps in solving the problem by eliminating areas of the domain 

in which the correct answer does not exist.  But in multi-objective problems, it eliminates 

other optima. 

     There are two methods in GA research that could address this problem.  One is to have 

a very large population size N.  If N is very large, the GA has much more time to locate 

other optima before the genetic drift closes the search space.  However, this leads to 

performance problems (De Jong, 1975).  A second approach is to have a very high 

mutation rate.  This would allow the expanding of the search space when genetic drift 

happens.  The problem with very high mutation rates is that it prevents convergence, 

which is the ultimate goal of the GA and the way that the GA finds the solution (De Jong, 

1975).  This is why De Jong, Holland, Goldberg and other researchers believe that 

traditional GAs will not solve multimodal problems (De Jong, 1975; Holland, 1975; 

Goldberg & Richardson, 1987). 

 



11 

 

Optimum Preservation 

     The second barrier to this research was optimum preservation.  This barrier can be 

thought of in two parts.  The first part is optimum location, identifying the areas of the 

domain worth preserving.  Because the domain has not fully been searched when 

optimum location is applied, this is difficult for the NGAs.  The second part is how to 

preserve or conserve these areas.  Because of crossover and mutation, there is little 

guarantee that these areas of interest will be represented in the next generation.  Optimum 

preservation is essential in NGAs.   

     Optimum location attempts to identify individuals within a population that can 

eventually lead to an optimum (De Jong, 1975).  These individuals are normally 

individuals at, or close to, an optimum.  Selection in traditional GAs focuses on the fittest 

members.  But in multimodal optimization problems, it is possible that less fit members 

are also tracking a local optimum.  A single generation of a population represents a very 

small part of the domain.  Locating these individuals makes optimum location 

challenging. 

     Optimum preservation is used to ensure that the optima located are not eliminated in 

the population through convergence.  Convergence pressures of GAs can eliminate 

optimum after they are discovered.  The method to ensure that an optimum is preserved 

can be direct or subtle (Li et al., 2002).  There are direct approaches like promoting an 

individual of interest into the next generation.  More subtle approaches can be to adjust 

the individual's fitness to increase its chances of being selected for crossover.  Regardless 

of the method, these located optimum need to be preserved into the next generation. 
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     Optimum preservation is a barrier that every successful NGA needs to overcome.  

Some part of the algorithm needs to identify interesting individuals in the population and 

allow their representation in future generations (Li et al., 2002).  There are a variety of 

methods that can be employed for optimum preservation.  These methods will be 

described in the literature review of Chapter 2.   

 

Definition of Terms 

     This dissertation uses a variety of terms.  Many terms are generally known in the GA 

field.  The following list of terms should provide an overview of terms used in this 

dissertation. 

 

     Baldwin Effect: The Baldwin Effect is a biological theory that the fitness of an 

individual can be changed by environmental factors (Baldwin, 1896). 

     Cluster:  A cluster is a set of items that share something in common.  Within a cluster 

items should have commonality and items in different clusters should have differences 

(Sheikh, Raghuwanshi & Jaiswal, 2008). 

     Convergence:  Convergence is a process in which new generations of a population 

have decreased genetic diversity.  This typically occurs around an optimum. 

     Crossover:  Crossover is a genetic operation that takes two individuals of a population 

and by interchanging genes between the two individuals creates two new individuals. 

     Evolutionary Algorithms:  Evolutionary algorithms are a classification of algorithms 

based upon natural evolution.  There are four subclasses of evolutionary algorithms: 



13 

 

Evolutionary Programming, Evolutionary Strategies, Genetic Algorithms and Genetic 

Programming (Dianati, Song & Treiber, 2002). 

     Fitness:  Fitness is a measurement assigned to an individual of a population that 

relates to how well the individual copes with environmental pressure (De Jong, 1975). 

     Genetic Algorithm:  A Genetic Algorithm is a specific type of search method that was 

developed by Bremermann (1958).  The algorithm models the domain as a series of gene 

values.  An initial generation of the population is created, normally randomly, of different 

combinations of these gene values.  Genetic operations are applied to the generation to 

create a new generation.  Over time the population converges to the optimum of the 

domain. 

     Genetic Drift:  Genetic Drift is the change in probability or frequency that a certain 

gene value appears in a population (De Jong, 1975).  As populations evolve certain gene 

values become more prevalent.   

     Inversion:  Inversion is a genetic operation in which the ordering of the genes change 

(Holland, 1975). 

     Mutation:  Mutation is a genetic operation in which a gene value is randomly changed 

based upon the mutation rate. 

     Niche Genetic Algorithm:  A Niche Genetic Algorithm is a specific type of Genetic 

Algorithm that promotes genetic diversity (Mahfoud, 1995). 

     Pareto Front:  The Pareto Front is the set of non-dominant optimal values for a multi-

objective optimization problem (Alba, Dorronsoro, Luna, Nebro & Bouvry, 2005). 

     Particle Swarm Optimization:  Particle Swarm Optimization is a specific search 

technique that simulates swarm intelligence. 
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     Premature Convergence:  Premature convergence is when a Genetic Algorithm 

converges at such a rate that optima are removed from the search space (De Jong, 1975). 

     Seed:  A Seed is a dominant individual within a certain area of the domain in a 

population (Li et al., 2002). 

     Selection:  Selection is a process of selecting individuals of a population to reproduce. 

     Species: The term species has different definitions in NGA research.  In this research 

the Li et al. (2002) definition will be used.  Species are individuals within a population, 

whose distance is less than some, pre-define parameter (Li et al., 2002). 

 

This section contains definitions of terms used in this dissertation.   

 

Summary 

     This research had a few specific goals.  The research produced a new NGA 

framework.  This framework allows for the creation of multiple variations of the NGA 

algorithm.  The problem that the new NGA addresses is functional optimization for 

continuous functions.  Within this area, the goal is to solve for functions that have 

arbitrarily close optima.  These types of functions are especially difficult for NGAs.  A 

secondary goal was for the algorithm to solve other types of optimization problems 

equally well as other NGAs.  The new NGA framework was developed to accomplish 

these goals. 

     The approach that was taken created a new NGA framework that applies existing 

techniques to NGA research.  The NGA uses multiple passes in an effort to locate some 

optima and uses those optima in locating the other ones.  The algorithm varies the radius 
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used in determining seeds.  A tabu list is used to store located optima and seeds, so these 

areas of the domain are not revisited.   
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Chapter 2 

Review of the Literature 

     This literature review covers the history and current state of NGA research.  It is 

organized into five sections.  The first section describes research that is relevant to this 

research, but that is not an NGA.  NGA research is organized in the next three sections.  

There are sharing methods, crowding methods and a section for methods that do not fall 

into either of these groups.    Finally, there is a summary section. 

 

Relevant Research Other than NGAs 

     The framework presented in this paper leverages many other concepts in existing 

NGA research.  However, some concepts of the framework come from other research 

areas.  This section provides a literature review of other research that was influential in 

developing this framework. 

 

Tabu Search 

     The new algorithm presented in this paper uses aspects of the tabu search.  A tabu 

search is an optimization technique used to avoid local optima (Glover, 1989; Glover, 

1990a). It has been used to solve several optimization problems (Glover, 1990b; Hansen, 

1997). The tabu search has an associated memory structure that is used to store previous 

moves in the optimization process. This list is used to prevent the algorithm from 

returning to previously obtained optima.  
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     A tabu search begins with a possible solution to the optimization problem.  Each 

iteration of the algorithm will apply an operation that will move from one solution state 

to a new one.  Table 1 shows the part of the tabu search algorithm that determines if a 

move should be made. 

          Table 1. Tabu Search Decision 
Line Number Pseudocode 

1 Select a move 
2 If the move is on the tabu list then 
3      If the move satisfies the aspiration condition 
4           Make the move 
5      Else 
6           Select another move 
7 Else 
8     Make the move 

 

The operation is added to the tabu list. Future iterations of the algorithm prevent the 

operation from being applied, unless an aspiration condition is met. The aspiration 

condition determines if the move is superior to the current solution. By using the tabu list, 

the tabu search avoids local optima and locates the optimal solution to the problem.  

     The tabu search uses a short-term memory structure to track previous moves (Glover, 

1990b).  This memory structure is used to prevent the algorithm from revisiting 

previously visited states.  The tabu list can be finite or infinite in length.  A finite tabu list 

only stores a certain number of previous moves.  When the list is full the oldest move will 

be removed when a new move is added.  The algorithm prevents these moves from being 

made in the future.  If the tabu list is finite, then the move can only be made after the 

previous move is purged from the tabu list.  The tabu list encourages exploration. 

     The aspiration condition is used in a tabu search to override the tabu list (Glover, 

1990b).  If a move is on the tabu list, it is normally prohibited.  But before the potential 
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move is eliminated, it is compared to an aspiration condition.  If the move meets the 

aspiration condition, the move is performed.  This allows superior moves from being 

eliminated because they are tabu. 

     The tabu search is a useful search technique.  Previous research has shown that 

combining the tabu search with evolutionary algorithms can increase its accuracy.  Tabu 

searches have been combined with GAs (McLoughlin & Cedeno, 2005; Ting & Ko, 

2008; Tsai, et al., 2009).  They have also been combined with Evolutionary Programming 

algorithms (Rajan & Mohan, 2004).  The tabu search can provide valuable insight into 

solving multimodal optimization problems. 

 

Fitness Sharing Methods 

     A common approach to solving multimodal optimization problems is through fitness 

sharing.  While methods for fitness sharing vary, they all alter the fitness function in 

some way to encourage genetic diversity.  In multimodal functional optimization 

problems, fitness is normally directly related to the objective function.  In Sharing 

Methods distance to other individuals is incorporated into the fitness function to 

encourage exploration.  This prevents a single optimum from dominating the population.  

Some of the earliest approaches for NGA algorithms are sharing methods. 

 

Holland, J. H.  

     Holland (1975) provides a formal framework for GA research.  While it does not 

provide a specific NGA algorithm, it does describe some of the earlier fitness sharing 

concepts.  Holland describes a two-armed bandit to represent the problem that can be 
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solved by NGAs.  A two-armed bandit is a slot machine that has two handles, instead of 

one.  Each handle has a different payout.  Players may elect to pull the left or right 

handle.  Ideally, every player would select to pull the handle with the highest payout, but 

there is a catch.  For a given turn all of the players that select a given handle must share 

the payout.  With this new rule the problem is not obvious which handle the players 

should select.  Each handle is a niche and by dividing the payout, or fitness, between all 

individuals within a niche allows the GA to solve the problem.  By defining the fitness 

function in such a way as to reflect other individuals in the niche, allows a traditional GA 

to solve for multimodal optimization problems.  This is some of the earliest research in 

fitness sharing. 

 

Goldberg and Richardson 

     Another seminal work in NGA is Goldberg and Richardson (1987).  This NGA 

introduces a sharing function.  In traditional GAs fitness functions determine the 

probability a member of a population will reproduce.  In a multimodal problem once a 

traditional GA discovers a niche, it converges on it, ignoring other possible niches.  A 

sharing function is used to reduce this convergence by using the shared fitness to 

determine the probability that a member will reproduce.  Shared fitness penalizes 

individuals that are close to other individuals in the population and rewards isolated 

individuals.  This allows the NGA to locate other niches. 

     In the Goldberg and Richardson (1987) method the algorithm is the same as a 

traditional GA, except for determining the fitness function.  The algorithm uses a shared 

fitness function that accepts the distance between two members as an input parameter.  
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These functions must conform to three properties.  The function's output must be between 

zero and one.  When the distance is zero, the output must be one.  When the distance 

approaches infinity, the output must be zero.  When shared fitness is computed for 

individual p, a niche count is calculated by summing the sharing function of all the other 

members of the population with respect to p.  The shared fitness is the individual’s raw 

fitness divided by the niche count. 

     While the Goldberg and Richardson (1987) fitness sharing algorithm can take many 

forms, their research presents an example of the algorithm.  The example attempts to 

locate the five local optima of the function f(x) = sin6 (5.1 π x + 0.5), where x is between 

0 and 1.  The shared fitness function selected was the power law function, which is 

shown below. 
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The parameters σshare and α are set to 0.1 and 1 respectively.  The niche count, mi, for 

individual i is represented by the following function. 
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In the niche count xi is individual i and xj spans all individuals in the population N.  The 

shared fitness of an individual is simply fi’ = f i / mi, where fi’  is the shared fitness, fi is the 

raw fitness and mi is the niche count.  The research results showed that traditional GAs 

only found one optima of the function.  The sharing fitness algorithm found all five 
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optima and had an equal number of individuals at each optimum (Goldberg & 

Richardson, 1987). 

 

Sequential Niche Technique 

     The Sequential Niche Technique (SNT) is a search technique that can be applied to a 

GA (Beasley, Bull & Martin, 1993b).  It attempts to locate one optimum at a time.  Once 

an optimum is located the technique adjusts the search algorithm to locate another 

optimum.  The technique is successful because it reduces the search problem into locating 

a single optimum. 

     When applying SNT to a GA, the traditional steps of a GA are used.  The fitness 

function, which typically is the objective function, is modified.  This modified fitness 

function is used in the algorithm.  After the algorithm runs, the best individual is recorded 

on a list.  The modified fitness function is changed by adding a derating function for the 

fittest individual that was located.  The derating function can take many forms, but its 

affect is to decrease the fitness around the located individual.  This excludes this area of 

the domain as a place for likely optima.  Future runs of the GA seek out other optima.  

SNT also has a solution threshold.  If the fittest individual after each run is more fit than 

the solution threshold, it is considered an optimum.  The algorithm for SNT is shown in 

Table 2. 

     SNT allows search algorithms to use previous knowledge about the problem to 

simplify it.  This approach is attributed to other functional optimization research (Ackley, 

1987).  It is a useful technique that allows search algorithms to take complex problems 
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like multimodal functional optimization and break them into a series of much simpler 

problems of single functional optimization.   

          Table 2. Sequential Niche Technique Algorithm 
Line 

Number 
Pseudocode 

1 Assign modified fitness function to objective function 
2 While not termination condition 
3      Run traditional GA using modified fitness function 
4      After GA runs record the optimum that it finds  
5      Depress optimum area in the modified fitness function 
6      If optimum in step 4 is larger than solution threshold,  

          display it as a solution 
7 End loop 

 

 

Bernier’s BDM and BPM 

     The Bernier (1996) method uses a Minimum Spanning Tree (MST) for fitness sharing.  

It is used in each iteration of the NGA to adjust the fitness of individuals.  There are two 

algorithms for the method:  Biggest Different Method (BDM) and Biggest Proportion 

Method (BPM).  BDM and BPM use Prim’s MST algorithm although any MST 

algorithm might be used. 

     The Prim’s MST algorithm is used to determine a tree, T, with minimum total weight 

from a graph, G.  Graphs have vertices, V, and edges, E, that connect two vertices.  Every 

edge has an associated weight, W.  Because an edge connects two vertices, we can 

represent it as (u, v) where u and v are vertices.  Prim’s algorithm begins by randomly 

selecting a vertex for the tree T.  Then it computes the weight from every vertex in T to 

every vertex not in T and selects the one with the minimum weight.  The selected vertex 

and associated edge are added to T.  Prim grows the minimum tree, starting with a single 

vertex, into a MST. 
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     Bernier adapts MST to GAs.  Individuals are represented by vertices.  The weight of 

the edge between two individuals is defined as their Euclidean distance.  Bernier’s 

hypothesis is that by removing some number of the largest edges of the MST, what is left 

will be trees around each niche.  Bernier offers two methods to determine what edges 

should be removed.  The BDM looks at the longest 15% of the edges in the MST.  It sorts 

these edges in descending order according to their weight, w(e1), w(e2) … w(en).  The 

algorithm computes the weight difference between consecutive edges, so ∆1 = w(e1) –   

w( e2), ∆2 = w(e2) – w(e3),, … ∆(n-1) = w(e(n-1)) – w(en).  Finally the algorithm locates the 

largest ∆, ∆x.  All of the edges, w(e1) through w(ex) are removed leaving    x +1 trees.  

Each tree corresponds to a niche.  The BPM is very similar to the BDM.  Instead of 

comparing differences between edges, it compares proportions.  The top 15% of edges 

are sorted in descending order.  Proportions are computed by dividing consecutive edges, 

p1 = w(e1) /w( e2), p2 = w(e2) / w(e3),, … p(n-1) = w(e(n-1)) / w(en).  The edges with the 

largest proportion are removed.  BDM and BPM adjust the fitness of the individuals 

around niches using standard fitness sharing techniques.   

     Results from Bernier’s algorithm are very impressive.  In six benchmark functions 

BDM and BPM located nearly 90% of the optima.  A goal of this research was to develop 

a NGA that does not need parameters.  What is unclear is how the MST parameter of 

15% affects the final results.  It would seem that if there were more optima than 15% of 

the number of individuals in the population, this algorithm would have difficulties.  If 

there were more optima than 15% of the population, then some optima would not have 

their fitness adjusted through fitness sharing.  Another case could be a situation where 

there were relatively few optima but a very large population size.  Considering so many 
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edges could lead the algorithm into forming too many niches.  Perhaps this percentage 

should be a parameter. 

 

Fitness Sharing Summary 

     This section describes many fitness sharing NGAs.  Some very important concepts 

come out of fitness sharing methods.  All of the algorithms use the idea of altering the 

fitness function to guide the direction that the next generation will take.  SNT introduces 

a concept of locating a single optimum and then using the fitness function to exclude it in 

future generations.  Fitness sharing is a useful technique to encourage exploration across 

the domain space.   

 

Crowding Methods 

     Crowding methods are another common approach to developing NGAs.  Crowding 

methods replace members of one generation with members of a previous generation 

based upon their similarity.  They promote genetically diverse individuals and encourage 

exploration across the domain space.  A variety of crowding methods have been 

successful with multimodal functional optimization problems.   

 

Cavicchio 

     Cavicchio’s (1970) research looks at selection schemes to solve multimodal 

optimization problems.  This research is some of the earliest work in the NGA area.  

Cavicchio introduces a series of selection schemes.  In Cavicchio’s NGA a certain 

number of the fittest individuals are carried over into the next generation.  The number of 
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individuals carried over into the next generation is a parameter of the algorithm.  

Offspring also have to compete to be placed into the next generation. 

     Cavicchio (1970) introduces three Preselection Schemes.  The first scheme is based on 

an observation that many offspring are fit enough to be placed into the next generation, 

but not more fit then their parents.  Allowing this seems to be counterproductive.  So, the 

first scheme requires offspring to be more fit than both of their parents to be introduced 

into the next generation.  The second scheme enhances the first scheme, but adds the 

requirement that the worst parent is to be removed from the population.  The third 

scheme only requires an offspring to be more fit than one of its parents.  Preselection is 

one of the earliest forms of NGAs. 

     Because of hardware limitations of the 1970s, tests on Cavicchio’s algorithm were 

limited to very few individuals.  In many cases population sizes were between 10 and 20 

individuals (Cavicchio, 1970).  Little research has been published with benchmarks on 

Cavicchio’s NGA since the original research.  It is difficult to determine how this NGA 

would perform with more modern benchmarks. 

 

De Jong  

     Some of the earliest works to address the problem of GAs converging globally even 

on multimodal domains were from De Jong (1975) and Holland (1975).  De Jong's Elitist 

Model R2 introduces the strategy of including the best members of one generation in the 

next generation.  After each generation is created, its least fit members are replaced by an 

equal number of the fittest members of the previous generation.  The Elitist Model R2 

replaces only one member from the previous population, but this idea can be expanded to 
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some predetermined fixed number of individuals.  This influence can be seen in later 

NGAs (Li et al., 2002). 

             Figure 2.  Graph of f(x) = 4(x – 0.5)2  
 

     It is easy to see why an elitist strategy would work for domains that have equally fit 

optima.  Consider the equation f(x) = 4(x – 0.5)2, where 0 <= x <= 1 as shown in Figure 

2.  Here there are two optima of equal fitness.  A traditional GA will converge to one 

optimum or the other, but not both.  An elitist strategy would preserve individuals of both 

optima.  If considering an equation like f(x) = 2.8(x – 0.6)2, where 0 <= x <= 1, elitist 

strategies seem less useful.  This equation is shown in Figure 3.  Here there are two local 

optima, x = 0 and x = 1.  However, x = 1 is a local, but not global optimum.  

  

             Figure 3.  Graph of f(x) = 2.8(x – 0.6)2 
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An elitist strategy will probably not preserve individuals near the x = 1 local optimum.  

These equations come from Goldberg and Richardson (1987). 

     Another NGA method described by De Jong (1975) is the Crowding Factor Model R5.  

The Crowding Factor Model R5 simulates an environment in which parents and offspring 

live together.  To keep the population size stable, the system allows certain parents to die.  

This is done in crowded areas of the domain.  In this method populations overlap one 

another.  The Crowding Factor R5 method uses two parameters.  Generation gap is the 

proportion of a population that is produced each generation.  In De Jong's example it was 

0.1, which means that the NGA produces enough individuals to increase the population 

size by 10% each generation.  The second parameter is the crowding factor.  For each 

new member of the population, an old member must be removed.  The crowding factor is 

the number of old members considered for removal for each new member.  In De Jong's 

example it was three.  This NGA will randomly evaluate three old members for each new 

member.  Of the three old members the one that is genetically similar to the new member 

is removed. 

 

Genetic Algorithm with Species 

     Genetic Algorithm with Species (GAS) extends the crowding method concept by 

defining species (Jelasity & Dombi, 1998).  Species are groups of individuals that are 

tracking a common optimum.  Like other crowding methods GAS only allows crossover 

with individuals within the same species.  This algorithm allows the population size to 

expand and contract for each generation.  It also introduces the concept of individuals 

dying off.  Traditional GAs have a generation die when the next generation is created.  
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GAS allows fit individuals to live longer than weak ones by allowing them to be 

members of multiple generations. 

     In GAS a species is defined as the triplet (o, l, S) (Jelasity & Dombi, 1998).  The 

variable S is the population that makes up the species and o is the individual with the 

maximum fitness within the species.  GAS uses a decreasing radius.  The equation, R, 

defines the radius values as it decreases.  R must always be greater than the maximum 

distance between two individuals and should approach 0.  There is an index associated 

with the various radii, called the radius index.  In the species l is the radius index when 

the species was defined.  The radius for a given triplet (o, l, S) is R(l). 

     The algorithm shown in Table 3 outlines the steps that GAS uses to create a new 

generation (Jelasity & Dombi, 1998).  T is the current population and MP is a parameter 

that determines how large T can become.  MP is not the size of T, rather the upper limit to 

the size of T.  The algorithm for generation T will loop until the size of T is greater than 

MP.  Within the loop two parents are selected, p1 and p2.  They produce two offspring, 

o1 and o2.  Parents and offspring are put back into the population.   

                     Table 3. Genetic Algorithm with Species Algorithm 
Line 

Number 
Pseudocode 

1 While (population size of T < MP) 
2      Select two parents, p1 and p2 within the      

          same (o, l, S) 
3      Create two offspring, o1 and o2 
4      Put p1, p2, o1 and o2 back in population, T 
5 End while loop 
6 Dying off phase 
7 Fusion 
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     When the size of T reaches MP, the algorithm initiates a dying off phase.  GAS uses a 

transformed fitness function f’  to determine which individuals should die (Jelasity & 

Dombi, 1998).  The function f’  is defined as the following equation. 
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For a given individual e, f’(e) is calculated as the difference between e’s fitness and the 

fitness of the weakest individual in S, divided by the size of S.  So, species with large 

population size will have a greater chance of having members die. 

     GAS has a process to decrease the number of species.  This is called Fusion.  After the 

dying off phase, GAS evaluates the existing species.  If two are too close they are 

combined into a single species.  A parameter is defined as strict, which is a radius index 

that determines how close two species must be in order to be merged into a single 

species.  When two species are merged all of their members become members of the new 

species.  If two species (o1, l1, S1) and (o2, l2, S2) are fused, the new o is the o1 or o2 that 

has the greatest fitness.  The new l is the minimum of l1 and l2.  The new S is the union of 

S1 and S2. 

 

Species Conserving Genetic Algorithm 

     Li et al. (2002) developed a NGA method called Species Conserving Genetic 

Algorithm (SCGA). It investigates how the concept of elitism can be applied to NGAs. 

This method differs with traditional GAs in two ways. Once a population is created, 

species are defined around individuals called seeds.  A step to preserve species into the 

next generation is added to the usual selection, crossover and mutation found in GAs. 
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These two enhancements to the traditional GA algorithm allow SCGA to locate multiple 

optima. 

     Once a population is established using SCGA, species seeds are determined. This is 

done by evaluating each individual of the population from the fittest to the least fit. If no 

other species seed exists within a predefined distance, then the individual is added to the 

list of species seeds. Because it begins with the fittest individuals, it ensures that the 

seeds of the species are the most optimal members within the radius.   

     Table 4 shows the SCGA seed selection algorithm.  In this algorithm Xs is the set of 

species seeds and σS is the distance that defines a species. 

          Table 4. Species Conserving Genetic Algorithm Seed Selection 
Line 

Number 
Pseudocode 

1 Initialize algorithm by setting Xs = Ø  
2 While (there are individuals in the population that have not  

     been evaluated) 
3      Find the best unevaluated individual, x* 
4      Set found = false 
5      For every individual x in Xs do 
6           Mark x has having been evaluated 
7           If distance (x*, x) ≤ σS/2 then 
8                Set found = true 
9                Break for loop 
10           End If 
11      End for loop 
12      If found = false then 
13           Add x* to Xs 
14      End If 
15 End while loop 

 

     After the next generation is created, SCGA conserves species. Each seed is compared 

to individuals in the next generation within the radius of the seed.  If the seed is more fit 

than the weakest individual in this area, the seed replaces the individual.  If there are no 

individuals in the species of the next generation, the seed replaces the least fit individual 
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of the next generation. By conserving these species, pressure is created that prevents 

global convergence and allows multiple optima to be generated. When the NGA finishes, 

the fittest species seeds are the optima. 

     Table 5 shows the SCGA species conserving algorithm.  Like the algorithm in Table 

3, Xs is the set of species seeds and σS is the distance that defines a species. 

     SCGA has one drawback.  It requires a parameter that defines the distance from its 

seed that a species covers.  The ideal radius value depends on the problem instance.  That 

is often unknown before the NGA runs.  Li et al. (2002) addressed this drawback in their 

research.  It is their belief that it is better to have the parameter too large than too small. 

They recommend that the user informally compare the domain to one that is known. The 

input parameter should be set to double the distance between the optima of the known 

domain (Li et al., 2002). 

         Table 5. Species Conserving Genetic Algorithm Species Conservation 
Line 

Number 
Pseudocode 

1 Mark all individuals as not being evaluated 
2 For all x in Xs do 
3      Select the least fit individual y in the area of the domain  

          that is σS/2 from x 
4      If there is a y that meets this condition then 
5           If (f(y) < f(x)) then 
6                Replace y with x 
7           End if 
8      Else 
9           Select the least fit individual y in the new generation 
10           Replace y with x 
11      Mark x has having been evaluated 
12 End for loop 
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Genetic Algorithm with Species and Sexual Selection 

     Raghuwanshi and Kakde (2007) developed a method called Genetic Algorithm with 

Species and Sexual Selection (GAS3) that is a sexual GA, which means that it introduces 

the notion of gender into the NGA.  GAS3 also uses the concept of species, which 

corresponds to niches.  Species are formed around strong members.  GAS3 also uses 

population overlapping, meaning that some members of a generation stay in the 

population pool with the next generation.  The GAS3 algorithm has four steps that it 

performs on each species.   

1. The first one is the selection plan, which determines the female member of the 

species.  This is the member of the species with the highest fitness.  All of the 

other members are males.   

2. Then it performs the generation plan.  The generation plan creates a set of 

offspring by randomly selecting males to reproduce with the female.   

3. In the replacement plan the original group and the offspring group are merged 

together.   

4. This new group goes through an update plan, which determines the female and 

males and removes the least fit members so the size of the population is constant.   

Occasionally, GAS3 will reevaluate the species.  If some species are not performing well, 

they will be merged with other species.   

     GAS3 has many interesting characteristics.  Gender plays an important role in the 

algorithm.  Having only one female individual, does not seem to model most biological 

species.  Overlapping generations assists in the algorithm preventing premature 

convergence.  GAS3 (Raghuwanshi & Kakde, 2007) was tested against a large set of 13 
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benchmark functions.  Published results show that the algorithm performs very well 

against many commonly used multimodal functional optimization problems.   

 

Crowding Clustering Genetic Algorithm 

     Crowding Clustering Genetic Algorithm (CCGA) is a NGA developed to solve 

functional optimization problems for both local minimums and maximums (Ling et al., 

2008).  Similar to other methods, CCGA accomplishes this by promoting some members 

of one generation into the next generation to prevent genetic drift.   

     CCGA begins each iteration with typical selection, crossover and mutation operations.  

Each child is grouped with a parent who it is closest to, using some distance 

measurement.  This leaves each parent associated with zero or more individuals in the 

child generation.  Each of these sets is a cluster.  The cluster center is the fittest 

individual in the cluster.  This may be the individual with the smallest or largest objective 

value depending on if this is a minimization or maximization problem.  The objective 

value of the fittest member is the center value.  The largest distance between the cluster 

center and the other individuals in the cluster is the cluster radius.  Clusters are sorted 

descending by the fitness of the cluster center.  This ensures that members at the front of 

the list are the fittest.  The sorted list of clusters is evaluated.  Each one may be moved 

into a second list called reserved clusters.  When a cluster is added to the reserved cluster 

list, the cluster radius is referred to as the reserved cluster radius.  Either of two 

conditions can move a cluster into the reserved cluster list.  The cluster is added to the 

reserved cluster list if its cluster center is outside all of the existing reserved cluster radii.  

The second condition for moving a cluster to the reserved cluster list is if it satisfies the 
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peak detection requirement, which is described later.  When a cluster is added to the list 

of reserved clusters, its reserved cluster radius is set.  This reserved cluster radius can be 

set to the minimum of the radius of the cluster being added or minimum distance from the 

cluster center to another reserved cluster center.  A new generation is created by taking 

the cluster centers of the reserved cluster and generating enough uniformly distributed 

individuals to keep the population size stable.  Each iteration of the algorithm creates a 

new reserved cluster list.  These steps repeat until some predefined number of generations 

is reached.   

    Table 6. Crowding Clustering Genetic Algorithm 
Line 

Number 
Pseudocode 

1 Create initial population uniformly distributed across solution space 
2 Use traditional GA selection, crossover and mutation to create a new  

     generation 
3 For each parent, Pj, construct {Pj, CSj} 
4 For each cluster {Pj, CSj} 
5      Set CCj  to the fittest individual within each{Pj, CSj} 
6      Set CRj to the largest distance between individuals in {Pj, CSj}  

          and CRj  
7 End for loop 
8 Sort clusters descending according to their objective value 
9 Set RC = Ø 
10 For each cluster {Pj, CSj} 
11      If (D(CCj, RCCi) > RCRi for all RCCi in RC) or 

          (Peak(CCj, RCCi) = 1) then 
12           Put CCj into RC 
13           Set the RC for CCj to min(CRj, D(CCj, RCCi)) 
14      End if 
15 End for loop 
16 Generate (population size – RC size) of uniformly distributed  

     individuals for the next generation 
17 Repeat steps 2 through 16, until the termination condition is met 

 

     Table 6 shows the CCGA algorithm for a minimization functional optimization 

problem.  In this algorithm the parent generation is Pj, where j = 1, 2, …, population size.  
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CSj is the set of children closest to the jth parent.  CCj is the cluster center and CRj is the 

radius cluster associated with the jth parent.  RC is the set of reserved clusters.    RCi is 

the ith reserved cluster radius. 

     Peak detection in CCGA is another way that a cluster can be added to the list of 

reserved clusters.  It attempts to determine if individuals are tracking different peaks.  A 

cluster satisfies the peak detection condition if the function Peak(CC, RCCj) returns 1 for 

all j = 1, 2, … reserve cluster size.  In these equations the cluster center is CC, the jth 

reserved cluster center is RCCj and f is the objective function.  The equation for the peak 

detection is defined by the following equation for minimization problems. 
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For maximization problems peak detection is defined by the following equation. 
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0, otherwise 

 

     The CCGA algorithm is used to determine functional optimization.  More specifically, 

it is used to search for functional minimums.  Experiments performed by Ling et al. 

(2008) show that CCGA out perform other crowding methods. 
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Crowding Summary 

     Crowding methods take very direct approaches to maintain genetic diversity.  After 

locating individuals of interest, crowding methods put these individuals into the next 

generation.  There is no chance that these individuals will not be represented in future 

generations.  Fitness sharing methods take a very subtle approach to exploration.  They 

only increase the chance the interesting individuals will be used for crossover.  In 

contrast crowding methods take direct approaches to encouraging exploration. 

     This section highlights many crowding methods.  Early crowding methods simply 

select interesting individuals and put them in the next generation.  More recent crowding 

methods have complex algorithms to determine what individuals deserve to be preserved.  

Crowding methods closely resemble biological systems by combining parents and 

children in the same generation.   

 

Other Niche Genetic Algorithm Methods 

     While most NGAs fall into one of the two categories of fitness sharing or crowding 

schemes (Deb & Goldberg, 1989), there are some NGAs that do not exhibit either 

characteristic.  Some of these NGAs are hybrid methods or are traditional GAs that were 

created for special purposes that happen to solve multimodal optimization.  These NGAs 

provide unique looks at NGA research and introduce different approaches to multimodal 

optimization of continuous functions. 
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Fitness-based Neighbor Selection 

 Ando and Kobayashi’s (2005) method of Fitness-based Neighbor Selection (FNS) 

addresses many known limitations of NGAs.  Many NGAs have parameters that need to 

be set in order to solve multimodal optimization problems.  Often this is a radius that 

needs to be set to a value less than the distance between two species.  This parameter is 

difficult to set prior to knowing where the optima are. 

     Ando and Kobayashi (2005) observed that integrals can be used to determine which 

peaks individuals are tracking.  This observation is incorporated into the FNS algorithm.  

When trying to decide if an individual A is a neighbor of B1 or B2, comparing the integral 

between A and B1 to the integral between A and B2 can be helpful.  The one, assume B1, 

with the largest integral has a greater probability of being neighbors for maximization 

problems.  This observation is true based on integrals measuring area beneath the 

objective function.  The greater the area indicates that the objective function peaks and 

that A and B1 are in the same neighborhood. 

     However, calculating integrals in higher dimensional space can be as challenging as 

locating local optima.  FNS estimates these calculations using the Wilcox Rank-sum Test 

(Wilcox, 1945).  FNS creates two sets of offspring.  The first set of offspring is between 

A and B1.  The second is between A and B2.  The fitness of these two sets of offspring is 

used to define neighborhoods using the Wilcox Rank-sum Test. 

 

Enhanced Evolutionary Tabu Search 

     The Enhanced Evolutionary Tabu Search (EE-TS) is a metaheuristic technique that 

combines a Tabu Search with a GA (McLoughlin & Cedeno, 2005).  This hybrid 
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technique which combines a Tabu Search and GA, is used in the research to solve the 

Quadratic Assignment Problem (QAP).  The QAP is a problem that attempts to minimize 

cost when placing facilities into locations.  Facilities accrue a cost based on how far they 

are from other facilities, but the costs may not be uniform.  The QAP problem is 

somewhat different then traditional functional optimization problems.  Most algorithms, 

including EE-TS, place facilities one at a time.  As the algorithm runs more facilities are 

placed into different locations.  At the beginning of the algorithm an individual represents 

one facility to location mapping.  Then, as the algorithm runs, an individual represents 

more facility to location mappings.  Finally the individual represents all facilities mapped 

to locations. 

     Tabu Searches are designed to prevent revisiting the same solution repeatedly.  

Repetition can occur when a series of optimal moves revisits a previous solution state 

(Glover, 1990b).  If this happens the algorithm could enter an infinite loop or fail to 

explore promising regions of the domain.  The Tabu Search uses a memory structure to 

record previous solution states and prevents them from being revisited (Glover, 1990b). 

EE-TS also evaluates for repetition to encourage exploration of the domain. 

     EE-TS begins with an initialization phase like other GAs (McLoughlin & Cedeno, 

2005).  As the algorithm runs it keeps track of a current candidate.  As long as repetition 

is not occurring, the algorithm evaluates the neighborhood and selects a move that will 

increase the fitness the most.  A move consists of swapping two facilities.  After the 

move is identified, tournament selection picks an individual.  Crossover is performed 

with this individual and the current candidate.  If the child is fitter than the current 

candidate with the identified move applied to it, the child becomes the current candidate.  
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Otherwise, the current candidate with the identified move applied to it, is the new current 

candidate.  This loop continues until the termination condition is met.  After each loop 

the algorithms uses the tabu list to determine if repetition is occurring.  If it is occurring, 

the algorithm identifies an individual through tournament selection.  The new current 

candidate is the winner of the tournament and the old candidate.   Finally, the tabu list is 

cleared.  The loop repeats.   

     Table 7 shows the EE-TS algorithm (McLoughlin & Cedeno, 2005).  In this algorithm 

i*  is the current candidate and i is a possible new current candidate.  The variable escape 

is used to indicate if repetition is occurring.  The variables champion and move are 

temporary variables to hold the winner of the tournament selection and a possible move. 

Table 7. Enhanced Evolutionary Tabu Search Algorithm 
Line 

Number 
Pseudocode 

1 Generate initial population, P 
2 Set i and i* to the fittest individual in P 
3 Set escape to true if detection of repetition is discovered,  

     otherwise set to false 
4 If escape = false then 
5      Set move to the best move 
6      Set champion to winner of tournament selection 
7      Set child to crossover of i and champion 
8      If fitness(child) < fitness of i with move move applied to it then 
9           Set i to child 
10      Else 
11           Set i to i with move move applied to it 
12 Else 
13      Set champion to winner of tournament selection 
14      Set i to crossover of i and champion 
15      Reset the tabu list and solution history 
16 If fitness(i) < fitness(i*) then  
17      Set i* = i 
18 Repeat steps 3 through 17 until termination condition 
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     The EE-TS algorithm performs equally well as other QAP algorithms.  Its value is that 

it locates the optima in fewer steps or iterations (McLoughlin & Cedeno, 2005).  Because 

it is designed for the QAP problem, it is not suited for multimodal functional 

optimization.  EE-TS represents a new class of hybrid GAs that incorporates other search 

techniques into them. 

 

Hybrid Genetic Algorithm and Particle Swarm Optimization 

     Recently hybrid algorithms have increased in popularity.  Kao and Zahara (2008) 

created an algorithm that combines GAs and Particle Swarm Optimization (PSO).  

Hybrid approaches to multimodal optimization have shown promise by combining the 

best aspects of different types of algorithms. 

     PSO is another type of search algorithm.  Unlike GAs that eliminate individuals after 

each generation, the individual in PSOs remain throughout the algorithm.  Individuals 

move throughout the domain space to locate optima.  Each individual tracks where in the 

domain space they have been and has the ability to communicate these locations to other 

individuals in the swarm.  Individuals also have the ability to adjust their position in the 

domain based upon communication from other individuals in the domain.  As a group, 

the swarm converges to the optima. 

     Kao and Zahara’s (2008) algorithm uses both a GA and a PSO.  It begins by randomly 

generating a population.  Half of the population that has the greatest fitness is used in a 

standard GA.  After the next generation is created, it is used to communicate with the 

second half of the population through PSO techniques.  Ideally the offspring of the GA 

will have higher fitness than the second half.  As a result the second half will adjust their 
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positions in the domain based upon their previous knowledge and the communication 

from the offspring of the first half.  After they have adjusted their positions in the 

domain, the two halves are combined and reevaluated.  This process continues until a 

termination condition is met.  

     Kao and Zahara’s (2008) GA and PSO algorithm is shown in Table 8.  Crossover is 

done by generating a uniform random number N.  Then N proportion of the alleles are 

taken from one parent and 1-N proportion from the other.  The function Uniform(0, 1) is 

the function that generates the uniformly distributed random number between 0 and 1.  In 

this algorithm the parameter P is the population size and the x’s are individuals.   

Table 8. Genetic Algorithm and Particle Swarm Optimization Algorithm 
Line Number Pseudocode 

1 Generate initial population of size P 
2 While termination condition is not met do 
3      Sort individuals by their fitness 
4      Perform the following steps on the fittest P/2 individual 
5           For all j = 1 to P/2 – 1 do 
6                Create individual x using Uniform(0, 1) proportion of xj  

                alleles and (1 – Uniform(0, 1)) proportion of xj+1 alleles 
7                Add x to next generation  
8           End for loop 
9           Create individual x using Uniform(0, 1) proportion of xP/2  

          alleles and (1 – Uniform(0, 1)) proportion of x1 alleles 
10           Add x to next generation  
11      End perform block 
12      Apply 20% mutation on next generation 
13      Adjust the P/2 least fit individual by PSO 
14      Add these individual into the next generation 
15 End while loop 

 

     This hybrid approach is novel and leverages the strengths of both GA and PSO 

methods.  GAs are very effective at taking a set of fit individuals and creating a 

generation of more fit individuals.  PSOs are effective at adjusting weak members of the 
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population to increase their fitness.  The two algorithms work fluidly together to locate 

optima.   

 

Cellular Genetic Algorithms 

     Cellular Genetic Algorithms (cGA) were originally developed in the early 1990’s to 

run GAs using parallel machines (Whitley, 1993).  To take advantage of parallel 

processors the domain space was divided into squares.  Individuals were only allowed to 

mate with individuals within its square or neighboring squares.  By creating this grid 

across the domain space, crossover for each generation could be performed in parallel.  

This allowed GAs to converge much faster than traditional methods, which made them 

more practical for solving real world problems.  This approach is based upon cellular 

automata (Whitley, 1993).  

Table 9. Cellular Genetic Algorithm 
Line Number Pseudocode 

1 While not termination condition 
2      For x = 1 to w 
3           For y = 1 to h 
4               Get list of neighbors for individual (x, y) 
5               Select parents p1 and p2 from list of neighbors 
6               Create individual i from p1 and p2 
7                Mutate(i) 
8                If fitness(i) > fitness(individual(x, y)) 
9                     Replace individual(x, y) with i 
10           End for loop 
11      End for loop 
12 End while loop 

 

     The basic cGA algorithm is shown in Table 9 (Alba, Alfonso & Dorronsoro, 2005).  

This algorithm assumes that the domain space has been divided into a grid of width, w, 

and height, h.  For each individual in the grid, the algorithm determines a list of 
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neighbors.  In cGAs an individual is considered to be its own neighbor.  A selection step 

identifies two individuals from this list, p1 and p2.  A new individual, i, is created using 

crossover.  A mutation function will determine if mutation is needed based upon a 

mutation rate.  If it is determined that mutation should occur, the function will perform 

the mutation.  If the new individual i is more fit then the original individual, it will 

replace it.  The algorithm evaluates every individual in the population.  It will continue 

this process until a termination condition is met. 

     Because individuals are restricted to mating only with individuals close to them, cGAs 

prevents premature convergence and can be used for multimodal optimization problems 

(Nebro, Durillo, Luna, Dorronsoro, & Alba, 2006).  This form of selection prevents 

individuals in one area of the domain from dominating other niches.  Because of recent 

advancements in computational power, the parallel aspects of cGAs have been eclipsed 

by their ability to solve multimodal optimization problems.  A variety of enhancements 

have been made to cGAs and multimodal optimization. 

     Anisotropic Selection in cGAs assigns probabilities of replacement to the squares 

around an offspring (Simoncini, Verel, Collard & Clergue, 2006).  Individuals within a 

square perform a typical GA with selection, crossover and mutation.  The offspring then 

replaces some of the old generation’s individuals.  Different probabilities are assigned to 

different geometric directions used in selection.  There is a probability that selection will 

be made using a north or south square.  There is a probability that selection will be made 

using an east or west square.  The final probability is that the center square will be used 

for the selection.  These probabilities guide the direction of the search in the local area of 

the domain.  A control parameter, α, is used to influence these three probabilities.  The 
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following probabilities are used in determining the direction for selection (Simoncini et 

al., 2006).   

Probability of center cell pc = 0.2 

North or south cell  
( ) ( )α+−

1
2

1 cp
 

East or west cell  
( ) ( )α−−

1
2

1 cp
 

 
Once the direction is determined, tournament selection is used to select the individual for 

crossover.  If the individual in the new generation is better than the individual selected for 

replacement, it will be replaced.    

     There are two cGAs that attempt to solve multiobjective optimization problems.  

These algorithms are Cellular Multiobjective Genetic Algorithm (cMOGA) and 

Multiobjective Optimization Cellular Genetic Algorithm (MOCell) (Alba & Dorronsoor, 

2008).  Both algorithms are very similar and use the same general approach.   

     MOCell is another type of cGA (Nebro et al., 2006).  MOCell uses a Pareto front, 

which is an alternate population that contains optimal non-dominant individuals.  The 

Pareto front has a maximum size and maintains genetic diversity.  In MoCell selection, 

crossover and mutation take place according to normal cGA principles.  The offspring are 

added into the next generation.  Offspring may also be added to the Pareto front.  When 

this Pareto front hits its maximum size, individuals are replaced using a crowding 

method, which increases genetic diversity (Nebro, Durillo, Luna, Dorronsoro & Alba, 

2009).   The final step in MOCell is to randomly replace members of the population with 

individuals from the Pareto front.  This feedback ensures that dominant areas of the 

domain do not eclipse other optima.  cMOGA is the same as MOCell, except it does not 

contain the feedback step (Alba et al., 2005).   
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     cGAs research has shown that they are very effective in solving multimodal 

optimization problems.  Although research in other NGA areas has been around twice as 

long as cGAs, results of cGA research are very impressive.  Multiple methods have been 

developed based upon cGA principles. 

 

Novel Sexual Adaptive Genetic Algorithm 

     GAS3 is not the only NGA that incorporates the concept of gender.  Novel Sexual 

Adaptive Genetic Algorithm (NSAGA) has genders also (Zhang, Zhao & Wang, 2009).  

But it more evenly divides the number of males and females.  Similar to biological 

organisms, individuals in NSAGA have gender based upon genetic characteristics.  This 

gender selection more closely resembles genders in biological species. 

     NSAGA leverages an early evolutionary theory called the Baldwin effect (Baldwin, 

1896).  This theory proposes that an individual’s fitness is not always limited to their 

biological characteristics.  It is possible that through environmental influences an 

individual can increase its fitness.  In an NGA however, environmental influences are not 

defined.  NSAGA uses other individual’s fitness to be this environmental influence.  The 

Baldwin effect provides a new approach to NGAs. 

     NSAGA computes fitness as the weighted sum of three types of fitness: innate fitness, 

evaluation fitness and acquired fitness (Zhang et al., 2009).  The first part of the fitness is 

the innate fitness, IF.  This fitness excludes environmental influences.  In NSAGA innate 

fitness is defined as the following, where
tfmin is the minimum fitness and

tfmax is the 

maximum fitness for generation t. 
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The second type of fitness is the evaluation fitness, EF.  This fitness includes influences 

from the individual’s parents.  In the fitness function below w1 and w2 are parameters that 

weight each parent’s influence and xf and xm are the individual’s mother and father, 

respectively.  IF is the innate fitness defined previously. 
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The final type of fitness is the acquired fitness, AF.  This fitness derives from the 

Baldwin effect.  Individuals within a niche may increase or decrease their fitness by some 

factor, between 0 and 1, of the average innate fitness of the members of the niche.  This is 

shown in the following equation where c and Pb are parameters and rnd is a random 

number.   

=)(1 xf y {  
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The equation that reflects the Baldwin effect is used in the third fitness function.  The 

acquired fitness is given by the function below (Zhang et al., 2009).   
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With the acquired fitness function individuals may have their fitness increase or decrease 

based upon the factors previously outlined.  The final fitness of an individual is a 

weighted sum of the innate, evaluation and acquired fitness functions.   

Fitness (x) = β1 IF(x) + β2 EF(x) + β3 AF(x) 
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β1, β2 and β3 are weights placed on each type of fitness.   

     Gender determination is an important part of NSAGA.  It has great consequences 

because individuals may only mate with individuals of the opposite gender.  Selecting an 

existing gene would divide genders to different areas of the domain.  This is not desired.  

Gender is determined randomly thus giving all areas of the domain the ability to have 

both genders (Zhang et al., 2009).  The parameter Pg is the probability that an individual 

is a male.  Pg gives the algorithm more flexibility in controlling the proportion of males 

and females.  Gender determination helps NSAGA preserve interesting areas of the 

domain for exploration. 

     The final important aspect of NSAGA is the selection process.  The selection process 

goes beyond just limiting heterosexual selection.  A parameter Pelitism is used to determine 

the fittest members of the population.  NSAGA uses a different selection method for elite 

and non-elite individuals.  For the elite individuals selection is done according to rank 

within the group.  Of the remaining individuals selection is done through tournament 

selection. 

     NSAGA is a very unique NGA that resembles natural selection more than many other 

NGAs.  Incorporating gender and the Baldwin effect make NSAGA a novel algorithm.  

Rather than extending existing fitness sharing or crowding methods, NSAGA takes a 

more accurate approach to modeling biological evolution.   

 

Other Niche Genetic Algorithm Summary 

     This section briefly describes some NGAs that cannot be categorized as fitness 

sharing or crowding methods.  Some NGAs have characteristic so different than standard 
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fitness sharing and crowding methods, that this third categorization has been defined.  

This other type of category introduces new concepts to NGAs and the multimodal 

optimization problem. 

     The algorithms described in this section introduce many new approaches to NGAs.  

Some of them are hybrid methods that combine the concept of GAs with other search 

techniques, like PSO.  Others model biological theories, like the Baldwin effect.  cGAs 

solve multimodal optimization problems through limiting selection to neighbors.  These 

methods take a different approach to NGA research. 

 

Summary 

     This chapter provides an extensive literature review of NGAs.  The first section 

describes relevant literature used in this research that is not an NGA.  Three other 

sections describe different types of NGAs.  A variety of methods from classical NGAs to 

modern methods have been presented.  NGAs are normally organized into two groups.  

Sharing methods adjust fitness to encourage exploration.  Crowding methods replace 

individuals with individuals of the previous generation based upon distance 

measurements.  There are some NGAs that don’t directly fall into either category.  These 

algorithms are presented in a separate section.   

     This literature review provided the foundation for this research.  Many of the methods 

here are compared to the new framework that is presented.  Some of the concepts used in 

previous research are used in the creation of the new framework.  These cases will be 

described in Chapter 3. 
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Chapter 3 

Methodology 

 

     Chapter 3 describes the methodology for this research.  The research method will be 

described, followed by the new framework that will be tested.  The benchmark equations 

and performance criteria are defined.  The next two sections describe the formatting for 

presenting of the results and the resources required to perform the research.  The chapter 

concludes with a summary of the framework and methodology. 

 

Research Method Employed 

     An experimental research methodology was used to conduct this research.  A new 

framework was developed and compared against existing algorithms using benchmark 

equations and performance criteria.  The experimental research methodology provided a 

basis to evaluate the performance of the new framework. 

     While the framework is new, many ideas and concepts are based upon existing 

algorithms.  Chapter 2 describes existing NGA research.  Conclusions derived from this 

body of knowledge were reflected in the new framework.  The experiment was used to 

test the hypothesis used to develop the new framework. 
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Specific Procedures Employed 

     A new NGA was needed to solve the types of equations described earlier and shown 

in Figure 1.  This new NGA leveraged other NGAs and search methods.  This new 

algorithm most closely resembles SCGA (Li et al., 2002).  At a very high level the 

algorithm did not attempt to find all optima in a single pass.  It defined some search areas 

to investigate.  Once defined, it let the NGA run to find optima within these areas.  These 

optima were placed on a tabu list, which prevented them from being revisited.  The 

algorithm found optima in parallel each time it defined a set of searchable domain spaces.   

 

DSGA Algorithm 

     A traditional GA performs three general steps to create each generation.  Selection, 

crossover and mutation allow the GA to converge to an optimum.  The SCGA augments 

the traditional GA to include seed selection and seed conservation (Li et al., 2002).  The 

new algorithm, Dynamic-radius Species-conserving Genetic Algorithm (DSGA), also 

uses this seed selection and seed conservation approach but differs from SCGA in three 

important ways.  First, DSGA incorporates a tabu list to track optima and encourages 

exploration in other areas.  Second, DSGA varies the value of the radius.  Two strategies 

will be presented for varying the radius.  Third, DSGA has two different strategies for 

seed selection.  These two variations will encourage exploration.  The variations of this 

framework will be presented later in this section.   

     Groups of individuals are formed around a fit member, called a seed.  These groups 

cover a search area in the domain.  A predefined radius is used around seeds to define 

which members are grouped with the seed.  Every new generation redefines the seeds and 
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areas.  By conserving these search areas, DSGA locates multiple optima and prevents a 

single dominant optimum from eclipsing the other ones. 

Table 10. DSGA Parameters 
Abbreviation Name Description 

N Population size Number of individuals in each generation 
M Mutation Rate Odds of gene mutating 
IS Initial Sigma Initial value for sigma 
SD Sigma Delta The amount that sigma will be changed each  

     iteration 
RLC Reevaluate Loop 

Count 
The number of times that the NGA will loop  
     before it reevaluates the seed radius 

CL Convergence Limit The number of individuals needed to determine  
     that convergence has taken place 

 

     Table 10 shows the parameters of the algorithm.  Like traditional GAs, there is a 

population size, N, and a mutation rate, M.  Similar to SCGA (Li et al., 2002), DSGA 

uses a radius parameter.  The radius is the minimum distance a strong individual must be 

away from all other clusters in order to create a new cluster.  In DSGA sigma is the 

radius of the clusters.  It is called the initial sigma, because the sigma varies as the 

algorithm runs.  This radius is changed by the sigma delta, SD, to search for new optima.  

The Reevaluate Loop Count, RLC, is the number of times that the NGA loops before 

allowing the search areas and radius to be redefined.  When determining if an optimum 

has been located the algorithm looks for identical individuals.  If there are CL or more 

identical individuals, the algorithm concludes that an optimum has been located. 

     Table 11 shows the new algorithm, DSGA.  Descriptions of the seed selection, seed 

conservation and radius altering approaches are described later in this section.  Unlike 

other GAs, DSGA has two loops.  The inner loop, lines 4 through 10, perform a typical 

GA with the enhancement of seed selection and seed conservation.  Once this loop is 

finished the algorithm records any optima as an ordered pair of the optima and the radius 
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in the tabu list, line 11 and 12.  Optima are any domain values which have CL or more 

identical individuals, line 11.  Seeds that are not optimums are also added to the tabu list, 

but optima are marked as such.  In line 18, the radius, associated with the seeds, is altered 

and the GA is run again.  This will occur in the outer loop, lines 2 through 19, and ends 

when a termination condition is met.  The algorithm varies the size of the radius to locate 

other optima. 

Table 11. DSGA Algorithm 
Line Number Pseudocode 

1 Initialization 
2 While not termination condition 
3      For (int r = 1; r <= RLC; r++) 
4      Begin 
5           Seed Selection 
6           Selection 
7           Crossover 
8           Mutation 
9           Seed Conservation 
10      End For Loop 
11      If there exists an individual d with CL or more identical  

          individuals then  
12           Add (d, σ) pair to best_Xs 
13           Mark pair (d, σ) as optimum 
14           Replace d and all of the identical individuals to d with  

               randomly generated individuals 
15      End if 
16      Add (s, σ) pair to best_Xs for all s that are seeds 
17      Replace all individuals s with randomly generated  

          individuals 
18      Alter radius σ 
19 End 

 

     This algorithm differs from SCGA in many important ways.  SCGA selects a single 

radius size and performs the algorithm in a single loop (Li et al., 2002).  DSGA varies the 

radius to locate other optima.  This new algorithm has also been augmented with a tabu 

list to prevent already located optima from being used as seeds in the future.  These 
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changes should allow the algorithm to locate other optima that may have been missed in 

earlier iterations. 

     DSGA performs an initialization phase to create the first generation and initialize the 

tabu list.  Table 12 shows the initialization steps.  The variable best_Xs is the tabu list.  

Originally, the seed radius, σ, is set to IS.  This value will change by SD as the algorithm 

runs. 

          Table 12. DSGA Algorithm Initialization 
Line 

Number 
Pseudocode 

1 Set list best_Xs to Ø 
2 Set list generation to Ø 
3  
4 For (int i = 1; i <= N; i++) 
5 Begin 
6      Create new string y 
7      Randomly generate genes for y 
8      Add y to generation 
9 End For Loop 
10 Set σ to IS 

 

DSGA Seed Selection 

     Seed selection is a critical part of locating optima.  Each generation defines its own 

seeds.  This algorithm for seed selection is shown in Table 13.  In line 1, it begins with an 

empty list of seeds.  It is beneficial to make the fittest individual in each niche a seed, but 

the algorithm also needs to explore other areas of the domain.  So the algorithm evaluates 

individuals in an order defined by a seed evaluation ordering (seo) function.  Possible 

implementations for seo will be presented later in this section.  Each individual is 

evaluated as a candidate for seed selection based on this function.  The algorithm 

determines if an individual is within σ distance to a currently established seed.  If a seed 

exists within σ distance, the individual is not a seed, but a member of the seed’s species.  
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If no established seeds exist within the σ distance of this individual, it will become a 

seed.  The only exception to this rule, which is shown in lines 16 and 17, is if the 

individual is on the tabu list.  Here it has already been determined that it has been 

investigated and conservation of it is not needed.  It is prevented from being a seed.   

         Table 13. Seed Selection 
Line 

Number 
Pseudocode 

1 Set list seeds to Ø 
2 Sort generation descending by seo function 
3 For (int k = 0; k < size of generation; k++) 
4 Begin 
5      Set K to the k-th individual in generation 
6      Set boolean found = true 
7      For (int m = 0; m < size of seeds; m++) 
8      Begin 
9           Set M to the m-th individual in seeds 
10           If distance(K, M) < σ then 
11                Set found to true 
12                Break 
13           Else 
14                Set found to false 
15      End For Loop 
16      If found = false and K is not in best_Xs  

          then 
17           Add K to seeds 
18 End For Loop 

 

     This seed selection algorithm is identical to SCGA except in two areas.  In line 16 

DSGA prevents individuals on the tabu list from becoming seeds in the future.  This is 

done because these areas of the domain have already been investigated.  Using the tabu 

list encourages the algorithm to explore other areas of the domain.  In line 2 individuals 

are sorted by a function called seo.  DSGA uses two strategies to investigate unexplored 

areas of the domain.  One strategy uses a standard fitness sharing approach; the other 

excludes individuals from becoming seeds if they are too close to individuals on the tabu 
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list.  Each strategy is implemented by using different seo functions.  In SCGA individuals 

are only sorted by fitness.  These differences will allow the algorithm to find other 

optima. 

 

DSGA Seed Conservation 

     Once seeds are established there needs to be a means to preserve them into the next 

generation.  This is called seed conservation and is shown in Table 14.  After each 

generation is created, it goes through a seed conservation step.  Each seed from the 

previous generation replaces a weak individual in the new generation.  First the algorithm 

looks at individuals in the new generation, which are within σ distance of the seed.  If 

there are individuals in the new generation, which meet this condition the seed replaces 

the weakest individual of this list.  If there are no individuals within the seed’s radius, 

then the seed replaces the weakest individual in the new generation.  Every seed is 

promoted into the next generation, but this does not mean that this seed will be a seed in 

the next generation.  It will have to be evaluated as any other individual. 

  Table 14. Seed Conservation for each Generation 
Line 

Number 
Pseudocode 

1 For (int p = 1; p <= size of seeds; p++) 
2 Begin 
3      Set P to the p-th individual in seeds 
4      Find y such that it is the least fit individual with  

          distance(y, P) <= σ 
5      If y exists and y is less fit than P 
6           Replace y with P 
7      Else 
8           Replace the least fit individual in new generation with P 
9 End For Loop 
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     DSGA uses many of the steps of SCGA to conserve seeds after each generation is 

created.  The only exception is that Euclidean distance is used in this algorithm.  The seed 

conservation phase of recording seeds does not exist in SCGA.  This should allow the 

algorithm to investigate other areas of the domain to locate other optima. 

     Besides the algorithm parameters shown in Table 10, two components of the 

algorithm may vary.  There are two strategies to alter the radius after the inner loop of the 

algorithm and two strategies to encourage further exploration of the domain.  The 

different combinations of strategies allow the DSGA framework to create multiple 

algorithms.  The two components of the DSGA framework allow it to be used in many 

domains. 

 

Varying Radius Strategies 

     We will consider two strategies to vary the radius used in DSGA.  This step is shown 

in Table 11, line 18.  In this step of the algorithm, the radius will be changed by a 

constant value of sigma delta, SD.  The two strategies differ in the way that the radius is 

changed by SD.  One strategy consistently increases or decreases the radius.  A second 

strategy may increase or decrease the radius as the algorithm runs. 

     In the first strategy the radius is increased or decreased by SD.  It will either always 

increase or always decrease the radius.  The method could start the radius very small and 

increase it incrementally after the inner loop completes.  In this strategy the radius would 

start at IS and be increased by SD in every pass of the outer loop.  Eventually the radius 

would increase to such a size that only one seed would be formed.  This condition would 

be the termination condition shown in Table 11, line 2.  Or the method could start with a 
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very large IS and decrease it by SD as the algorithm runs.  Here the termination condition 

is not so obvious.  A natural termination condition would be to terminate the first time the 

inner loop completes but does not find any additional optima.   

     The second strategy is to increase or decrease the radius by SD at the end of the inner 

loop.  At the end of the inner loop the algorithm will decide if the radius should be 

increased or decreased by SD.  There are many possible methods that could be used to 

determine how to vary the radius.  One possibility for this approach is to base the radius 

change on the number of optima located.  If no optima are located in the inner loop, then 

decreasing the radius will allow more seeds to form and should increase the chance of 

optima location.  If optima are located, the approach would increase the radius.  As in the 

previous approach the termination condition would be when the inner loop does not 

locate any additional optima.  These two strategies allow DSGA flexibility in locating 

optima.   

 

Exploration Approaches 

     The second component of the DSGA framework encourages exploration in areas of 

the domain where optima have not been found.  Two strategies will be presented.  Both 

strategies fulfill this through the seed selection in the algorithm.  Each approach 

accomplishes exploration by defining different seo functions.  One seo function 

implements a fitness sharing algorithm.  The other one excludes individuals from 

becoming seeds that are too close to individuals on the tabu list.   

     The first strategy eliminates individuals that are too close to existing seeds.  It uses the 

ordered pair (o, r) on the tabu list.  The optimum is o and the radius when the optimum 
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was located is r.  In future iterations of the algorithm the radius will change. The variable 

r’ is the current value of the radius when the strategy is executed.  This approach 

excludes individuals from becoming seeds if their distance is within min(r, r’ ) of an 

element on the tabu list.  In the equation below i is the individual being evaluated for seed 

selection, tl is the current tabu list, r’  is the current radius and d is Euclidean distance.  

For all ordered pair (o, r) on the tabu list, the function will return the individual’s fitness 

if the distance between o and i is greater than the min(r, r’ ).  If the distance is less than 

min(r, r’ ),  the function returns 0.  This ensures that this individual will not be a seed.  

This equation for seo is given below: 

 

seotl, r’  (i) = {
 

fitness(i), if and only if there does not exist an (o1, r1) ∈ tl, such  
     that  d(o1, i) ≤  min (r1, r’)  
0,  otherwise 

 
The SCGA algorithm evaluates individuals in order of their fitness.  This seo function 

performs the same functionality for DSGA, except it eliminates individuals within a 

minimum of r and r’  distance of a seed on the tabu list. 

     The second strategy is very similar to Goldberg and Richardson’s (1987) sharing 

function.  A sharing function is an alternate way to determine fitness, called shared 

fitness.  It weighs fitness based on the distance that the individual is to other individuals.  

In this approach fitness will be weighted based on the distance that the individual is to the 

individuals on the tabu list.  The function can be defined many ways with its goal being 

to weigh individuals higher, the farther away they reside from the individuals on the tabu 

list.  This approach does not necessarily have the strongest individuals as seeds; rather it 

selects individuals as seeds that are worth investigating. 
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     The DSGA framework can support a variety of sharing functions for the second 

strategy.  Goldberg and Richardson’s (1987) fitness sharing function can easily be 

adapted to encourage exploration in DSGA.  The niche count can be defined as the 

following: 

mi = 
tabuSize

j 1=
∑ )),(( joidsh  

 
The parameters for this equation are described in Chapter 2.  The only difference is that 

d(i, oj) is the Euclidian distance between i and the jth individual on the tabu list.  The 

function seo would be defined as the objective function divided by the niche count for 

individual i.   

im

ifunctionobjective
iseo

)(_
)( =  

This niche count will be smaller for individuals further away from the seeds on the tabu 

list.  They will be more likely to be selected for crossover and be represented in future 

generations.  This encourages exploration. 

 

Set of Benchmark Optimization Problems 

     After the algorithm was implemented, it was evaluated against a set of benchmarks.  

These benchmarks are examples of multimodal optimization problems.  Prior literature 

shows a variety of test functions that can be used to solve multimodal optimization 

problems with NGAs.  Some of the functions are Shubert (Ando & Kobayashi, 2005), 

Rosenbrock (Raghuwanshi & Kakde, 2007) and Ackley (Ling et al., 2008; Raghuwanshi 

& Kakde, 2007).  However, one function is used most often.  This function is given 

below: 
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)5.01.5(sin)( 6 += xxf π  

This function was first used in Goldberg and Richardson (1987) and this function, with 

minor modifications, has been used in many other research papers (Bernier, 1996; Lee, 

Cho & Jung, 1999; Miller & Shaw, 1996; Yin & Germay, 1993). 

     Bernier (1996) generalized the Goldberg and Richardson (1987) equation.  The new 

equation shown below can generate many different types of test cases. 

)(sin)( 62 pcx xkRcxf π−=  

By defining different values for R, c, p and k, this equation can generate many interesting 

test cases similar to the one shown in Figure 1.  The parameter c determines the rate of 

decay of each oscillation of the sine wave.  In most cases, k determines the number of 

peaks.  R controls the height of the highest peak and is set to 1. 

     Since the goal of this research was to develop a new NGA that can solve problems 

with arbitrarily close optima, while doing equally well with other optimization problems, 

test functions were needed to be selected in these two areas.  Each function was 

associated with one of the goals.  These equations are shown in Table 15. 

     Six test functions were based on Bernier’s (1996) test functions.  These are shown in 

Table 15 as F1 through F6.  For the parameter (c, p, k), the six groups of parameters were 

{(0, 1, 5); (0, 3, 5); (0, 2, 10); (1, 3, 10); (2, 2, 5); (2, 1, 10)}.  The algorithm attempted to 

locate the local maximum of these six functions.  These benchmarks have been used to 

test other NGAs that attempt to solve problems of this type. 

     The final two test functions completed the set.  Function F7 in Table 15 is a general 

test case.  Function F7 has a surface of high sides with a global and three local minimums 

in the center.  This function was used to test Zhang, Shang, Gao and Dong’s NGA 
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(2008).  This test case tests general NGA functionality.  Finally, function F8 is the 

function shown in Figure 1.  As seen in Figure 1, this function has ever increasing optima 

that become arbitrarily close.   

Table 15.  Test Functions 
 Equation Domain Goal 

F1 max: )5(sin)( 6 xxf π=  10 ≤≤ x  General 

F2 max: )5(sin)( 36 xxf π=  10 ≤≤ x  General 

F3 max: )10(sin)( 26 xxf π=  10 ≤≤ x  General 

F4 max: )10(sin1)( 362

xxf x π−=  
10 ≤≤ x  Arbitrarily 

Close 
Optimum 

F5 max: )5(sin2)( 262 2

xxf x π−=  
10 ≤≤ x  Arbitrarily 

Close 
Optimum 

F6 max: )10(sin2)( 62 2

xxf x π−=  
10 ≤≤ x  General 

F7 min:
2

6
42

6
05.12),( yxy

x
xxyxf +−+−=  

33 ≤≤− x  
33 ≤≤− y  

General 

F8 max: y = x sin(x2) 
100 ≤≤ y  Arbitrarily 

Close 
Optimum 

 

     These eight test functions cover a wide range of different multimodal functional 

optimization problems.  Some are general test cases that can determine how a NGA 

handles typical functional optimization problems.  Other test cases address functional 

optimization when optima are arbitrarily close.  Use of these functions as benchmarks is 

supported by a wide variety of literature. 

 

Performance Evaluation 

     This section describes the performance goal of this research.  Eight benchmark 

functions have been presented.  The first seven benchmarks are used in other literature 

using a variety of performance criteria.  DSGA was compared against one or more NGAs 
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that cite each benchmark.  Most research uses benchmarks that highlight the algorithm’s 

performance.  Comparing DSGA against other algorithms by using each algorithm’s 

benchmarks was an appropriate test.   

     The first six benchmarks were used in Bernier’s (1996) research.  This research had 

four performance criteria.  The first criterion used was the X2-like deviation.  Ideally an 

NGA should have individuals distributed over the peaks relevant to the fitness of the 

peak.  The X2-like deviation is a measurement of how much a population deviates from 

this distribution.  Because DSGA removes optima from the population once they are 

discovered and discourages them from being revisited, the criterion is not appropriate for 

DSGA.  The next two criteria measure the proportion of the peaks that were located and 

the proportion of individuals outside the peaks.  The proportion of peaks is the number of 

optima located divided by the number of optima.  The proportion of individuals outside 

of the peaks is the number of individuals not tracking an optimum divided by the total 

number of individuals.  The final criterion was the average fitness of the individuals in 

the last 50 generations. 

     The results of Bernier’s (1996) research were the average of 10 runs for each of 

Bernier’s algorithms:  Biggest Difference Method and Biggest Proportion Method.  Each 

run of the algorithm generated 200 generations of a population size of 100.  The results 

for the criteria were the average of the last 50 generations for each benchmark. 

     Benchmark F7 has three local minimums and one global minimum, which is (0, 0). 

This benchmark was used in Zhang, Shang, Gao and Dong’s (2008) hK1 Triangulation 

NGA.  In this NGA there is a tuning parameter h that indicates the precision of the 

algorithm.  The results of this research show the minimum points or most fit individuals 
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around the three local optima, excluding the (0, 0) minimum.  The performance criterion 

was the objective value of the fittest individual around each niche.  For this research 

DSGA used the same performance criterion and compare it results against the hK1 

Triangulation NGA for h = 0.1. 

     Benchmark F8 is a function that has not been introduced in previous literature.  Even 

though it is very close to Bernier’s benchmarks, no present research has been conducted 

using it.  This paper hopes to introduce this function as a future benchmark.  The 

performance criteria used for benchmark F8 were the three criteria defined by Bernier 

(1996).  These are the proportion of peeks located, proportion outside of the peeks and 

average fitness.  These three performance criteria cover different characteristics of NGA 

behavior. 

     For comparison DSGA was compared against a number of other NGAs.  When 

benchmarks have previously published work, results from the previous research were 

used in the comparison.  Three additional NGAs were used in this research.  The NGAs 

are Goldberg and Richardson’s (1987) algorithm, Kao and Zahara’s (2008) algorithm and 

SCGA (Li et al., 2002).  These three algorithms were selected because they represent a 

variety of NGAs from a classic algorithm, like Goldberg and Richardson (1987) to a new 

algorithm, Kao and Zahara (2008).  There are no published results for these three 

algorithms and the benchmark functions.  As part of this research these algorithms were 

implemented and run against all eight benchmark functions.  The published and newly 

obtained results were used to evaluate DSGA against the benchmarks. 

          Considering there are three approaches for varying the radius and two strategies for 

encouraging exploration, there are six distinct combinations of strategies for DSGA.  
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Each of the six strategies of DSGA were implemented and attempted to locate the optima 

of all eight benchmark functions.  The performance criterion for each benchmark has 

been described in this section.  This research used the corresponding population size, 

number of runs, number of generations and performance criteria as the algorithm that it is 

being compared against.  The results of the six combinations of DSGA strategies were 

compared to the published results of the research cited in this section using the 

performance criteria shown in Table 16.   

 
Table 16.  Benchmark Algorithm Comparison 

 Algorithms Compared Against Performance Criteria 

F1 

Bernier Biggest Difference Method 
Bernier Biggest Proportion Method 
Goldberg and Richardson’s Fitness  
     Sharing 
Kao and Zahara Genetic Algorithm 
     and Particle Swarm  
     Optimization 
Species Conserving Genetic  
     Algorithm 

Proportion of peaks 
Proportion of points outside of peaks 
Average fitness 

   
 
 
 

F2 

Bernier Biggest Difference Method 
Bernier Biggest Proportion Method 
Goldberg and Richardson’s Fitness  
     Sharing 
Kao and Zahara Genetic Algorithm  
     and Particle Swarm  
     Optimization 
Species Conserving Genetic  
     Algorithm 

Proportion of peaks 
Proportion of points outside of peaks 
Average fitness 

   
 
 
 

F3 

Bernier Biggest Difference Method 
Bernier Biggest Proportion Method 
Goldberg and Richardson’s Fitness  
     Sharing 
Kao and Zahara Genetic Algorithm  
     and Particle Swarm  
     Optimization 
Species Conserving Genetic  
     Algorithm 

Proportion of peaks 
Proportion of points outside of peaks 
Average fitness 
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Table 16.  Benchmark Algorithm Comparison Continued 
 Algorithms Compared Against Performance Criteria 
 

 

F4 

Bernier Biggest Difference Method 
Bernier Biggest Proportion Method 
Goldberg and Richardson’s Fitness  
     Sharing 
Kao and Zahara Genetic Algorithm  
     and Particle Swarm 
     Optimization 
Species Conserving Genetic  
     Algorithm 

Proportion of peaks 
Proportion of points outside of peaks 
Average fitness 

   
 
 
 

F5 

Bernier Biggest Difference Method 
Bernier Biggest Proportion Method 
Goldberg and Richardson’s Fitness  
     Sharing 
Kao and Zahara Genetic Algorithm  
     and Particle Swarm  
     Optimization 
Species Conserving Genetic  
     Algorithm 

Proportion of peaks 
Proportion of points outside of peaks 
Average fitness 

   
 
 
 

F6 

Bernier Biggest Difference Method 
Bernier Biggest Proportion Method 
Goldberg and Richardson’s Fitness  
     Sharing 
Kao and Zahara Genetic Algorithm  
     and Particle Swarm  
     Optimization 
Species Conserving Genetic  
     Algorithm 

Proportion of peaks 
Proportion of points outside of peaks 
Average fitness 

   
 
 
 

F7 

Zhang, Shang, Gao, and Dong 
     hK1 Triangulation Algorithm 
Goldberg and Richardson’s Fitness  
     Sharing 
Kao and Zahara Genetic Algorithm  
     and Particle Swarm  
     Optimization 
Species Conserving Genetic  
     Algorithm 

Fitness of best individual for each niche 
Proportion of peaks 
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Table 16.  Benchmark Algorithm Comparison Continued 
 Algorithms Compared Against Performance Criteria 
 
 
 

F8 

Goldberg and Richardson’s Fitness  
     Sharing 
Kao and Zahara Genetic Algorithm  
     and Particle Swarm  
     Optimization 
Species Conserving Genetic  
     Algorithm 

Proportion of peaks 
Proportion of points outside of peaks 
Average fitness 

 

     All of the algorithms shown in Table 16 have published results for the performance 

criteria with three exceptions.  Goldberg and Richardson’s Fitness Sharing method, Kao 

and Zahara Genetic Algorithm and Particle Swarm Optimization algorithm and SCGA 

did not have published results for these performance criteria.  As part of this research 

these three algorithms were implemented.  The implementations were run in an attempt to 

solve the benchmark functions.   

 

Format for Presenting Results 

     The results of this research were presented in the form of tables.  There are eight 

performance benchmark optimization problems selected for this research.  Each has 

between one and three performance criteria.  The results contain one table for each 

benchmark optimization problem.  The rows of the table are the selected algorithms 

chosen for comparison, along with the six different combinations of DSGA.  The 

columns of the table are the performance criteria for the selected benchmark optimization 

problem.  This method of presenting results allows for comparison between DSGA and 

other NGAs. 
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Resources Required 

     There were few resources needed to conduct this research.  The NGAs were 

developed in the Java programming language and ran on a desktop PC.  This included 

implementations of DSGA, Goldberg and Richardson’s Fitness Sharing method, SCGA 

and the Genetic Algorithm and Particle Swarm Optimization algorithm.  Because this 

research was conducted through running trials of this new algorithm against other NGAs, 

no additional resources were needed.  These resources were obtained to complete this 

research. 

 

Summary 

     While DSGA is not a tabu search, there are many parallels between the two 

techniques. Like the tabu search, DSGA investigates different areas of the domain space. 

New areas to investigate are selected based on previous areas. A tabu list is used to 

discourage redundant exploration of previously investigated areas of the domain. Unlike 

the tabu search, DSGA has no aspiration level. In a GA the only way to determine if a 

tabu move is superior is to create multiple generations based on the move. This makes 

aspiration levels difficult in GAs. 

     DSGA uses a tabu list, but not a complete tabu search to encourage exploration.  As 

shown in Chapter 2 a tabu search contains a tabu list in addition to an aspiration 

condition.  DSGA does not have an aspiration condition.  The aspiration condition is not 

needed, because in DSGA moves are not completely eliminated for being on the tabu list. 

The seed selection algorithm encourages exploration in other areas of the domain, but 

does not prevent convergence to any specific area of the domain. 
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     This new algorithm was designed to locate optima in functional optimization problems 

that have arbitrarily close optima.  While it can locate multiple optima in a single pass, it 

uses multiple passes to locate all of them.  After a set of optima are located, a tabu list is 

used to ensure that these optima are not revisited.  This frees the algorithm to locate other 

optima.  In problems that have arbitrarily close optima, it is important to prevent an 

optimum from eclipsing nearby optima.  This algorithm attempts to overcome this 

problem by the exploration approaches described in this chapter.  
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Chapter 4 

Results 

 

     Chapter 4 presents the results of this research.  This first section describes the 

parameter settings and implementation methods.  Where previous research did not 

publish parameters, values are selected.  Parameters that are only specific to some 

algorithms are also covered.  There is a section for each of the eight benchmark 

functions.  Finally, there is a summary section. 

     Two of the criteria used in this research are measurements of recall and precision.  

Recall, defined as the number of optima identified divided by the total number of optima, 

is a measure of the algorithm's ability to discover optima.  Bernier (1996) described this 

as the proportion of peeks found.  Precision, defined as the total number of individuals 

tracking optima divided by the total number of individuals, is a measure of the 

algorithm’s accuracy.  Bernier (1996) described this as the proportion of individuals 

outside of the peek.  Algorithms with a high proportion of individuals outside of the peek 

make it more difficult to determine what the optima are.  These two measures provide 

insight into the usefulness of the algorithms. 

  

Parameter Settings and Implementation Methods 

     NGAs have many parameters and implementation methods.  Chromosome 

representation, population size and single or multiple point crossover decisions can 
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greatly affect the results of experiments in evolutionary algorithms (Burke, Gustafson & 

Kendall, 2004).  NGA research often includes a section of the best parameter settings for 

a given algorithm.  When comparing algorithms it is important to keep parameters 

consistent across experiments.   

     When previously published results were available for an algorithm, they were used 

instead of implementing the algorithm.  This occurred with Biggest Difference Method, 

Biggest Proportion Method and hK1 Triangulation Algorithm.  Results for Fitness 

Sharing; Genetic Algorithm and Particle Swarm Optimization; DSGA Increasing Radius, 

Seed Exclusion (DSGA (R+, S-)); DSGA Decreasing Radius, Seed Exclusion (DSGA (R-

, S-)); DSGA Dynamic Radius, Seed Exclusion (DSGA (R∆, S-)); DSGA Increasing 

Radius, Fitness Sharing (DSGA (R+, FS)); DSGA Decreasing Radius, Fitness Sharing 

(DSGA (R-, FS)); and DSGA Dynamic Radius, Fitness Sharing (DSGA (R∆, FS)) were 

obtained from implementing these algorithms as part of this research. 

     Parameter settings and implementation methods for these results were determined by 

the following method.  First, if results were shown from previously published research, 

then parameter settings and implementation methods from that research were used for the 

given benchmark.  Second, in cases where the previous research did not state all 

parameters, ones were selected for the entire benchmark.  Third, some algorithms have 

additional parameters that do not apply to other NGAs.  In this case parameter values 

were selected and used consistently across the benchmark for all algorithms that have this 

parameter.  This method of parameter selection should provide the most impartial 

comparison. 
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Previous Research Parameters and Implementations 

     All results in this section came from the implementation of the algorithms with two 

exceptions.  Results shown for Biggest Difference Method and Biggest Proportion 

Method came from Bernier (1996) research.  Results shown for the hK1 Triangulation 

Algorithm came from Zhang, et al. (2008).  All published parameter values and 

implementation considerations for these algorithms were used in this research. 

     Functions F1 through F6 were used in Bernier (1996).  The results shown in the 

following sections for Bernier’s Biggest Different Method and Biggest Proportion 

Method came directly from Bernier (1996).  Bernier (1996) used 30 chromosomes for 

each individual.  The research used a population size of 100 and created 200 generations.  

The probability of a gene mutating was 0.001.  Before determining if an individual is 

tracking an optimum a threshold must be defined.  Bernier (1996) used 0.1, which is the 

threshold used in this research.  Any individual that is within 0.1 of an optimum is 

considered tracking the optimum.  These controlled parameters were used for all of the 

other algorithms used in F1 through F6. 

     Zhang, et al. (2008) did not publish parameter settings or implementation 

considerations that can be used in this research.  As a result the parameter setting and 

implementation considerations will be describe below.  Because there are no consistent 

parameters between the hK1 Triangulation Algorithm and the other algorithms, it is 

difficult to compare the results.  It is possible that other parameter values could change 

the results of the implemented algorithms. 
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Common Parameters and Implementations 

     When previously published research did not provide values for some parameters or 

implementation considerations, they were selected and held consistent for all algorithms 

in the benchmark.  In some cases they were held consistent across all of the benchmarks.  

This section describes the parameters selected for this research. 

 

Chromosome Representation 

     All of the algorithms implemented for this research used binary chromosome 

representation, although DSGA can support binary and floating-point representation.  

This representation evenly divides the domain space providing greater precision as the 

number of chromosomes increases.  Binary chromosome representation is a common 

method of representing individuals in a GA.  This method of representation is often 

selected for its simplicity (Pang, 2006).  

     Binary chromosome representation allows for any number of chromosomes to cover 

an area of the domain.  Assuming there are binary chromosomes bn-1bn … b1b0, an upper 

bound of UB and a lower bound of LB, the following equations shows the 

implementation of this representation (Janikow & Michalewicz, 1991).   
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The equation begins at the lower bound, LB.  The factor (UB-LB) is the length of the 

domain that needs to be covered.  Based upon what chromosomes are active a portion of 

the spanning area is added to the lower bound.  The following factor of the equation 

produces a number between 0 and 1. 
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The precision of the equation can be represented by the following equation.  The ∆x term 

is the smallest value that x can change. 
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As the number of bits, n, increases the domain is divided into smaller sections giving 

greater precision. 

     All of the algorithms in the research used crossover as a genetic operation.  GAs can 

use single-point or multiple-point crossover.  All of the implemented algorithms in this 

research used single-point crossover. 

 

Fitness Function 

     Table 17 shows the fitness functions used in these trials for the research.   

                          Table 17.  Fitness Functions 
Benchmark Function Fitness Function 

F1 F1 
F2 F2 
F3 F3 
F4 F4 
F5 F5 
F6 F6 
F7 1 / (F7 + 1) 
F8 F8 + 10 

 

In the case of F1 through F6 the fitness function was the benchmark function itself.  

These are all maximization problems.  F7 is a minimization problem.  In this case the 

benchmark function of the fitness function should be inverse to each other.  Benchmark 

function F8 has negative values, which can cause some issues for the selection process 
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(Beasley, Bull & Martin, 1993a).  The fitness function for F8 was (F8 + 10).  For the 

range of x equal 0 to 10, this ensures all fitness values are positive. 

 

Other Parameters 

     Function F7 was previously used in Zhang et al. (2008).  This research did not provide 

parameters.  As a result there were no control parameters for F7.  The algorithms 

implemented by this research used a population size of 50, created 100 generations and 

had a gene mutation rate of 0.15625.  Function F8 had no previously published results.  

All of the algorithm results for F8 used these same parameters. 

     All of the results from the algorithms implemented as part of this research were the 

average of 10 trials.  Benchmark function F7 has a criterion of the best individual for 

each niche.  The results shown in the research for the algorithms are the average of the 

best individual for each niche.  Not all of the algorithms implemented were able to locate 

all of the optima in all trials.  Although it is not specifically stated in Zhang et al. (2008), 

it is assumed that this algorithm located all of the optima.   

 

Algorithm Specific Parameters and Implementations 

     Some parameters are specific to certain NGAs.  In some cases they may span multiple 

NGAs used in this research, but not all of them.  When this occurred values were 

selected, often from previous research, and held consistent across the benchmark.  This 

section addresses algorithm specific parameters. 
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Genetic Algorithm and Particle Swarm Optimization Parameters 

     Genetic Algorithm and Particle Swarm Optimization has three additional parameters 

(Kao & Zahra, 2008).  When updating a weak member with the stronger member, two 

constants, C1 and C2, are needed.  These constants are weights to the factors when 

computing the new velocity.  Kao and Zahra (2008) had them set to 2.  This research kept 

the values at 2.  The other parameter in this algorithm was the weight for the weak 

individual.  This determines how much of the weak individual was maintained after the 

Particle Swarm Optimization step.  Kao and Zahra (2008) calculated this as 0.5 + Z / 2 

where Z is a uniform random number between 0 and 1.  This research kept this 

calculation as well.  These are the additional parameters for the Genetic Algorithm and 

Particle Swarm Optimization algorithm. 

 

Fitness Sharing Parameters 

     Four algorithms used a fitness sharing method:  Goldberg and Richardson’s Fitness 

Sharing, DSGA (R+, FS), DSGA (R-, FS) and DSGA (R∆, FS).  These algorithms all 

implement Goldberg and Richardson’s (1987) algorithm.  The implementation of these 

algorithms used the power law function, described in Chapter 2, as the fitness sharing 

function.  The parameters σshare and α were set to 0.1 and 1 respectively, which were the 

same parameter values as in Goldberg and Richardson’s (1987).   

 

Species Conserving Parameters 

     The SCGA algorithm had additional parameters.  Since DSGA was based on SCGA, 

these parameters are also needed in DSGA.  The parameter σS defines the diameter of the 
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neighborhood.  In these trials σS was set to 0.2, which makes a radius of 0.1.  In DSGA 

this parameter was IS.  This radius was used for all benchmark functions, even F7 and F8 

which have large domain areas. 

 

DSGA Specific Parameters 

    DSGA has additional parameters to the SCGA algorithm.  In DSGA the radius changes 

as the algorithm runs.  The Sigma Delta, SD, determines the change in the radius.  The 

SD parameter was set to 0.015 in all trials.  DSGA also has a parameter, RLC.  RLC or 

Reevaluation Loop Count determines how many inner loops of the algorithm should be 

performed before the radius is reevaluated.  In trials for F1 through F6 RLC was set to 50.  

This divides the total number of generations, 200, into four groups.  In trials for F7 and 

F8 RLC was set to 25.  This divided the total number of generations, 100, into four 

groups.  After every RLC number of generations DSGA analyzes the last generation 

seeking optima.  If there CL number of identical individuals, the individual is placed on 

the tabu list and considered an optima.  CL was set to two in all trials.  DSGA specific 

parameters used in the following trials are described above. 

     One of the methods to vary the radius of the DSGA framework is to increase or 

decrease the radius based upon information after each iteration of the inner loop 

completes.  While there are many different ways that this can be implemented, one 

consistent method was used in this research.  After each iteration of the inner loop 

completes the algorithm checks to see how many individuals were added to the tabu list 

through convergence.  If two or more individuals were added to the tabu list, the radius 

was increased by SD.  Otherwise, it was decreased by SD.  This implementation was 
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selected to increase the chance of finding optima.  If fewer than two areas of the domain 

converged, decreasing the radius would allow more seeds to be identified in future 

generations and should preserve more areas of the domain.  

     In most GAs the final generation contains the optima that the GA has located.  That is 

not the case with DSGA.  DSGA removes optima from the population through the use of 

the tabu list.  Therefore the final generation will not contain the optima located.  The tabu 

list contains the optima.  The data provided for all benchmarks for the criterion of 

proportion of peeks located for DSGA came from analyzing the tabu list, not the last 

generation.  The data provided for the F7 criteria of best individual in each niche also 

came from the DSGA tabu list.  The data for all other criteria for DSGA came from the 

population.   

     This section describes all of the parameters used in this research.  Controlled 

parameters are the parameter values used in prior research.  When prior research provided 

parameter values, they were maintained throughout all trials.  Some algorithms required 

additional parameter values.  These values have been described.  When a parameter 

existed in multiple algorithm, the parameter value was kept consistent across all trials for 

a given benchmark function.   

 

Results of Algorithms on F1 

     Benchmark function F1 is a sine wave with five evenly distributed local maximums all 

of equal magnitude.  The results for the Biggest Difference Method and Biggest 

Proportion Method come from Bernier (1996) research.  Table 18 shows the results for 

F1.  Figure 4 is a chart of the precision and recall of the algorithms. 
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Table 18.  Results for Equation F1 
Algorithm Recall Precision Average 

fitness 
Bernier Biggest Difference Method 0.9800 0.7044 0.863015 
Bernier Biggest Proportion Method 1.0000 0.6012 0.829098 
Goldberg and Richardson’s Fitness 
Sharing 

0.9000 0.6570 0.8590 

Kao and Zahara Genetic Algorithm 
and Particle Swarm  

0.2000 0.9890 0.9855 

SCGA 0.9800 0.9250 0.9630 
DSGA (R+, S-) 0.9800 0.9376 0.9714 
DSGA (R-, S-) 0.9800 0.9158 0.9754 
DSGA (R∆, S-) 0.9400 0.9537 0.9859 
DSGA (R+, FS) 0.9800 0.9568 0.4839 
DSGA (R-, FS) 0.9800 0.8749 0.9667 
DSGA (R∆, FS) 0.9800 0.9425 0.9754 
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 Figure 4.  Chart of Recall and Precision for F1 
 
     Bernier’s (1996) algorithms did not outperform all of the other algorithms in all 

criteria.  No algorithm tested could locate as many peeks as Biggest Proportion Method, 

100%.  However, SCGA and five of the six DSGA algorithms located 0.9800 of them, 

which is the number that Biggest Difference Method found.  The algorithm that had the 

fewest individuals outside of the peeks was the Genetic Algorithm and Particle Swarm 

Optimization algorithm.  The algorithm with the highest average fitness was DSGA (R∆, 

S-).  However, DSGA (R+, FS) had the lowest average fitness.   
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Results of Algorithms on F2 

     The F2 function also is a sine wave that has five local maximums all of equal 

magnitude.  However, in F2 the optima are increasingly closer together.  Table 19 shows 

the results of the average of 10 trials for function F2.  Data provided for Biggest 

Difference Method and Biggest Proportion Method comes from Bernier (1996).  Figure 5 

shows a chart of the precision and recall. 

Table 19.  Results for Equation F2 
Algorithm Recall Precision Average 

fitness 
Bernier Biggest Difference Method 0.8220 0.8095 0.891414 
Bernier Biggest Proportion Method 1.0000 0.7187 0.854766 
Goldberg and Richardson’s Fitness 
Sharing 

0.9400 0.7400 0.8808 

Kao and Zahara Genetic Algorithm 
and Particle Swarm  

0.2200 0.9850 0.9831 

SCGA 0.7400 0.9830 0.9801 
DSGA (R+, S-) 0.8000 0.9626 0.9888 
DSGA (R-, S-) 0.8400 0.9574 0.9862 
DSGA (R∆, S-) 0.8200 0.9577 0.9894 
DSGA (R+, FS) 0.8600 0.9138 0.4897 
DSGA (R-, FS) 0.8200 0.9156 0.9806 
DSGA (R∆, FS) 0.8200 0.9292 0.9834 
 

     As in F1 no algorithm could meet Biggest Proportion Method in locating 100% of the 

peeks.  The closest algorithm for this criterion was the Fitness Sharing method with 

0.9400 peeks located.  The Genetic Algorithm and Particle Swarm algorithm had the 

fewest proportion of individuals outside of the peeks, but only found 22% of the optima.  

In the average fitness criterion all of the DSGA algorithms did well with the exception of 

DSGA (R+, FS).   
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 Figure 5.  Chart of Recall and Precision for F2 
 

Results of Algorithms on F3 

     The function F3 is similar to F2 except that it has 10 optima instead of five.  Table 20 

shows the results for function F3 and Figure 6 is a chart of the results.  As stated 

previously data for Biggest Difference Method and Biggest Proportion Method comes 

from Bernier (1996). 

Table 20.  Results for Equation F3 
Algorithm Recall Precision Average 

fitness 
Bernier Biggest Difference Method 0.6822 0.6495 0.848098 
Bernier Biggest Proportion Method 0.8880 0.5247 0.806407 
Goldberg and Richardson’s Fitness 
Sharing 

0.6400 0.6170 0.8477 

Kao and Zahara Genetic Algorithm 
and Particle Swarm  

0.1000 0.9840 0.9868 

SCGA 0.5800 0.9180 0.9658 
DSGA (R+, S-) 0.6200 0.9570 0.8979 
DSGA (R-, S-) 0.6700 0.9410 0.9786 
DSGA (R∆, S-) 0.6300 0.9561 0.9882 
DSGA (R+, FS) 0.6900 0.8924 0.4889 
DSGA (R-, FS) 0.7400 0.8995 0.9682 
DSGA (R∆, FS) 0.6600 0.9090 0.9770 
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 Figure 6.  Chart of Recall and Precision for F3 
 

     Biggest Proportion Method located all of the peeks in the function with DSGA (R-, 

FS) locating the second most peeks at 0.7400.  As in the previous benchmarks the 

Genetic Algorithm and Particle Swarm Optimization algorithm had the least number of 

individuals outside of a peek.  DSGA (R∆, S-) had the greatest average fitness of the last 

50 generations with a fitness of 0.9882.   

 

Results of Algorithms on F4 

     The function F4 is similar to F3 except that the 10 optima are even closer together.  

Table 21 shows the results of the average of the 10 trials.  Figure 7 is a chart of the 

precision and recall for the algorithms for F4. 

     For this function Biggest Proportion Method outperforms all of the other algorithms in 

proportion of peeks found by at least 0.3.  As in all other functions the Genetic Algorithm 

and Particle Swarm Optimization algorithm produced the best results for the proportion 

of points outside of the peeks.  The algorithm that had the greatest average fitness in the 



82 

 

last 50 generations was the DSGA (R+, S-) algorithm.  The ranking of algorithms for the 

different criteria in F4 is very similar to that of F3. 

Table 21.  Results for Equation F4 
Algorithm Recall Precision Average 

fitness 
Bernier Biggest Difference Method 0.5480 0.7327 0.742360 
Bernier Biggest Proportion Method 0.89866 0.6738 0.611701 
Goldberg and Richardson’s Fitness 
Sharing 

0.5800 0.7170 0.8546 

Kao and Zahara Genetic Algorithm 
and Particle Swarm  

0.1000 0.9800 0.9852 

SCGA 0.4600 0.9440 0.9698 
DSGA (R+, S-) 0.5200 0.9544 0.9881 
DSGA (R-, S-) 0.5200 0.9438 0.9832 
DSGA (R∆, S-) 0.5100 0.9642 0.9834 
DSGA (R+, FS) 0.6500 0.8814 0.4775 
DSGA (R-, FS) 0.6400 0.9194 0.9750 
DSGA (R∆, FS) 0.6300 0.9041 0.9702 
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Figure 7.  Chart of Recall and Precision for F4 
 
 

Results of Algorithms on F5 

     Function F5 is the first function that has optima of different magnitudes.  It has five 

optima of decreasing fitness.  Table 22 shows the results for function F5 for 10 trials of 

the algorithms implemented.  Figure 8 is a chart of the recall and precision. 
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Table 22. Results for Equation F5 
Algorithm Recall Precision Average 

fitness 
Bernier Biggest Difference Method 0.9336 0.8598 0.694831 
Bernier Biggest Proportion Method 1.0000 0.8335 0.584304 
Goldberg and Richardson’s Fitness 
Sharing 

0.9400 0.7580 0.5648 

Kao and Zahara Genetic Algorithm 
and Particle Swarm  

0.2000 0.9790 0.8165 

SCGA 0.1000 0.9900 0.8615 
DSGA (R+, S-) 0.2000 0.9541 0.8601 
DSGA (R-, S-) 0.1000 0.9670 0.8588 
DSGA (R∆, S-) 0.1000 0.9521 0.8602 
DSGA (R+, FS) 0.1000 0.9496 0.4302 
DSGA (R-, FS) 0.1000 0.9511 0.8599 
DSGA (R∆, FS) 0.2000 0.9396 0.8587 
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 Figure 8.  Chart of Recall and Precision for F5 
 

     Three algorithms did very well in locating peeks: Biggest Difference Method, Biggest 

Proportion Method and Fitness Sharing.  Each located 0.9336 or more optima.  All of the 

other algorithms did poorly finding no more than 0.2 optima.  SCGA had the most 

number of individuals tracking a peek with 0.99.  The algorithm with the best average 

fitness was DSGA (R∆, S-). 

 



84 

 

Results of Algorithms on F6 

     Function F6 has 10 optima of decreasing fitness.  The results for function F6 are 

shown in Table 23.  The recall and precision are shown in Figure 9.   

Table 23.  Results for Equation F6 
Algorithm Recall Precision Average 

fitness 
Bernier Biggest Difference Method 0.7480 0.8247 0.682606 
Bernier Biggest Proportion Method 0.9788 0.7891 0.614887 
Goldberg and Richardson’s Fitness 
Sharing 

0.8800 0.7110 0.6799 

Kao and Zahara Genetic Algorithm 
and Particle Swarm  

0.1000 0.9810 0.9345 

SCGA 0.1100 0.9900 0.9860 
DSGA (R+, S-) 0.2100 0.9738 0.9759 
DSGA (R-, S-) 0.2600 0.9608 0.9816 
DSGA (R∆, S-) 0.2800 0.9692 0.9739 
DSGA (R+, FS) 0.3400 0.9281 0.4885 
DSGA (R-, FS) 0.2600 0.9370 0.9822 
DSGA (R∆, FS) 0.2900 0.9390 0.9708 
 

     Once again Biggest Difference Method, Biggest Proportion Method and Fitness 

Sharing did very well at locating peeks and the other algorithms did not.  SCGA did the 

best at having the least number of individuals outside of the peeks and also had the 

highest average fitness.  The DSGA algorithms did poorly at locating peeks, finding no 

more than 0.3400 of them.  However, they did very well at having very high average 

fitness of the last 50 generations.   
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 Figure 9.  Chart of Recall and Precision for F6 

 

Results of Algorithms on F7 

     The benchmark function F7 has three local optima.  The global optimum is at (0, 0).  

One criterion for this function is the F(x, y) value of the best individual for each of the 

three optima.  Since this is a minimization problem, smaller values are advantageous.  

The data for the hK1 Triangulation Algorithm came from Zhang, et al. (2008).  The data 

for the other algorithms came from the implementation of the algorithms for this 

research.  The results of this test can be seen in Table 24.  Figure 10 shows the recall. 
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 Figure 10.  Chart of Recall for F7 
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Table 24.  Results for Equation F7 

Algorithm F(x, y) of best 
individual for each 

niche 

Recall 

Zhang, Shang, Gao and Dong hK1 
Triangulation Algorithm 

0.000015 
0.003706 
0.003706 

1.0000 

   

Goldberg and Richardson’s Fitness 
Sharing 

0.527280 
0.077355 
0.94090 

0.7333 

   

SCGA 
0.415233 
0.000919 
0.439676 

0.7667 

   

Kao and Zahara Genetic Algorithm 
and Particle Swarm 

1.082841 
0.000003 
1.001006 

0.5333 

   

DSGA (R+, S-) 
0.318560 
0.000545 
0.320355 

1.0000 

   

DSGA (R-, S-) 
0.326982 
0.003262 
0.313548 

0.5333 

   

DSGA (R∆, S-) 
0.372950 
0.001551 
0.355833 

0.7000 

   

DSGA (R+, FS) 
0.324833 
0.004004 
0.324392 

0.9667 

   

DSGA (R-, FS) 
0.325207 
0.002342 
0.317107 

0.6000 

   

DSGA (R∆, FS) 
0.306499 
0.002572 
0.319992 

0.6667 
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     The algorithms that were implemented did not find all of the optima in all of the trials.  

This was the reason that the proportion of peeks criterion is included in this results 

section.  Zhang, et al. (2008) did not specifically state how many optima their algorithm 

located.  It is assumed that all trials located all three optima.   

     After averaging the sum of 10 trials for each algorithm implemented, the hK1 

Triangulation Algorithm did the best for optima 1 and 3.  Optimum 2 was the global 

minimum of (0, 0).  For this optimum the Genetic Algorithm and Particle Swarm 

Optimization algorithm performed best.  Of the algorithms implemented only DSGA 

(R+, S-) found all of the peeks in all 10 trials.  This is impressive since it is only an 

assumption that the hK1 Triangulation Algorithm located all of them. 

 

Results of Algorithms on F8 

     Function F8 has been discussed in Chapter 1 and is the best example of the types of 

functions that DSGA was developed to solve.  This function has arbitrarily close optima.  

Between the x values of 0 and 10, there are 16 optima.  Most of the optima are within the 

radius value of other optima.  All of the algorithms for this benchmark function were 

implemented as part of this research.  The results of the average of 10 trials can be seen 

in Table 25. 

     DSGA overwhelmingly outperformed the other algorithms in many of the criteria.  All 

six of the DSGA algorithms found more peeks than any of the other algorithms.  The 

Genetic Algorithm and Particle Swarm Optimization algorithm had the least number of 

individuals outside of a peek and had the highest average fitness for the last 50 
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generations.  However, for proportion of points outside of peeks and average fitness, all 

DSGA algorithms did better than the Fitness Sharing algorithm. 

Table 25.  Results for Equation F8 
Algorithm Recall Precision Average 

fitness 
Goldberg and Richardson’s Fitness 
Sharing 

0.4375 0.2800 1.6982 

Kao and Zahara Genetic Algorithm 
and Particle Swarm  

0.0875 0.8040 7.7072 

SCGA 0.8625 0.7640 6.7078 
DSGA (R+, S-) 0.9625 0.5930 6.4542 
DSGA (R-, S-) 0.9688 0.5050 5.9423 
DSGA (R∆, S-) 0.9313 0.5479 6.6220 
DSGA (R+, FS) 0.9500 0.3736 5.4074 
DSGA (R-, FS) 0.9500 0.4225 5.7020 
DSGA (R∆, FS) 0.9563 0.3691 5.4805 
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 Figure 11.  Chart of Recall and Precision for F8 

 

Summary of Results 

     This chapter provides the results of six algorithms derived from the DSGA framework 

compared to six other NGAs.  Research results came from eight benchmark functional 

optimization problems, seven of which had been used in prior research.  The benchmark 

functions covered many different functional optimization problems, including 
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minimization and maximization problems and two and three dimensional problems.  Each 

optimization problem used two or three criteria.   

     Results from the Genetic Algorithm and Particle Swarm Optimization algorithm did 

poorly for most criteria.  These results do not correspond to other results for this 

algorithm (Kao & Zahra, 2008).  Two factors could explain this.  First the controlled 

parameters used in Bernier (1996) may not be the best parameter settings for this 

algorithm.  Perhaps with a different mutation rate or population size this algorithm would 

have located more optima.  Kao and Zahra (2008) noted that higher mutations rates 

increase the algorithm’s ability to locate optima.  Second, results published in Kao and 

Zahra (2008) represented individuals as a vector of real numbers instead of a binary 

implementation.  This research kept the chromosome representation as binary since the 

other algorithms were coded using binary representations.  Other research indicates that 

chromosome representation can affect results in GAs (Golub, 1996).  This could explain 

the poor performance of the Genetic Algorithm and Particle Swarm Optimization 

algorithm. 

     Each algorithm performed differently against this set of benchmark functions.  Some 

performed consistently well, others performed poorly.  Appendix A Table 26 shows how 

the algorithms ranked for each benchmark and criteria.  A ranking of one is the best 

performing algorithm.  Higher ranking algorithms did not perform as well as lower 

ranking ones for the given criteria.  Results shown in this table for function F7 with 

criteria of F(x, y) of best individuals for each niche, shows the results of the sum of the 

three best F(x, y) values.  While algorithm performance varied widely, no single 

algorithm proved superior. 
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Chapter 5 

Conclusions, Implications, Recommendations and Summary 

 

     This chapter discusses the conclusions, implications, recommendations and summary 

of this research.  There is a section in this chapter for each of these four topics.  The 

conclusion section analyzes the results against the hypothesis.  The implications section 

discusses the impact of this research and the contribution to the field.  The 

recommendations section presents future research ideas.  The summary section 

summarizes this research.   

 

Conclusions 

     The DSGA framework was developed to solve functional optimization problems for 

continuous functions when the optima are arbitrarily close.  The framework allows for the 

creation of multiple algorithms.  There are two categories of strategies.  The first category 

is how to change the radius as the algorithm runs.  The second category addresses how to 

encourage exploration in the domain.  The DSGA framework provides a foundation for 

the building of a variety of algorithms to solve for arbitrarily close optima. 

     The first goal of this research was to develop an algorithm to solve for arbitrarily close 

optima.  The benchmark function F8 which is shown in Figure 1 is an example of one 

such function.  In this example a majority of the optima are within the radius value of 

each other.  All six DSGA algorithms did well in locating optima for F8.  They located 
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93.13% to 95% of the optima.  The three other algorithms tested only located 86.25%, 

43.75% and 8.75% of the optima.  The DSGA framework is remarkably good at locating 

arbitrarily close optima.  Results for F8 indicate that this goal was met by the DSGA 

framework. 

     The second goal of this research was to develop an algorithm that will work equally 

well for other types of problems.  Excluding F8, there were 20 combinations of 

benchmark functions and criteria.  Six benchmark functions had three criteria and one 

benchmark function had two criteria.  Of these 20 combinations there were six 

combinations in which a DSGA algorithm was ranked one.  So, in 30% of the cases a 

DSGA algorithm outperformed all other algorithms.  Of the 14 combinations in which 

DSGA was not ranked one, it was ranked two in seven combinations.  While DSGA 

algorithms did not always rank number one, results seem to indicate that it does equally 

well against other types of problems.   

     The first hypothesis of this research was that finding optima in phases is a better 

strategy for locating arbitrarily close optima.  All results showed that this is a good 

strategy for these types of problems.  Consider the DSGA (R+, S-) and the DSGA (R+, 

FS) algorithms.  The beginning radius value was 0.1 and it increased by 0.015 each of the 

four phases that the algorithm performed.  This means that the four values of the radius 

were 0.1, 0.115, 0.130 and 0.145.  Of the 16 optima for F8 all but two had other optima 

within these four radii.  Multiple optima within a radius will cause problems for NGAs 

(Ando & Kobayashi, 2005).  But the two DSGA algorithms located 96.25% and 95.0% of 

the optima.  This occurred because each phase located some optima and removed them 

from the search through the two exploration strategies to allow the algorithm to locate the 
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other optima with the remaining phases.  The SCGA algorithm, which performed only 

one phase, only located 86.25% of the optima.  The approach to solving arbitrarily close 

optima problems in phases is supported by these results. 

     The second hypothesis was that traditional NGAs do poorly against arbitrarily close 

optima because of their use of a static radius.  Changing the radius as the algorithm runs 

compensates for the difficulty in solving these types of problems.  Results from this 

research confirmed this hypothesis.  DSGA and SCGA are very similar.  SCGA has a 

static radius and DSGA has a dynamic radius.  With the exception of benchmark function 

F1, a DSGA algorithm found as many or more optima as SCGA.  In F1 the distance 

between optima was greater than the radius.  As more optima exist within the radius, the 

ability for SCGA to locate optima decreased to about half of what DSGA located.  

Varying the radius as the algorithm runs helped in adjusting for poorly chosen radius 

values.   

     Determining which DSGA strategies were the best is difficult.  All six of the DSGA 

algorithms performed against the benchmarks equally well.  One exception to this 

observation is the DSGA (R+, FS) algorithm.  This algorithm consistently had an average 

fitness about half of what the other DSGA algorithms had.  The average fitness criterion 

was the average fitness of the last 50 generations.  This is a difficult criterion for DSGA, 

because DSGA removes optima from the population when they are placed on the tabu 

list.  The DSGA (R+, FS) algorithm did perform well at locating the optima.  One 

explanation for this low average fitness could be in the order that DSGA (R+, FS) located 

the optima.  It could have located the fittest optima first and be left with the least fit ones 
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in the final generations.  With a few exceptions all six DSGA algorithms performed 

equally well across the benchmark criteria. 

     This research has demonstrated that the DSGA framework is very effective at solving 

problems with arbitrarily close optima.  Its ability to solve other types of problems is 

comparable to other NGAs.  Many factors attribute to DSGA's ability to solve such 

problems.  Finding optima in phases and then removing them from the search space 

allows the algorithm to decompose the problem and find answers iteratively.  The use of 

a tabu list to store areas of the domain that have been investigated and found to be 

optimal allows DSGA to encourage exploration into other areas of the domain.  Changing 

the radius as the algorithm executes compensates for poor radius choices that limit other 

NGAs.  DSGA even proved successful when all of the radius values had multiple optima 

within them.  Results for DSGA showed that it was successful at solving many types of 

functional optimization problems. 

 

Implications 

     The results of this research can be useful in a variety of areas.  The DSGA framework 

has been shown to be successful in locating optima for problems with arbitrarily close 

optima.  When it is known or suspected that a function has arbitrarily close optima a 

DSGA algorithm would be appropriate in locating maximums and minimums.  Results of 

this research show that it locates more optima than other NGAs for these types of 

problems. 

     Another area that the DSGA framework has implications in is when there is little or no 

knowledge of where the optima are located.  Without proper parameter settings many 
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NGAs have difficulty locating optima.  DSGA algorithms do very well locating optima 

even when the radius parameter is set incorrectly.  Other NGAs have difficulties locating 

optima when a poor radius parameter is selected. 

     This research also introduced a new benchmark function, F8.  Results against other 

NGAs showed that this function is difficult to solve for many NGAs.  This function could 

be used in future research to test other NGAs.   

 

Recommendations 

     While the results of this research support the hypotheses, there are still unanswered 

questions about this approach.  More research could be done to provide a better 

understanding of the value that DSGA has.  The following are some areas where more 

research is recommended. 

     DSGA has been tested against eight benchmark functions.  While seven of the eight 

functions have been used in other NGA research, DSGA has not been applied to real-

world problems.  Future research could be done to test DSGA against real-world 

problems like those outlined in Chapter 1: handwriting matching, electromagnetic system 

design and data mining classification. 

     DSGA has a variety of parameters and implication considerations.  In addition to 

traditional GA parameters like population size, number of chromosomes and number of 

generations, there are specific parameters like radius and radius delta.  The fitness sharing 

strategy in this researched used the power law function, but many other functions could 

be used to implement this strategy.  More research with other parameters and 

implementation considerations could be conducted. 
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     The DSGA framework enhances the SCGA algorithm.  It enhances it based upon a 

few principles: locating optima in phases and then excluding optima in future 

generations, use of a tabu list to store optimal candidates and changing the radius as the 

algorithm runs.  All of these have shown to be very useful enhancements to the SCGA 

algorithm, but they could be applied to other NGAs.  Research that applies these 

principles to another NGA would provide additional evidence that this approach is 

correct. 

     These recommendations highlight some additional areas of research that could be 

undertaken.  The DSGA framework has generated six algorithms that prove to be very 

useful for some types of problems.  However, they have only been tested against eight 

functional optimization problems.  Additional research can better define the usefulness of 

DSGA. 

 

Summary 

     GAs can be useful tools for searching large, complex domain spaces.  GAs do very 

well when searching for a single optimum.  But when they attempt to locate multiple 

optima, they often fail.  GAs have two competing forces that act upon the population.  

Mutation expands the area of the domain that is being searched.  This exploration 

increases the area of the search space.  Selection and crossover eliminate areas of the 

domain and focus the search on ever shrinking areas of the domain.  This exploitation 

reduces the area of the search space.  In every GA selection and crossover eventually win 

out and the population converges.   
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Classify NGAs 

     NGAs are a specific type of GA that employ novel methods to prevent the exploitation 

force from removing optima in the domain space.  Currently there are many NGAs, 

which can be classified as fitness sharing methods, crowding methods and other methods.  

This research provides multiple examples of all three categories. 

     In fitness sharing methods special fitness functions are used.  These functions alter the 

fitness of individuals based upon how far they are from other individuals in the 

population.  More isolated individuals are given preference to increase their chances of 

being selected for crossover.  This provides preservation for individuals that are in low 

populated areas of the domain.   

     A second category of NGAs is crowding methods.  In crowding methods individuals 

from one generation are promoted into the next generation.  These individuals are often 

the fittest individuals in a specific area of the domain.  Crowding methods prevent the 

exploitation forces of fit optimum from eclipsing weaker optima by directly maintaining 

interesting individuals.   

     There are some NGAs that do not easily fit into the fitness sharing or crowding 

categories.  The other category groups these methods.  Some of these methods are other 

GAs that solve multiple optima problems, like Cellular Genetic Algorithms.  Many 

methods in this category are hybrid methods.  These methods combine GAs with other 

search algorithms, like the Particle Swarm Optimization and the Tabu Search.  This other 

category classifies NGAs that solve multiple optima problems but do not use fitness 

sharing or crowding approaches. 
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DSGA Framework 

     One problem that many NGAs have is that when optima become arbitrarily close they 

have difficulty locating all of the optima.  Most NGAs have some radius parameter.  

When searching the domain the parameter is used to determine how large an area of the 

domain should be to make it worth preserving.  The algorithm assumes that if two 

individuals are within the radius, they are tracking the same optima.  But this may not be 

the case.  An issue arises when no matter how small the radius is set to; there is some area 

of the domain that has multiple optima within the radius (Ando & Kobayashi, 2005).  

When this happens one optimum is often preserved and the others are lost.  This makes 

functional optimization problems of continuous functions that have arbitrarily close 

optima difficult for NGAs to solve. 

     DSGA is a new NGA framework developed to solve functional optimization problems 

of continuous functions that have arbitrarily close optima.  The DSGA framework is 

based upon the SCGA algorithm.  The SCGA algorithm is a crowding NGA, but was not 

developed to specifically address problems of arbitrarily close optima.  The 

enhancements made to SCGA are supported by other research. 

    SCGA is a crowding NGA.  It identifies interesting individuals within a population.  

These individuals are called seeds.  Seeds get promoted into the next generation.  Seed 

selection begins by sorting a population by the fitness of each individual.  Individuals are 

evaluated from the fittest to the least fit.  A radius parameter is used to define the area 

around a seed.  As individuals are evaluated, if they are not within the radius of an 

existing seed, the individual is added to the list of seeds.  SCGA uses normal selection, 

crossover and mutation.  When the next generation is created SCGA replaces members of 
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this new generation with individuals on the list of seeds.  Each seed replaces the weakest 

individual in the new generation that is within the radius of the seed in the domain space.  

After all of the seeds are promoted into the next generation the list of seeds is empted and 

individuals must compete again to be a seed.  This allows SCGA to preserve these 

individuals into the next generation. 

    DSGA enhances SCGA in a number of ways.  DSGA does not attempt to locate optima 

in a single loop.  It runs a series of generations in an attempt to locate some optima.  

Optima and seeds are placed on a short term memory structure, called a tabu list.  Then it 

encourages exploration into other areas of the domain to locate undiscovered optima.  

DSGA has a radius parameter, which often is a limitation for most NGAs.  DSGA 

overcomes the problem of having multiple optima within the radius, by varying the radius 

as the algorithm runs.  DSGA uses two strategies to vary the radius and two methods to 

encourage exploration.   

     DSGA has two strategies for varying the radius.  It has two parameters concerning the 

radius.  DSGA has a radius parameter and a radius delta parameter.  After a series of 

generations are created, DSGA changes the radius by the radius delta parameter.  The two 

strategies for varying the radius are to always increase or decrease the radius and vary the 

radius based upon some condition.  The condition to vary the radius is arbitrary, but the 

strategy was developed to use run-time information to determine if the radius should be 

increased or decreased. 

     There are two strategies for encouraging exploration in DSGA.  One is based upon the 

fitness sharing method.  A fitness function is defined in such a way that it decreases an 

individual’s fitness the closer that the individual is to members of the tabu list.  This 
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differs from other fitness sharing algorithms that vary the fitness based upon how close 

individuals are to other individuals in the population.  This encourages exploration into 

other areas of the domain.  The second strategy for encouraging exploration prevents 

individuals from being seeds.  If an individual is within the radius of an individual on the 

tabu list, it is excluded from being a seed.  These two strategies encourage exploration in 

DSGA. 

 

Research Results 

     The research had two goals and two hypotheses.  The first goal was to develop an 

NGA that could solve problems with arbitrarily close optima.  The second goal was that 

this NGA would perform as well as other NGAs for other types of problems.  The first 

hypothesis was that finding optima in phases, increases a NGAs chances of finding 

arbitrarily close optima.  The second hypothesis was that NGAs often miss optima in 

problems with arbitrarily close optima because of static radius.  Eight functional 

optimization problems for continuous functions were used to test these goals and 

hypotheses. 

     DSGA was compared to six other NGAs with eight benchmark functional 

optimization problems.  Each benchmark function had two or three criteria to be judged 

against.  One specific function had ever increasing arbitrarily close optima.  In one area 

of this domain the function had multiple optima within the radius.   

     The results of this research support the two hypotheses and show that the two goals 

were met.  Each of the six combinations of DSGA strategies located more optima than 

any of the other algorithms tested for the benchmark function with arbitrarily close 
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optima.  It even located more optima than SCGA, which shows that the ability to locate 

arbitrarily close optima was not inherent in SCGA.  Rather this ability came from the 

enhancement that this research made in DSGA.  For the other seven benchmark functions 

DSGA performed equally well as other algorithms.  This research indicates that locating 

optima in phases works better for arbitrarily close optima and that static radius often 

prevent other NGAs from locating such optima. 

 

Conclusions 

     DSGA is a new NGA framework that was designed specifically to locate optima in 

problems that have arbitrarily close optima.  For problems in which multiple optima 

existed within the radius, all DSGA algorithms located more optima than any of the other 

algorithms used.  DSGA does a respectable job against other functional optimization 

problems.  The results of this research show that the DSGA framework does very well 

against functional optimization problems. 

     The DSGA performance comes from two factors.  Locating optima in phases and then 

encouraging exploration away from the located optima, simplifies the problem.  This 

makes locating optima easier.  Varying the radius as the algorithm runs compensates for 

poor radius choices.  These two characteristics of DSGA make it a useful search 

technique. 

     DSGA is a new NGA framework.  It was developed to solve for functional 

optimization of continuous functions when the optima are arbitrarily close.  However, 

DSGA results for problems that do not have arbitrarily close optima were comparable to 
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other NGAs.  The DSGA framework provides a new NGA approach that leverages 

existing NGA research. 
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Appendix A 

Ranking of Algorithms 

Table 26.  Ranking of Algorithms 
Benchmark 

Criteria 
Rank Ranked Algorithm 

 
 
 
 
F1 Proportion of 
Peeks 

1 Bernier Biggest Proportion Method 
2 Bernier Biggest Difference Method 
2 SCGA 
2 DSGA (R+, S-) 
2 DSGA (R-, S-) 
2 DSGA (R+, FS) 
2 DSGA (R-, FS) 
2 DSGA (R∆, FS) 
3 DSGA (R∆, S-) 
4 Goldberg and Richardson’s Fitness Sharing 
5 Kao and Zahara Genetic Algorithm and Particle Swarm  

   
 
 
 
F1 Proportion of 
points outside of 
peaks 

1 Kao and Zahara Genetic Algorithm and Particle Swarm  
2 DSGA (R+, FS) 
3 DSGA (R∆, S-) 
4 DSGA (R∆, FS) 
5 DSGA (R+, S-) 
6 SCGA 
7 DSGA (R-, S-) 
8 DSGA (R-, FS) 
9 Goldberg and Richardson’s Fitness Sharing 
10 Bernier Biggest Difference Method 
11 Bernier Biggest Proportion Method 

   
 
 
 
 
 
F1 Average fitness 

1 DSGA (R∆, S-) 
2 Kao and Zahara Genetic Algorithm and Particle Swarm  
3 DSGA (R-, S-) 
3 DSGA (R∆, FS) 
4 DSGA (R+, S-) 
5 DSGA (R-, FS) 
6 SCGA 
7 Goldberg and Richardson’s Fitness Sharing 
8 Bernier Biggest Difference Method 
9 Bernier Biggest Proportion Method 
10 DSGA (R+, FS) 
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Table 26.  Ranking of Algorithms Continued 
Benchmark 

Criteria 
Rank Ranked Algorithm 

 
 
 
 
 
F2 Proportion of 
Peeks 

1 Bernier Biggest Proportion Method 
2 Goldberg and Richardson’s Fitness Sharing 
3 DSGA (R+, FS) 
4 DSGA (R-, S-) 
5 Bernier Biggest Difference Method 
6 DSGA (R∆, S-) 
6 DSGA (R-, FS) 
6 DSGA (R∆, FS) 
7 DSGA (R+, S-) 
8 SCGA 
9 Kao and Zahara Genetic Algorithm and Particle Swarm 

   
 
 
 
F2 Proportion of 
points outside of 
peaks 

1 Kao and Zahara Genetic Algorithm and Particle Swarm 
2 SCGA 
3 DSGA (R+, S-) 
4 DSGA (R∆, S-) 
5 DSGA (R-, S-) 
6 DSGA (R∆, FS) 
7 DSGA (R-, FS) 
8 DSGA (R+, FS) 
9 Bernier Biggest Difference Method 
10 Goldberg and Richardson’s Fitness Sharing 
11 Bernier Biggest Proportion Method 

   
 
 
 
 
 
F2 Average fitness 

1 DSGA (R∆, S-) 
2 DSGA (R+, S-) 
3 DSGA (R-, S-) 
4 DSGA (R∆, FS) 
5 Kao and Zahara Genetic Algorithm and Particle Swarm 
6 DSGA (R-, FS) 
7 SCGA 
8 Bernier Biggest Difference Method 
9 Goldberg and Richardson’s Fitness Sharing 
10 Bernier Biggest Proportion Method 
11 DSGA (R+, FS) 

 



104 

 

Table 26.  Ranking of Algorithms Continued 
Benchmark 

Criteria 
Rank Ranked Algorithm 

 
 
 
 
F3 Proportion of 
Peeks 

1 Bernier Biggest Difference Method 
2 DSGA (R-, FS) 
3 DSGA (R+, FS) 
4 Bernier Biggest Proportion Method 
5 DSGA (R-, S-) 
6 DSGA (R∆, FS) 
7 Goldberg and Richardson’s Fitness Sharing 
8 DSGA (R∆, S-) 
9 DSGA (R+, S-) 
10 SCGA 
11 Kao and Zahara Genetic Algorithm and Particle Swarm 

   
 
 
 
 
F3 Proportion of 
points outside of 
peaks 

1 Kao and Zahara Genetic Algorithm and Particle Swarm 
2 DSGA (R+, S-) 
3 DSGA(R∆, S-) 
4 DSGA (R-, S-) 
5 SCGA 
6 DSGA (R∆, FS) 
7 DSGA (R-, FS) 
8 DSGA (R+, FS) 
9 Bernier Biggest Difference Method 
10 Goldberg and Richardson’s Fitness Sharing 
11 Bernier Biggest Proportion Method 

   
 
 
 
 
F3 Average fitness 

1 DSGA (R∆, S-) 
2 Kao and Zahara Genetic Algorithm and Particle Swarm 
3 DSGA (R-, S-) 
4 DSGA (R∆, FS) 
5 DSGA (R-, FS) 
6 SCGA 
7 DSGA (R+, S-) 
8 Bernier Biggest Difference Method 
9 Goldberg and Richardson’s Fitness Sharing 
10 Bernier Biggest Proportion Method 
11 DSGA (R+, FS) 
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Table 26.  Ranking of Algorithms Continued 
Benchmark 

Criteria 
Rank Ranked Algorithm 

 
 
 
 
F4 Proportion of 
Peeks 

1 Bernier Biggest Proportion Method 
2 DSGA (R+, FS) 
3 DSGA (R-, FS) 
4 DSGA (R∆, FS) 
5 Goldberg and Richardson’s Fitness Sharing 
6 Bernier Biggest Difference Method 
7 DSGA (R+, S-) 
7 DSGA (R-, S-) 
8 DSGA (R∆, S-) 
9 SCGA 
10 Kao and Zahara Genetic Algorithm and Particle Swarm 

   
 
 
 
F4 Proportion of 
points outside of 
peaks 

1 Kao and Zahara Genetic Algorithm and Particle Swarm 
2 DSGA (R∆, S-) 
3 DSGA (R+, S-) 
4 SCGA 
5 DSGA (R-, S-) 
6 DSGA (R-, FS) 
7 DSGA (R∆, FS) 
8 DSGA (R+, FS) 
9 Bernier Biggest Difference Method 
10 Goldberg and Richardson’s Fitness Sharing 
11 Bernier Biggest Proportion Method 

   
 
 
 
 
F4 Average fitness 

1 DSGA (R+, S-) 
2 Kao and Zahara Genetic Algorithm and Particle Swarm 
3 DSGA (R∆, S-) 
4 DSGA (R-, S-) 
5 DSGA (R-, FS) 
6 DSGA – Dynamic Radius; Fitness Sharing 
7 SCGA 
8 Goldberg and Richardson’s Fitness Sharing 
9 Bernier Biggest Difference Method 
10 Bernier Biggest Proportion Method 
11 DSGA (R+, FS) 
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Table 26.  Ranking of Algorithms Continued 
Benchmark 

Criteria 
Rank Ranked Algorithm 

 
 
 
F5 Proportion of 
Peeks 

1 Bernier Biggest Proportion Method 
2 Goldberg and Richardson’s Fitness Sharing 
3 Bernier Biggest Difference Method 
4 Kao and Zahara Genetic Algorithm and Particle Swarm 
4 DSGA (R+, S-) 
4 DSGA (R∆, FS) 
5 SCGA 
5 DSGA (R-, S-) 
5 DSGA (R∆, S-) 
5 DSGA (R+, FS) 
5 DSGA (R-, FS) 

   
 
 
 
F5 Proportion of 
points outside of 
peaks 

1 SCGA 
2 Kao and Zahara Genetic Algorithm and Particle Swarm 
3 DSGA (R-, S-) 
4 DSGA (R+, S-) 
5 DSGA (R∆, S-) 
6 DSGA (R-,  FS) 
7 DSGA (R+, FS) 
8 DSGA (R∆, FS) 
9 Bernier Biggest Difference Method 
10 Bernier Biggest Proportion Method 
11 Goldberg and Richardson’s Fitness Sharing 

   
 
 
 
 
F5 Average fitness 

1 SCGA 
2 DSGA (R∆, S-) 
3 DSGA (R+, S-) 
4 DSGA (R-, FS) 
5 DSGA (R-, S-) 
6 DSGA (R∆, FS) 
7 Kao and Zahara Genetic Algorithm and Particle Swarm 
8 Bernier Biggest Difference Method 
9 Bernier Biggest Proportion Method 
10 Goldberg and Richardson’s Fitness Sharing 

11 DSGA (R+, FS) 
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Table 26.  Ranking of Algorithms Continued 
Benchmark 

Criteria 
Rank Ranked Algorithm 

 
 
 
 
 
F6 Proportion of 
Peeks 

1 Bernier Biggest Proportion Method 
2 Goldberg and Richardson’s Fitness Sharing 
3 Bernier Biggest Difference Method 
4 DSGA (R+, FS) 
5 DSGA (R∆, FS) 
5 DSGA (R∆, S-) 
6 DSGA (R-, S-) 
7 DSGA (R-, FS) 
8 DSGA (R+, S-) 
9 SCGA 
10 Kao and Zahara Genetic Algorithm and Particle Swarm 

   
 
 
 
F6 Proportion of 
points outside of 
peaks 

1 SCGA 
2 Kao and Zahara Genetic Algorithm and Particle Swarm 
3 DSGA (R+, S-) 
4 DSGA (R∆, S-) 
5 DSGA (R-, S-) 
6 DSGA (R∆, FS) 
7 DSGA (R-, FS) 
8 DSGA (R+, FS) 
9 Bernier Biggest Difference Method 
10 Bernier Biggest Proportion Method 
11 Goldberg and Richardson’s Fitness Sharing 

   

 
 
 
 
F6 Average fitness 

1 DSGA (R-, FS) 
2 DSGA (R-, S-) 
3 DSGA (R+, S-) 
4 DSGA (R∆, S-) 
5 DSGA (R∆, FS) 
6 Kao and Zahara Genetic Algorithm and Particle Swarm 
7 Bernier Biggest Difference Method 
8 Goldberg and Richardson’s Fitness Sharing 
9 Bernier Biggest Proportion Method 
10 DSGA (R+, FS) 
11 SCGA 
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Table 26.  Ranking of Algorithms Continued 
Benchmark 

Criteria 
Rank Ranked Algorithm 

 
 
 
F7 F(x, y) of Best 
Individual for Each 
Niche 

1 Zhang, Shang, Gao and Dong hK1 Triangulation 
Algorithm 

2 DSGA (R∆, FS) 
3 DSGA (R+, S-) 
4 DSGA (R-, S-) 
5 DSGA (R-, FS) 
6 DSGA (R+, FS) 
7 DSGA (R∆, S-) 
8 SCGA 
9 Goldberg and Richardson’s Fitness Sharing 

   
 
 
 
 
 
F7 Proportion of 
Peeks 

1 Zhang, Shang, Gao and Dong hK1 Triangulation 
Algorithm 

1 DSGA (R+, S-) 
2 DSGA (R+, FS) 
3 SCGA 
4 Goldberg and Richardson’s Fitness Sharing 
5 DSGA (R∆, S-) 
6 DSGA (R∆, FS) 
7 DSGA (R-, FS) 
8 Kao and Zahara Genetic Algorithm and Particle Swarm 
8 DSGA (R-, S-) 

   
 
 
 
F8 Proportion of 
Peeks 

1 DSGA (R-, S-) 
2 DSGA (R+, S-) 
3 DSGA (R∆, FS) 
4 DSGA (R+, FS) 
4 DSGA (R-, FS) 
5 DSGA (R∆, S-) 
6 SCGA 
7 Goldberg and Richardson’s Fitness Sharing 
8 Kao and Zahara Genetic Algorithm and Particle Swarm 

   
 
 
F8 Proportion of 
points outside of 
peaks 

1 Kao and Zahara Genetic Algorithm and Particle Swarm 
2 SCGA 
3 DSGA (R+, S-) 
4 DSGA (R∆, S-) 
5 DSGA (R-, S-) 
6 DSGA (R-, FS) 
7 DSGA (R+, FS) 
8 DSGA (R∆, FS) 
9 Goldberg and Richardson’s Fitness Sharing 
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Table 26.  Ranking of Algorithms Continued 

Benchmark 
Criteria 

Rank Ranked Algorithm 

 
 
 
 
F8 Average fitness 

1 Kao and Zahara Genetic Algorithm and Particle Swarm 
2 SCGA 
3 DSGA (R∆, S-) 
4 DSGA (R+, S-) 
5 DSGA (R∆, S-) 
6 DSGA (R-, FS) 
7 DSGA (R∆, FS) 
8 DSGA (R+, FS) 
9 Goldberg and Richardson’s Fitness Sharing 
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