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accuracy and the amount of variance accounted for allowed for identification of the best 

predictive model, which was analogous to the primary findings in each iteration of model 

testing.   

Predictor z transformation. Transformation of each predictor into a z score was 

done in order to allow for a uniform metric for comparisons within and between logistic 

models with respect to slopes and odds ratios (which were converted to Cohen’s d for 

interpretation). Thus, the z-score transformation of the predictors allowed for the creation 

of a uniform metric that was consistent for each reported variable at each appropriate 

grade level. This method allowed for model comparisons between the current results and 

future studies (McBride & Wise, 2001). Also, this method enabled the direct comparison 

of the magnitude of effects of each of the current predictors on the binary outcome for 

both course enrollment and achievement. It is noted that the z score transformation retains 

the power and precision derived from the raw variable, while ensuring that the variable is 

on a uniform metric across all data points.  

Statistical Modeling Techniques 

Logistic regression predicting academic achievement. This study employed 

logistic regression to predict the odds of course achievement. The logistic regression 

model was selected because this approach allows the outcome to be treated as a discrete 

variable (0 = fail, 1 = pass). It was critical to the model design to treat the outcome as a 

discrete dichotomous variable in order to determine the odds of cases falling into one or 

the other categories of the dependent variable as a function of the independent variables. 

The relationship of the outcome variable to the predictors was not a linear condition 

(Cohen et al., 2003). Rather, to operationalize the regression model for the dichotomous 
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outcomes, a mathematical function (logit-link) is useful because it relates the predictor 

variables to the predicted odds of success or failure as a curvilinear or sigmoid function 

(Cohen et al., 2003). Specifically, the function was the logistic form of regression used to 

predict the odds of success or failure, given a value of X, generated from the normal 

curve, where logistic regression is a special case of the generalized linear model (Cohen 

et al., 2003). In general, the models used a probability range from 0.0 to 1.0, with a cutoff 

value of .50. The classification odds of success or failure were considered as the odds of 

one outcome being in one of the two conditions, given multiple predictors (Cohen et al., 

2003). The predictors for each academic discipline were taken as the average of the 

overall GPA for that subject for each respective academic year, where each letter grade 

was re-coded and treated as though it were on a continuous scale ranging from 0.00 to 

4.00. Regarding demographic attributes, gender, SES, ESE, and ELL were all coded as 

considered dichotomous (e.g., 0.0 = male and 1.0 = female; 0.0 = low SES vulnerability 

and 1.0 high SES vulnerability). Considering race as categorical variables, non-Hispanics 

were set as the reference group for comparison. The total number of days a student was 

absent was coded as a continuous variable where both excused and unexcused absences 

were considered simultaneously as a rate of absenteeism. Likewise, the total number of 

days of suspension was also considered as a continuous input for predictive contribution 

to the final model. Simultaneously, collinearity between absences and suspension was 

controlled for by a subtractive function of the number of days the student was absent less 

the total number of days suspended each academic year. The logit-linking function was 

employed through SPSS to calculate the natural logarithmic mathematical function of the 

odds of the outcome occurring as the predicted probability 𝑝! that is linked to the 
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curvilinear relationship between the predictors to outcome within the parameters of each 

logistic model (Cohen et al., 2003; Osborne, 2015).  

 Model generalizability. In the field of education, policy makers and practitioners 

would benefit from a predictive model that is free from the critical limitations which 

typically befall a model developed from local data suited to a specific purpose, thereby 

reducing generalizability (Vanreusel, Maes, & Van Dyck, 2006). One of the overarching 

goals of this study was to construct predictive models from relatively common predictors 

that are typically available to researchers within most school districts, without the typical 

situational constraints associated with and needed for OLS regression. To evaluate the 

generalizability and robustness of the predictive models, the predictors were 

operationalized and standardized (z transformation) in order to predict both chemistry 

course enrollment and achievement. The predictors were employed in two separate 

iterations for each round of model testing. A direct comparison could be made between 

the full research dataset and a subsample selected from the original dataset. Used for 

replication, the findings of parallel analysis were used to evaluate the classification 

accuracy and variance accounted for between models and to estimate overall 

generalizability of the findings of this research. The generalizability of the predictive 

model testing was, however, limited in scope in order to focus exclusively on the research 

objectives regarding the odds of enrollment and achievement. As detailed in the 

discussion chapter, future research should extend the investigation to other core subjects, 

such as mathematics and English literacy, and explore the effects of the hierarchical 

nature of student cohorts in terms of students nested within classrooms and school sites.  
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Preliminary Data Processing  

Data cleaning and merging. De-identified student data were received from an 

authorized agent of the county Assessment and Accountability Department. A total of 29 

separate data files were received, each containing grade-level specific data for 

demographics, special learning services, absenteeism, suspension by type, academic 

achievement by semester, and FCAT achievement data for each academic year from sixth 

through 10th grade. Each file was linked via the case number. The files were merged, and 

extensive data cleaning was necessary in order to obtain a working research database.  

First, academic records had to be combined by subject in order to constitute a full 

year’s academic progress in a given course of study. To achieve this across two 

semesters, the academic courses were organized by identification code and merged via 

the SPSS “merge file” command. Then, remedial courses not recognized by the Florida 

Department of Education (FLDOE) for core academic credit were eliminated. Students 

with multiple courses for the same core subject per semester were identified, and the 

average of those courses was calculated. Once each core course per grade level was 

calculated, a separate SPSS data file was created in order to further merge course 

enrollment and achievement sequentially by academic year. After the core academic 

courses were merged into one chronological data file, FCAT achievement data were 

added, as were the demographics. In particular, students who had received free or 

reduced-priced lunch were identified as economically vulnerable; in these cases, the SES 

value was set to one. Likewise, students who were not identified by the aforementioned 

SES criteria, the SES vale was set to zero. Similarly, students who received ELL or ESE 

services were assigned a value of one to indicate special learning service; students who 
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did not receive either ELL or ESE service the value was set to zero. It must be noted that 

the ESE services can be classified categorically by type and separately by severity; 

however, this was beyond the scope of this study. Therefore, a student who received any 

ELL or ESE service regardless of level of severity was included in the ELL or ESE 

predictor, which excluded the gifted ESE designation.   

The total number of days a student was absent (i.e., rate of absenteeism) was 

calculated from the total number of days enrolled less the total number of days absent. 

Controlling for collinearity, the total number of days suspended was subtracted from the 

total number of days absent because each day a student was suspended also counted as an 

unexcused absence. The suspension rate was calculated from the total number of days 

externally, internally, or alternative-to-external suspended; the number of days suspended 

from a school bus, however, was excluded because the student(s) may have been 

suspended from the school bus without also being suspended from school.     

Missing data. First, given the sheer percentage of students who did not enroll in 

an art course each year (representing 70–90% of missing data by academic year for this 

discipline), the variable had to be intentionally eliminated to ensure sound research 

methodology. Next, cases that were missing demographic data were excluded from the 

study. Cases that were missing data for an academic predictor (mathematics, English, 

history, or science) or FCAT achievement level were replaced with expectation 

maximization (EM)-generated values, excluding the science outcome for 10th grade; if 

the case had a missing data point for this field, the case was deleted from the list. EM 

methodology overcomes many of the limitations of other techniques for missing data, 

such as mean replacement and deletion from the list, which can result in an 
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underestimation in parameter estimation and bias the results (Dong & Peng, 2013; Zhou 

& Lim, 2014). Reducing those limitations is achievable by employing the EM-generated 

replacement values in lieu of other antiquated methodologies (Dong & Peng, 2013; Zhou 

& Lim, 2014). Little’s MCAR test demonstrates that the data were not missing 

completely at random (p < .001). The current study employed EM replacement because, 

when using archived student records, it is a reasonable expectation for some data to be 

missing by semester for some academic courses by student for any given discipline. One 

would not have a reasonable expectation for academic course data for an individual to be 

randomly missing values, for example, when students dis-enroll from a course of study, 

enroll in a course of study out of sequence, or earn partial credit for a course of study via 

non-traditional means (online virtual school or credit recovery). EM replacement only 

occurred for missing achievement data, excluding the science outcome in the 10th grade 

(a dependent outcome). None of the demographic, attendance, or behavioral predictors 

was replaced; as previously stated, if the case was missing data in one of these foregoing 

areas then the entire case was deleted from the database. To replace the missing data for 

the appropriate variable of interest, a 1,000-iteration EM algorithmic model replaced the 

missing achievement data. As can be seen in Table A1, in Appendix A, the mean values 

included are virtually identical. Therefore, the dataset with estimated values was used for 

all subsequent analyses.   

Power and sample size. A power analysis was conducted using G*Power. It was 

determined that a sample of at least 250 individuals is necessary to achieve a power of 

.95 in each round of model testing. The number of cases in each model iteration far 

exceeded the needed sample size to have adequate power for the reported analysis.   
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Data set analysis. Each round of logistic model testing was first performed 

utilizing the entire range of cases for enrollment (N = 12,102), and then a secondary 

analysis was performed with a subsample of the cases by a random draw of 49.91% of 

the cases for replication. Likewise, each round of logistic model testing was first 

performed utilizing the entire range of cases for chemistry achievement (n = 5,966), and 

then a secondary analysis was performed with a subsample of the cases by a random 

draw of 49.74% of the cases for replication.  
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Chapter 4: Results 

Demographics of the Sample and Correlational Analysis 

Table 1 depicts the demographic distribution for the full range of cases (N = 

12,102). Also depicted is the percentage values for the replicate subsample. As can be 

seen, the percentages for the replicate subsample are analogous to the full sample. All 

subsequent results pertain to the full sample unless otherwise indicated.  As can be seen 

in Table 1, 50% of the students are female, 57% are considered low SES, 11% receive 

ESE service, and 7% receive ELL service. Tables 2 through 6 depict the results for the 

preliminary correlational analysis to determine the strength of the relationship between 

the predictors by grade level for the full range of cases (N = 12,102). Although most 

predictors were significant, the correlation between prior academic achievement for 

mathematics, English, history, and science demonstrated a moderate relationship across 

all grade levels in connection with passing the chemistry course in 10th grade.   
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Table 1 

Sample Demographic Distribution 
 Full Sample Subsample 

Demographic Frequency % Frequency % 
Male    6,037 49.88 3224 54.03 
Female 6,065 50.11 3403 57.04 
ELL 871 7.19 1016 17.03 
Free lunch 1,740 14.38 556 9.32 
Reduced-priced lunch 1,102 9.10 543 9.10 
Free direct meals 4,070 33.63 2006 33.62 
Orthopedically impaired 8 .06 0 0 
Speech impaired 13 .11 6 .10 
Language impaired 33 .27 14 .23 
Deaf or hard of hearing 26 .21 10 .17 
Visually impaired 6 .05 1 .02 
Emotional/behavioral disability 117 .97 60 1.00 
Specific learning disability 999 8.25 490 8.21 
Autism spectrum disorder 21 .17 4 .07 
Traumatic brain injured 3 .02 1 .02 
Other health impaired 79 .65 41 .69 
Intellectual disability 12 .10 5 .08 
Black 2,458 20.31 1212 20.31 
White 4,958 40.97 2446 41.00 
Hispanic 3,839 31.72 1893 31.73 
Other 2,458 20.31 1208 20.25 

Note.  N = 12,102 full sample; n = 5,966 subsample. ELL = English language learner.  
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Table 2 

Sixth-Grade Predictor Correlation Analysis (N = 12,102) 
Predictor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1. Gender —                  
2. SES .01 —                 
3. ELL -.02* .21** —                
4. ESE -.14** .08** -.00 —               
5. Black .02* .23** -.13** .03** —              
6. White -.01 -.43** -.24** .01 -.42** —             
7. Hispanic -.01 .28** .37** -.02 -.34** -.57** —            
8. Absence -.04** .23** -.04** .15** .05** -.04** .02** —           
9. Suspension -.10** .17** -.01 .10** .18** -.11** -.03** .34** —          
10. Math .15** -.28** -.09** -.13** -.15** .15** -.07** -.32** -.25** —         
11. English .24** -.28** -.07** -.16** -.16** .15** -.06** -.34** -.31** .66** —        
12. History .18** -.29** -.10** -.17** -.18** .17** -.07** -.33** -.31** .67** .70** —       
13. Science .18** -.27** -.09** -.14** -.18** .16** -.06** -.32** -.29** .70** .71** .73** —      
14. FCAT math -.01 -.34** -.24** -.21** -.24** .26** -.12** -.18** -.17** .49** .41** .46** .43** —     
15. FCAT read .04** -.35** -.31** -.23** -.23** .30** -.15** -.14** -.18** .39** .39** .44** .40** .68** —    
16. Alt crs enroll -.08** .26** .18** .17** .15** -.18** .09** .13** .13** -.39** -.38** -.41 -.39** -.51** -.50** —   
17. Chem crs enroll .08** -.23** -.18** -.16** -.16** .19** -.08** -.13** -.15** .38** .38** .40** .38** .46** .46** -.78 —  
18. Pass chem .11** -.26** -.15** -.15** -.16** .20** -.09** -.14** -.14** .42** .40** .41** .41** .43** .42** -.66** .79** — 

Note.  ELL = English language learner; ESE = exceptional student education. All correlations are significant at p < .001 unless otherwise denoted *p < .05, 
two-tailed.  **p < .01, two-tailed. 
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Table 3 

Seventh-Grade Predictor Correlation Analysis (N = 12,102) 
Predictor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1. Gender —                  
2. SES .01 —                 
3. ELL -.02* .21** —                
4. ESE -.14** .08** -.01 —               
5. Black .02* .23** -.13** .03** —              
6. White -.01 -.43** -.24** .01 -.42** —             
7. Hispanic -.01 .28** .37** -.02 -.34** -.57** —            
8. Absence -.01 .23** -.02* .14** .04** -.04** .04** —           
9. Suspension -.06** .18** .01 .08** .18** -.13** .01 .36** —          
10. Math .15** -.24** -.08** -.11** -.13** .14** -.08** -.28** -.27** —         
11. English -.07** .10** .02* .06** .07** -.07** .04** -.01 -.04** -.16** —        
12. History .17** -.27** -.11** -.15** -.14** .17** -.09** -.31** -.32** .63** -.11** —       
13. Science .17** -.29** -.10** -.14** -.17** .18** -.09** -.29** -.32** .66** -.13** .69** —      
14. FCAT math .01 -.32** -.23** -.22** -.24** .25** -.10** -.17** -.21** .46** -.18** .44** .46** —     
15. FCAT read .04** -.33** -.29** -.23** -.22** .27** -.13** -.14** -.20** .38** -.16** .41** .43** .66** —    
16. Alt Crs enroll -.08** .26** .18** .17** .15** -.18** .09** .13** .16** -.39** .12** -.41** -.42** -.51** -.50** —   
17. Chem crs enroll .08** -.23** -.18** -.16** -.16** .19** -.08** -.12** -.18** .38** -.07** .40** .41** .47** .47**  —  
18. Pass chem .11** -.26** -.15** -.15** -.16** .20** -.09** -.14** -.16** .43** -.15** .43** .44** .44** .43** -.66** .79** — 

Note. ELL = English language learner; ESE = exceptional student education. All correlations are significant at p < .001 unless otherwise denoted *p < .05, 
two-tailed.  **p < .01, two-tailed. 
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Table 4 
 
Eighth-Grade Predictor Correlation Analysis (N = 12,102) 

Predictor 1 2 3 4  5 6 7 8 9 10 11 12 13 14 15 16 17 18 
1. Gender —                   
2. SES .01 —                  
3. ELL -.02* .21** —                 
4. ESE -.14** .08** -.01 —                
5. Black .02* .23** -.13** .03**  —              
6. White -.01 -.43** -.24** .01  -.42** —             
7. Hispanic -.01 .28** .37** -.02  -.34** -.57** —            
8. Absence .02* .25** .01 .13**  .04** -.05** .04** —           
9. Suspension -.07** .19** .02 .09**  .18** -.12** -.01 .37** —          
10. Math .14** -.21** -.06** -.10**  -.12** .11** -.06** -.25** -.21** —         
11. English .23** -.25** -.07** -.11**  -.13** .14** -.08** -.27** -.27** .57** —        
12. History .17** -.28** -.12** -.13**  -.13** .17** -.11** -.30** -.27** .58** .65** —       
13. Science .17** -.29** -.10** -.14**  -.17** .18** -.09** -.27** -.28** .51** .58** .60** —      
14. FCAT math -.01 -.34** -.22** -.21**  -.23** .25** -.11** -.21** -.21** .45** .36** .44** .47** —     
15. FCAT read .07** -.35** -.29** -.22**  -.22** .29** -.15** -.15** -.20** .34** .32** .40** .42** .66** —    
16. Alt crs enroll -.08** .26** .18** .17**  .15** -.18** .09** .15** .16** -.33** -.36** -.40** -.36** -.50** -.49** —   
17. Chem crs enroll .08** -.23** -.18** -.16**  -.16** .19** -.08** -.15** -.18** .31** .35** .39** .35** .46** .45** -.78** —  
18. Pass chem .11** -.26** -.15** -.15**  -.16** .20** -.09** -.17** -.17** .39** .40** .43** .41** .45** .42** -.66** .79** — 

Note.  ELL = English language learner; ESE = exceptional student education. All correlations are significant at p < .001 unless otherwise denoted *p < .05, 
two-tailed.  **p < .01, two-tailed. 
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Table 5 

Ninth-Grade Predictor Correlation Analysis (N = 12,102) 
Predictor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1. Gender —                  
2. SES .01 —                 
3. ELL -.02* .21** —                
4. ESE -.14** .08** -.01 —               
5. Black .02* .23** -.13** .03** —              
6. White -.01 -.43** -.24** .01 -.42** —             
7. Hispanic -.01 .28** .37** -.02 -.34** -.57** —            
8. Absence .04** .28** .03** .11** .05** -.08** .06** —           
9. Suspension -.05** .20** .02** .08** .20** -.15** .01 .37** —          
10. Math .10** -.29** -.11** -.11** -.14** .17** -.11** -.31** -.26** —         
11. English .22** -.30** -.07** -.13** -.17** .17** -.08** -.35** -.31** .61** —        
12. History .16** -.29** -.09** -.13** -.14** .17** -.10** -.31** -.26** .56** .61** —       
13. Science .16** -.31** -.11** -.12** -.13** .17** -.11** -.34** -.29** .63** .68** .62** —      
14. FCAT math -.01 -.29** -.11** -.13** -.18** .19** -.08** -.25** -.21** .56** .37** .36** .41** —     
15. FCAT read .03** -.37** -.28** -.21** -.24** .31** -.16** -.20** -.22** .42** .41** .37** .43** .47** —    
16. Alt crs enroll -.08** .26** .18** .17** .15** -.18** -.18** .09** -.21** .18** -.35** -.38 -.35** .46** -.33** —   
17. Chem crs enroll .08** -.23** -.18** -.16** -.16** .19** .19** -.08** .18** -.21** .36** .39** .35** -.40** .33** -.49** —  
18. Pass Chem .11** -.26** -.15** -.15** -.16** .20** .20** -.09** -.21** -.18** .43** .46** .43** .41** .37 .46** -.66** — 

Note. ELL = English language learner; ESE = exceptional student education. All correlations are significant at p < .001 unless otherwise denoted *p < .05, 
two-tailed.  **p < .01, two-tailed. 
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Table 6 

Tenth-Grade Predictor Correlation Analysis (N = 12,102)  
Predictor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. Gender —                 
2. SES .01 —                
3. ELL -.02* .21** —               
4. ESE -.14** .08** -.01 —              
5. Black .02* .23** -.13** .03** —             
6. White -.01 -.43** -.24** .01 -.42** —            
7. Hispanic -.01 .28** .37** -.02 -.34** -.57** —           
8. Absence .05** .22** .04** .10** .03** -.05** .06** —          
9. Suspension -.08** .17** .02** .06** .20** -.13** -.01 .33** —         
10. Math .12** -.27** -.10** -.11** -.14** .15** -.09** -.33** -.26** —        
11. English .23** -.26** -.08** -.13** -.10** .13** -.09** -.38** -.29** .59** —       
12. History .14** -.24** -.09** -.10** -.11** .13** -.08** -.34** -.27** .52** .59** —      
13. FCAT math .01 -.26** -.12** -.15** -.19** .19** -.08** -.24** -.21** .55** .34** .34** —     
14. FCAT reading .04** -.36** -.27** -.22** -.24** .29** -.14** -.21** -.23** .43** .38** .33** .48** —    
15. Alt crs enroll -.08** .26** .18** .17** .15** -.18** .09** .20** .20** -.31** -.31** -.23** -.27** -.50** —   
16. Chem crs enroll .08** -.23** -.18** -.16** -.16** .19** -.08** -.23** -.21** .30** .33** .24** .24** .46** -.78** —  
17. Pass chem .11** -.26** -.15** -.15** -.16** .20** -.09** -.25** -.20** .44** .45** .36** .31** .45** -.66** .79** — 

Note. ELL = English language learner; ESE = exceptional student education. All correlations are significant at p < .001 unless otherwise denoted *p < .05,  
two-tailed.  **p < .01, two-tailed.  
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Primary Findings 

Presented below are the findings for the research questions that the current study 

addresses.   

Research Question 1. Does academic achievement, as measured by calculated 

course letter grades, for mathematics, English literacy, history, science, and FCAT 

(achievement level), accurately predict the proportion of students who enrolled in 

chemistry or a science course in lieu of chemistry in the 10th grade?  

 The enter method for logistic regression was employed to predict chemistry 

enrollment compared to other science course enrollment in the 10th grade. Evaluation of 

the predictors occurred simultaneously for course achievement for each academic year in 

tandem with FCAT achievement level for mathematics and reading, independently by 

each grade level, from sixth through 10th grade. Overall prior academic achievement 

could moderately predicted enrollment into a chemistry course at any given grade level, 

where overall classification accuracy ranged from 81.3 – 79.3%, and Nagelkerke pseudo-

R2 values ranged from .535 - .432 for each respective model. Of particular interest, after a 

comparison of each logistic model by grade level for classification accuracy, the seventh-

grade model most precisely predicted enrollment classification; 81.3% of students were 

correctly classified (n = 12,102), with a Nagelkerke pseudo-R2 value of .569, indicating 

that the predictors accounted for 56.9% of the variance in the model.   

The analysis using the replication subsample provided very similar findings. The 

replicate model correctly predicted the enrollment of 81.3% of students in chemistry, 

with a Nagelkerke pseudo-R2 value of .532, indicating that the predictors accounted for 

53.2% of the variance in the model.  
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Overall, the t-ratio criterion for each predictor demonstrated that all predictors for 

the seventh-grade models significantly contributed to the enrollment outcome, results that 

were conserved across all grade-level models; whereas both FCAT predictors exhibited a 

moderate effect size when considered simultaneously with other academic course 

predictors at each grade level. This is barring the pseudo-FCAT scores for ninth and 10th 

grades (explanation detailed in the discussion chapter). Most notably, in the full model, a 

single unit of change in the individual’s FCAT achievement level for mathematics 

predicted that the odds of student enrollment in chemistry were 2.464 times as likely to 

increase when compared to course enrollment in lieu of chemistry in the 10th grade. A 

single unit of change in the individual’s FCAT achievement level for reading predicted 

that the odds of student enrollment in chemistry were 2.196 times as likely to increase 

when compared to course enrollment in lieu of chemistry in the 10th grade. The 

subsample for replication demonstrated very similar results, wherein a single unit of 

change in the individual’s FCAT achievement level for mathematics predicted that the 

odds of student enrollment in chemistry were 2.078 times as likely to increase when 

compared to course enrollment in lieu of chemistry in the 10th grade. A single unit of 

change in the individual’s FCAT achievement level for reading predicted that the odds of 

student enrollment in chemistry were 2.360 times as likely to increase. 

Tables 7 through 11 depict the logistic regression results for the standardized 

academic achievement predictors on the dichotomous outcome for chemistry compared to 

general science course enrollment by grade level for the primary analysis, for the full 

range of cases. Data results for the subsample replication analysis are available in 

Appendix B (Tables B1 – B5). The seventh-grade logistic model demonstrated the best 
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overall classification accuracy. However, the results for each predictor were very similar 

from year to year, with the calculated Cohen’s d across all models ranging from .695 to -

.018.  In general, the effect sizes ranged from medium too small for all predictors, 

respectively, across all models. As can be seen in Appendix B, the replicate subsample 

findings are comparable.  

 
Table 7 
 
Sixth-Grade Logistic Model Predicting Chemistry Course Enrollment, Controlling for Prior Academic and 
FCAT Achievement 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Math 0.195 (.051) 3.823 1.215 0.107 .002 
English 0.314 (.051) 6.157 1.368 0.173 .005 
History 0.293 (.054) 5.426 1.341 0.162 .004 
Science 0.193 (.056) 3.446 1.213 0.106 .002 
FCAT Math 0.775 (.048) 16.146 2.171 0.427 .038 
FCAT Reading 0.694 (.048) 14.458 2.002 0.383 .029 

Note. N = 12,102. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with † denoting nonsignificance. Model classification accuracy = 80.6%; model 
Nagelkerke R2 = .535. Change in Nagelkerke R2 was calculated as the difference between the model with all 
predictors entered at the same time minus the same model with the variable of interest removed. 
 

Table 8 

Seventh-Grade Logistic Model Predicting Chemistry Course Enrollment, Controlling for Prior Academic 
and FCAT Achievement 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Math 0.194 (.050) 5.213 1.214 0.107 .033 
English 0.286 (.055) 1.771 1.331 0.158 .010 
History 0.300 (.052) 8.167 1.350 0.165 .018 
Science 0.250 (.053) 6.673 1.284 0.138 .015 
FCAT Math 0.902 (.052) 17.440 2.464 0.497 .055 
FCAT Reading 0.787 (.052) 16.061 2.196 0.434 .046 

Note. N = 12,102. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with * denoting nonsignificance. Model classification accuracy = 81.3%; model 
Nagelkerke R2 = .569. Change in Nagelkerke R2 was calculated as the difference between the model with all 
predictors entered at the same time minus the same model with the variable of interest removed. 
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Table 9 

Eighth-Grade Logistic Model Predicting Chemistry Course Enrollment, Controlling for Prior Academic 
and FCAT Achievement 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Math 0.033 (.046) 7.174† 1.033 0.018 0 
English 0.324 (.047) 6.894 1.383 0.179 .006 
History 0.419 (.049) 8.551 1.521 0.231 .010 
Science 0.160 (.049) 3.265 1.173 0.088 .002 
FCAT Math 0.947 (.052) 18.211 2.577 0.522 .052 
FCAT Reading 0.754 (.048) 15.708 2.125 0.416 .035 

Note. N = 12,102. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with † denoting nonsignificance. Model classification accuracy = 80.9%; model 
Nagelkerke R2 = .543. Change in Nagelkerke R2 was calculated as the difference between the model with all 
predictors entered at the same time minus the same model with the variable of interest removed.  
 

Table 10 

Ninth-Grade Logistic Model Predicting Chemistry Course Enrollment, Controlling for Prior Academic and 
FCAT Achievement  

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Math 0.205 (.048) 4.271 1.227 0.113 .002 
English 0.283 (.048) 5.896 1.327 0.156 .005 
History 0.289 (.045) 6.422 1.335 0.159 .006 
Science 0.437 (.050) 8.74 1.549 0.241 .011 
FCAT Math 0.009 (.039) 0.231† 1.009 0.005 .002 
FCAT Reading 1.136 (.044) 25.818 3.113 0.626 .124 

Note. N = 12,102. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with † denoting nonsignificance. Model classification accuracy = 80.8%; model 
Nagelkerke R2 = .488. Change in Nagelkerke R2 was calculated as the difference between the model with all 
predictors entered at the same time minus the same model with the variable of interest removed. 
 
  
Table 11 

Tenth-Grade Logistic Model Predicting Chemistry Course Enrollment, Controlling for Prior Academic and 
FCAT Achievement  

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Math 0.219 (.044) 4.977 1.244 0.120 .003 
English 0.459 (.043) 10.674 1.583 0.253 .018 
History -0.033 (.040) 0.825* 0.968 -0.018 0 
FCAT Math 0.046 (.038) 1.210* 1.048 0.026 0 
FCAT Reading 1.261 (.042) 30.024 3.528 0.695 .184 

Note. N = 12,102. All slopes and intercepts were significant at p < .001 unless otherwise indicated with 
*where p < .05 or with † denoting nonsignificance. Model classification accuracy = 79.3%; model 
Nagelkerke R2 = .432. Change in Nagelkerke R2 was calculated as the difference between the model with all 
predictors entered at the same time minus the same model with the variable of interest removed. 
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Research Question 2. Do student demographics (gender, SES, ESE, ELL, and 

race) uniquely predict enrollment in chemistry in the 10th grade, while controlling for the 

effects of prior grades and standardized test scores?  

Though a significant model was determined, neither gender nor race made any 

consistent major contribution to the overall model significance at any grade level. Rather, 

SES and special learning services predictors had the most overall significant effects on 

both model accuracy and significance. Overall the classification accuracy ranged from 

82.5 – 77.8% with Nagelkerke pseudo-R2 ranging from .580 - .456 for each respective 

model. After a comparison of each grade level for classification accuracy, the seventh-

grade model most precisely predicted enrollment classification; the model correctly 

classified 82.5% of students (n = 12,102), with a Nagelkerke pseudo-R2 value of .580, 

indicating that the predictors accounted for 58.0% of the variance in the model.   

Similarly, the subsample for replication demonstrated analogous results for the 

seventh grade from 49.91% of the sample and accurately predicted enrollment in 

chemistry for 82.0% of students, with a Nagelkerke pseudo-R2 value of .543, indicating 

that the predictors accounted for 54.3% of the variance in the model. The overall 

predictive accuracy and variance accounted for by the model decreased slightly for each 

grade level following seventh grade.  

The t-ratio criterion failed to demonstrate a significant contribution to the model 

for the predictor gender across all temporal points of consideration. Likewise, SES failed 

to demonstrate a consistent contribution to the model classification accuracy across all 

temporal points investigated. However, when SES contributed to the regression model, 

students who demonstrated greater socioeconomic vulnerability (low SES) were less 
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likely to enroll in chemistry, when compared to students with less socioeconomic 

vulnerability (high SES). The calculated Cohen’s d across all models ranged from -.133 

to -.087, demonstrating a small effect size for this predictor across all models. As can be 

seen in Appendix B, the replicate subsample findings are comparable.   

Next, evaluation of the indicators of special learning services demonstrated that, 

across all temporal points, small (to negligible) but significant contribution was made to 

the predictive classification accuracy of the model. The calculated Cohen’s d across all 

models ranged from -.217 to -.066, demonstrating a small to negligible effect size, 

respectively, for these predictors. In general, a student identified as having received 

special learning services was less likely to enroll in chemistry in 10th grade compared to 

students who did not receive special learning services.  As can be seen in Appendix B, 

the replicate subsample findings are comparable.  

Furthermore, race failed to significantly contribute to the overall enrollment 

classification accuracy across all model iterations. However, at the individual level, race 

helped to explain individual differences in enrollment outcomes for specific temporal 

points. For example, in the seventh-grade model, Black students were 1.076 times less 

likely to enroll in chemistry compared to students from other racial groups. Similarly, in 

the seventh-grade model, Hispanic students were 1.324 times less likely to enroll in 

chemistry compared to students from other racial groups. Additionally, at the individual 

level, evaluation of demographic predictors was analogous for all temporal points. For 

example, in the seventh-grade model, White students were 1.054 times more likely to 

enroll in chemistry compared to students from other racial groups. However, the 

inclusion of race in future models may not be necessary because, overall, it did not 
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significantly contribute to the regression model, nor did it improve the classification 

accuracy. Though the odds of enrollment varied slightly from year-to-year for race, the 

lack of overall statistical contribution was consistent across all models. As can be seen in 

Appendix B, the replicate subsample findings are comparable.   

Tables 12 through 16 depict the logistic regression results for the standardized 

demographic predictors, controlling for academic and FCAT achievement on the 

dichotomous outcome for chemistry compared to general science course enrollment by 

grade level for the primary analysis, for the full range of cases; data from the subsample 

replicate analysis are available in Appendix B (Tables B6 – B10). The seventh-grade 

logistic model demonstrated the best overall classification accuracy; however, the results 

for each predictor were very similar from year to year in terms of magnitude (i.e., effect 

size) and very low across all models. As can be seen in Appendix B, the replicate 

subsample findings are comparable.    

 
Table 12 
 
Sixth-Grade Logistic Modeling for Demographics Predicting Course Enrollment, Controlling for Prior 
Achievement  

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .056 (.037) 1.513† 1.058 0.031 .001 
SES -.190 (.040) 4.75 .827 -0.105 .003 
ELL -.150 (.053) 2.830* .861 -0.08 .001 
ESE -.166 (.032) 5.187 .847 -0.092 .004 
Black .043 (.167) 0.257† 1.044 0.024 0 
White .002 (.158) 0.013† 1.002 0.001 0 
Hispanic .185 (.161) 1.150† 1.203 0.102 0 

Note. N = 12,102. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Model classification accuracy = 80.8%; model Nagelkerke R2 = .544. Change in 

Nagelkerke R2 was calculated as the difference between the model with all predictors entered at the same 
time minus the same model with the variable of interest removed. Other = Ref Cat.  
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Table 13 
 
Seventh-Grade Logistic Modeling for Demographics Predicting Course Enrollment, Controlling for Prior 
Achievement 

Predictor B(SE) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .057 (.039) 1.461† 1.076 0.032 0 
SES -.292 (.044) 6.636 0.786 -0.161 .004 
ELL -.100 (.057) 1.754* 0.887 -0.055 0 
ESE -.177 (.034) 5.206 0.846 -0.097 .003 
Black .027 (.180) 0.153† 1.076 0.006 0 
White -.043 (.171) 0.250† 1.054 -0.012 0 
Hispanic .199 (.174) 1.136† 1.324 0.051 0 

Note. N = 12,102. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001, unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Model classification accuracy = 82.5%; model Nagelkerke R2  = .580. Change in 

Nagelkerke R2 was calculated as the difference between the model with all predictors entered at the same 
time minus the same model with the variable of interest removed.Other = Ref Cat. 
 
 
Table 14 
 
Eighth-Grade Logistic Modeling for Demographics Predicting Course Enrollment, Controlling for Prior 
Achievement  

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .025 (.037) 0.676† 1.025 0.014 0 
SES -.179 (.040) 4.475 0.836 -0.099 .003 
ELL -.143 (.055) 2.6 0.867 -0.079 .001 
ESE -.198 (.032) 6.187 0.820 -0.109 .005 
Black .014 (.166) 0.084† 1.014 0.008 0 
White .106 (.157) 0.675† 1.111 0.058 0 
Hispanic .348 (.160) 2.175* 1.417 0.192 0 

Note. N = 12,102. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Model classification accuracy = 81.0%; model Nagelkerke R2 = .553. Change in 

Nagelkerke R2 was calculated as the difference between the model with all predictors entered at the same 
time minus the same model with the variable of interest removed.Other = Ref Cat. 
 
 
Table 15 
 
Ninth-Grade Logistic Modeling for Demographics Predicting Course Enrollment, Controlling for Prior 
Achievement  

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Gender -.005 (.036) 0.139† 0.995 -0.003 0 
SES -.158 (.040) 3.95 0.854 -0.087 .002 
ELL -.175 (.053) 3.302 0.839 -0.097 .001 
ESE -.270 (.031) 8.710 0.764 -0.148 .010 
Black -.029 (.157) 0.185† 0.971 -0.016 0 
White .205 (.161) 1.273† 1.227 0.113 0 
Hispanic .225 (.049) 4.592* 1.252 0.124 .003 

Note. N = 12,102. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Model classification accuracy = 79.2%; model Nagelkerke R2 = .506. Change in 

Nagelkerke R2 was calculated as the difference between the model with all predictors entered at the same 
time minus the same model with the variable of interest removed. Other = Ref Cat. 
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Table 16 
 
Tenth-Grade Logistic Modeling for Demographics Predicting Course Enrollment, Controlling for Prior 
Achievement  

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .051 (.034) 1.5† 1.052 0.028 .001 
SES -.255 (.038) 6.710 0.775 -0.141 .007 
ELL -.155 (.051) 3.039 0.857 -0.085 .002 
ESE -.232 (.030) 7.733 0.793 -0.128 .009 
Black -.277 (.155) 1.787† 0.758 -0.153 0 
White .034 (.146) 0.233† 1.035 0.019 0 
Hispanic .180 (.150) 1.2† 1.197 0.099 0 

Note. N = 12,102. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Model classification accuracy = 77.8%; model Nagelkerke R2 = .456. Change in 

Nagelkerke R2 was calculated as the difference between the model with all predictors entered at the same 
time minus the same model with the variable of interest removed. Other = Ref Cat. 

 

Research Question 3. Does student behavior in terms of absences and/or 

suspensions uniquely predict enrollment into chemistry in the 10th grade while 

controlling of academic course achievement, FCAT mathematics and reading 

achievement levels, and student demographics by grade level? 

The enter method for logistic regression was employed to predict chemistry 

enrollment compared to other science course enrollment in the 10th grade. The predictors 

were evaluated simultaneously for individual rate of absenteeism and frequency of 

suspensions, controlling for individual demographic attributes and each academic year’s 

course achievement in tandem with FCAT achievement level for mathematics and 

reading by grade level, from sixth through 10th grade.  

Tables 17 and 18 depict the logistic regression results for the standardized 

behavioral predictors in terms of rates of absenteeism and suspensions, controlling for the 

demographic, academic, and FCAT achievement predictors on the dichotomous outcome 

for chemistry, compared to general science course enrollment by grade level for the 

primary analysis, for the full range of cases. Replicate data results from the analysis of 
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the replicate subsample are available in Appendix B (see Table B11).  The results  

demonstrated a small to nearly negligible significant contribution for both predictors to 

model classification accuracy across all temporal points (barring the sixth grade, where 

nonsignificance was reported).  These results were very similar from year to year in terms 

of the magnitude of effect size as measured by the calculated Cohen’s d ranging from -

.161 to -.029, for both absenteeism and suspensions, respectively, across all models. As 

can be seen in Appendix B, the replicate subsample findings are comparable.  

Table 17 

Logistic Models Considering Behavioral Predictors (Absenteeism) Predicting Course Enrollment, 
Controlling for Demographic, Academic, and FCAT Achievement 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Absenteeism 6th grade -.053 (.041) 1.293† .948 -0.029 0 
Absenteeism 7th grade -.204 (.044) 4.636 .816 -0.112 0 
Absenteeism 8th grade -.159 (.042) 3.786 .853 -0.088 .002 
Absenteeism 9th grade -.138 (.043) 3.209 .872 -0.076 .001 

Absenteeism 10th grade -.292 (.041) 7.122 .747 -0.161 .007 
Note. N = 12,102. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with † denoting nonsignificance. Model classification accuracy = 76.8%; model 
Nagelkerke R2 = .461. Change in Nagelkerke R2 was calculated as the difference between the model with 
all predictors entered at the same time minus the same model with the variable of interest removed. 

 

Table 18 
 
Logistic Models Considering Behavioral Predictors (Suspension) Predicting Course Enrollment, 
Controlling for Demographic, Academic, and FCAT Achievement  

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Suspension 6th grade -.070 (.049) 1.428† .933 -0.038 0 
Suspension 7th grade -.149 (.060) 2.483 .862 -0.082 0 
Suspension 8th grade -.204 (.058) 3.517 .816 -0.112 .003 
Suspension 9th grade -.179 (.053) 3.377 .836 -0.099 .001 
Suspension 10th grade -.258 (.051) 5.059 .772 -0.143 .004 

Note. N = 12,102. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with † denoting nonsignificance. Model classification accuracy = 77.0%; model 
Nagelkerke R2 = .295. Change in Nagelkerke R2 was calculated as the difference between the model with 
all predictors entered at the same time minus the same model with the variable of interest removed. 

 

Research Question 4. Do course letter grades for mathematics, English literacy, 

history, science, and FCAT achievement accurately predict the proportion of students 

who pass chemistry in the 10th grade? 
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The enter method for logistic regression was employed to predict the proportion 

of students who had successfully completed a course in chemistry in the 10th grade. The 

evaluation of the predictors occurred simultaneously for each academic year’s course 

achievement, in tandem with FCAT achievement level for mathematics and reading by 

grade level, from sixth through 10th grade. In general, across all logistic models prior 

achievement successfully demonstrated that an accurate prediction could be made for 

chemistry achievement outcomes.  Overall, the classification accuracy ranged from 94.0 

– 91.0% with Nagelkerke pseudo-R2 ranging from .500 - .214 across all models. After a 

comparison of each grade level for classification accuracy, the 10th-grade model most 

precisely predicted the enrollment classification; the model correctly classified 92.6% of 

students (n = 5,966), with a Nagelkerke pseudo-R2 value of .500, indicating that the 

predictors accounted for 50.0% of the variance in the model. The 10th-grade model was 

concurrent with the dichotomous outcome for course achievement and would be myopic 

for the scope of this study; therefore, each prior year’s model was evaluated for similar 

results, and the ninth-grade model was considered the significant predictive model for 

further discussion. The ninth-grade model demonstrated the highest overall classification 

accuracy (91.9%) for passing or failing chemistry in the 10th grade; moreover, the 

pseudo R2 value was .401, indicating that the predictors accounted for 40.1% of the 

variance in the model.  

The t-ratio criterion demonstrated that all significant academic predictors 

consistently contributed to accurate classifications across all temporal points, with minor 

variation in the magnitude (i.e., effect size of the predictors). Considering the academic  

predictors, a single unit of increase in an individual’s ninth-grade mathematics GPA 
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resulted in a 1.585 increase in the likelihood of passing chemistry in the 10th grade with a 

letter grade of C or better. Likewise, for ninth-grade English, a single unit of increase in 

an individual’s English GPA resulted in a 1.586 increase in the likelihood of passing 

chemistry in the 10th grade with a letter grade of C or better. For a single unit of increase 

in an individual’s history GPA, there was a 1.407 increase in the likelihood of passing 

chemistry; for a single unit increase in science GPA, there was a 2.033 increase in the 

likelihood of passing chemistry. For a single unit change in pseudo-FCAT mathematics, 

there was a 1.179 increase in the likelihood of passing chemistry; for a single unit change 

in FCAT reading achievement, there was a 1.209 increase in the likelihood of passing 

chemistry. Similarly, the subsample for replication demonstrated analogous results for 

49.91% of the full sample. Results for the subsample analysis are available in Appendix 

C (Tables C1 – C5).  

Tables 19 through 23 depict the logistic regression results for the standardized 

academic and FCAT achievement predictors on the dichotomous outcome for passing 

chemistry with a letter grade of C or better by grade level for the primary analysis, for the 

full range of cases; subsample analysis for replication are available in Appendix C (see 

Tables C2 – C6). The results were similar from year to year in terms of magnitude of 

effect size where the calculated Cohen’s d range from .531 to .039 across all models 

demonstrating medium to negligible effects sizes for each of the predictors, respectively. 

Particularly, prior science achievement was overall the strongest predictor of chemistry 

course achievement. As can be seen in Appendix C, the replicate subsample findings are 

comparable.  

 
 
 



68 

 

Table 19 
 
Sixth-Grade Logistic Regression Models Predicting Chemistry Course Achievement Considering Academic 
Predictors  

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Math .466 (.075) 6.213 1.593 0.257 .016 
English .137 (.075) 1.827† 1.147 0.076 .001 
History .177 (.079) 2.240* 1.194 0.098 .002 
Science .346 (.080) 4.325 1.414 0.191 .007 
FCAT Math .245 (.066) 3.712 1.278 0.135 .005 
FCAT Reading .132 (.068) 1.941† 1.141 0.073 .001 

Note. N = 5,966. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with † denoting nonsignificance. Model classification accuracy = 94.0%; model 
Nagelkerke R2 = .214. Change in Nagelkerke R2 was calculated as the difference between the model with all 
predictors entered at the same time minus the same model with the variable of interest removed. 
 
 
Table 20 
 
Seventh-Grade Logistic Regression Models Predicting Chemistry Course Achievement Considering 
Academic Predictors 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Math .334 (.070) 4.771 1.397 0.184 .009 
English .488 (.075) 6.52 1.631 0.270 .015 
History .291 (.069) 4.217 1.338 0.161 .007 
Science .578 (.073) 7.918 1.782 0.319 .025 
FCAT Math .317 (.069) 4.594 1.373 0.175 .009 
FCAT Reading .073 (.067) 1.089 1.075 0.040 .013 

Note. N = 5,966. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with † denoting nonsignificance. Model classification accuracy = 91.9%; model 
Nagelkerke R2 = .256. Change in Nagelkerke R2 was calculated as the difference between the model with all 
predictors entered at the same time minus the same model with the variable of interest removed. 
 
 
Table 21 
 
Eighth-Grade Logistic Regression Models Predicting Chemistry Course Achievement Considering 
Academic Predictors 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Math .289 (.066) 4.379 1.335 0.159 .008 
English .531 (.070) 7.586 1.700 0.293 .022 
History .274 (.071) 0.386 1.315 0.151 .006 
Science .356 (.073) 4.877 1.427 0.196 .009 
FCAT Math .508 (.071) 7.155 1.662 0.280 .020 
FCAT Reading .111 (.069) 1.609 1.118 0.061 .001 

Note. N = 5,966. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with † denoting nonsignificance. Model classification accuracy = 91.8%; model 
Nagelkerke R2 = .317. Change in Nagelkerke R2 was calculated as the difference between the model with all 
predictors entered at the same time minus the same model with the variable of interest removed. 
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Table 22 
 
Ninth-Grade Logistic Regression Models Predicting Chemistry Course Achievement Considering Academic 
Predictors 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Math .461 (.078) 5.910 1.585 0.254 .013 
English .461 (.076) 6.066 1.586 0.254 .014 
History .342 (.070) 4.886 1.407 0.188 .009 
Science .710 (.082) 8.658 2.033 0.391 .029 
FCAT Math .165 (.062) 2.661* 1.179 0.091 .002 
FCAT Reading .190 (.064) 2.969* 1.209 0.105 .004 

Note. N = 5,966. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with † denoting nonsignificance. Model classification accuracy = 91.0%; model 
Nagelkerke R2 = .401. Change in Nagelkerke R2 was calculated as the difference between the model with all 
predictors entered at the same time minus the same model with the variable of interest removed. 
 

Table 23 

Tenth-Grade Logistic Regression Models Predicting Chemistry Course Achievement Considering 
Academic Predictors 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Math .963 (.074) 13.013 2.618 0.531 .060 
English .937 (.074) 13.149 2.553 0.517 .057 
History .430 (.064) 6.719 1.537 0.237 .015 
FCAT Math .181 (.063) 2.873* 1.198 0.100 .003 
FCAT Reading .197 (.068) 2.897 1.217 0.108 .003 

Note. N = 5,966. All slopes and intercepts were significant at p < .001 unless otherwise indicated with * 
where p < .05 or with † denoting nonsignificance. Model classification accuracy = 92.6%; model 
Nagelkerke R2 = .500. Change in Nagelkerke R2 was calculated as the difference between the model with all 
predictors entered at the same time minus the same model with the variable of interest removed. 

 

A post hoc descriptive evaluation extended upon the foregoing findings and 

explored the proportion, in terms of the percentage of students who passed or failed 

chemistry based on prior science achievement considering each separate temporal point 

individually. Table 24 depicts the percent distribution of prior science letter grades 

relative to the dichotomous outcome for passing or failing chemistry; data from the 

subsample analysis for replication are also depicted. Overall, the proportion of students 

earning letter grades “A” or “B” in prior science courses and subsequently passing  

chemistry were greater than the proportion whom earned letter grades of  “C” or below. 

Likewise the proportion of students whom earned a letter grade of “C” or below and  
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failed chemistry were greater than the proportion of students whom earned “B” or higher. 

As can be seen in Table 24, the replicate subsample findings are comparable.   

Research Question 5. Do student demographics (gender, race, SES, ESE/ELL) 

uniquely predict passing chemistry in the 10th grade while controlling for academic 

achievement and standardized test scores? 

The enter method for logistic regression was employed to predict the proportion 

of students who had successfully completed a course in chemistry in the 10th grade. 

Evaluation of the demographic predictors occurred simultaneously while controlling for 

course achievement for each academic year in tandem with FCAT achievement level for 

mathematics and reading by grade level, from sixth through 10th grade.   

The t-ratio criterion demonstrated a consistent significant contribution to general 

model accuracy across all grade levels for two predictors: gender and SES. The logistic 

modeling for each temporal point investigated demonstrated that female students were 

more likely than male students to pass chemistry with a letter grade of C or better, while 

controlling for course achievement for each academic year in tandem with FCAT  

 
Table 24 
 
Percentage of Sample that Obtained Each Letter Grade (Full Sample n = 5,966; Subsample n =2,967) 

  Full Sample Percent of Prior Science 
Course Achievement 

 Subset Percent of Prior Science 
Achievement 

Grad
e 

Leve
l 

Chemistry 
Achieveme

nt 
% F % D % C % B % A 

 

% F % D % C % B % A 

6th  Pass 0.1 1.7 12.8 48.7 35.9  0.2 1.7 10.8 52.7 35.9 
Fail 0.8 8.0 30.3 50.6 9.6  0.8 8.0 30.3 50.6 9.6 

7th  Pass  0 1.8 16.0 48.1 34.1  0.1 1.8 16.0 48.1 34.1 
Fail 0.9 9.5 39.3 42.4 7.6  0.9 9.5 39.2 42.4 7.6 

8th  Pass 0.1 2.7 24.8 52.9 18.6  0.1 2.7 24.8 52.9 18.6 
Fail 0.1 14.4 50.0 32.6 2.9  0.1 14.4 50.0 32.6 2.9 

9th  Pass 1.0 7.2 28.8 44.1 18.9  1.0 7.2 28.8 44.1 18.9 
Fail 8.1 31.6 43.4 16.2 0.5  9.4 31.6 43.4 16.2 1.5 
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achievement level for mathematics and reading by grade level, from sixth through eighth 

grades. In addition, for socioeconomically vulnerable students, the odds of obtaining a 

letter grade of C or better in chemistry were less likely when compared to more affluent 

students, while controlling for course achievement for each academic year, in tandem 

with FCAT achievement level for mathematics and reading by grade level, from sixth 

through 10th grades. 

Receipt of special learning services did not significantly contribute to the 

predictive classification accuracy for any logistic model. At the individual level, 

however, a student who received special learning services was less likely to pass 

chemistry with a letter grade of C or better in the 10th grade when compared to students 

who did not receive special learning services.  

Furthermore, race failed to significantly contribute to the overall classification 

accuracy of the logistic models. However, at the individual level, Black and Hispanic 

students were generally less likely to pass chemistry with a C or better when compared to 

White students. In contrast, at the individual level, the full model demonstrated that 

White students were more likely to pass chemistry with a letter grade of C or better when 

compared to students from other racial groups. Note that, as predictors, racial groups did 

not significantly contribute to the actual classification accuracy, nor did they capture 

additional variance when added to the logistic modeling iterations.  

Tables 25 through 29 depict the logistic regression results for the standardized  

demographic predictors while controlling for academic and FCAT achievement effects on 

the dichotomous outcome for passing chemistry with a letter grade of C or better by 

grade level. The significant results for each predictor were similar from year to year in 
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terms of the small magnitude of effect size of the predictors. Specifically, the calculated 

Cohen’s d ranged from .151 to -.174 for all predictors, respectively, across all models. As 

can be seen in Appendix C (see Tables C6 – C10), the replication subsample findings are 

comparable.  

Table 25 

Sixth-Grade Logistic Modeling Predicting Chemistry Course Achievement Considering Demographics 
While Controlling for Academic and FCAT Achievement 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .255 (.049) 5.204 1.290 0.140 .011 
SES -.303 (.053) 5.717 0.739 -0.167 .013 
ELL .132 (.095) 1.389† 1.389 0.073 .001 
ESE -.051 (.047) 1.085† 0.950 -0.028 .001 
Black -.074 (.220) 0.336† 0.928 -0.041 0 
White -.035 (.199) 0.176† 0.965 -0.020 0 
Hispanic -.123 (.204) 0.603† 0.884 -0.068 0 

Note.  N = 5,966. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Model classification accuracy = 76.7%; model Nagelkerke R2 = .243. Change in 

Nagelkerke R2 was calculated as the difference between the model with all predictors entered at the same 
time minus the same model with the variable of interest removed. Other = Ref Cat. 
 
 
Table 26 
 
Seventh-Grade Logistic Modeling Predicting Chemistry Course Achievement Considering Demographics 
While Controlling for Academic and FCAT Achievement 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .188 (.049) 3.837 1.207 0.104 .006 
SES -.317 (.054) 5.870 0.729 -0.174 .014 
ELL .184 (.097) 1.897† 1.202 0.101 .002 
ESE -.063 (.048) 1.312† 0.939 -0.035 .001 
Black .004 (.224) 0.018† 1.004 0.002 0 
White -.023 (.203) 0.113† 0.978 -0.012 0 
Hispanic -.028 (.208) 0.135† 0.972 -0.016 0 

Note. N = 5,966. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Model classification accuracy = 73.1%; model Nagelkerke R2 = .277. Change in 

Nagelkerke R2 was calculated as the difference between the model with all predictors entered at the same 
time minus the same model with the variable of interest removed. Other = Ref Cat. 
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Table 27 
 
Eighth-Grade Logistic Modeling Predicting Chemistry Course Achievement Considering Demographics 
While Controlling for Academic and FCAT Achievement. 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .164 (.051) 3.216 1.178 0.090 .004 
SES -.281 (.055) 5.109 0.755 -0.155 .010 
ELL .141 (.099) 1.424† 1.151 0.078 .001 
ESE -.074 (.049) 1.510† 0.928 -0.041 .001 
Black -.044 (.226) 0.195† 0.957 -0.024 0 
White .080 (.207) 0.386† 1.083 0.044 0 
Hispanic .019 (.211) 0.090 1.020 0.011 0 

Note. N = 5,966. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or with †denoting no 
significance. Model classification accuracy = 79.1%; model Nagelkerke R2 = .335. Change in Nagelkerke 
R2 was calculated as the difference between the model with all predictors entered at the same time minus 
the same model with the variable of interest removed. Other = Ref Cat. 
 
 
Table 28 
  
Ninth-Grade Logistic Modeling Predicting Chemistry Course Achievement Considering Demographics 
While Controlling for Academic and FCAT Achievement 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .096 (.054) 1.778† 1.101 0.053 .001 
SES -.127 (.059) 2.152* 0.880 -0.070 .001 
ELL .162 (.103) 1.573† 1.175 0.089 0 
ESE -.087 (.052) 1.673† 0.916 -0.048 0 
Black -.089 (.245) 0.363† 0.915 -0.049 0 
White .073 (.223) 0.327† 1.076 0.040 0 
Hispanic -.043 (.229) 0.188† 0.958 -0.024 0 

Note. N = 5,966. English language learner; ESE = exceptional student education. All slopes and intercepts 
were significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Model classificaiotn accuracy = 79.8%; model Nagelkerke R2 = .406. Change in 

Nagelkerke was calculated as the difference between the model with all predictors entered at the same time 
minus the same model with the variable of interest removed. Other = Ref Cat. 
 
 
Table 29 
 
Tenth-Grade Logistic Modeling Predicting Chemistry Course Achievement Considering Demographics 
While Controlling for Academic and FCAT Achievement 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .002 (.056) 0.036† 1.002 0.001 0 
SES -.187 (.062) 3.016* 0.830 -0.103 .003 
ELL .274 (.114) 2.403* 1.315 0.151 .002 
ESE -.085 (.055) 1.545† 0.919 -0.047 .001 
Black -.101 (.261) 0.387† 0.904 -0.056 0 
White .075 (.237) 0.316† 1.078 0.041 0 
Hispanic -.048 (.243) 0.197† 0.953 -0.027 0 

Note. N = 5,966. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Model classificaiotn accuracy = 83.8%; model Nagelkerke R2 = .507. Change in 

Nagelkerke R2 was calculated as the difference between the model with all predictors entered at the same 
time minus the same model with the variable of interest removed. Other = Ref Cat. 
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Research Question 6. Do student absences and/or discipline history uniquely 

predict passing chemistry in the 10th grade while controlling for the effect of prior 

grades, standardized test scores, and student demographics? 

The enter method for logistic regression was employed to predict the proportion 

of students who had successfully completed a course in chemistry in the 10th grade, 

considering the predictors behavior and absenteeism. All standardized predictors were 

evaluated simultaneously while controlling for demographics, achievement course GPA 

per academic year, and all FCAT achievement from sixth through 10th grade. 

Throughout each round of model testing, the t-ratio criterion for absenteeism 

demonstrated a small significant, nearly negligible, contribution to model classification 

accuracy. These findings are consistent for each iteration considered at each separate 

temporal point investigated, after controlling for demographic, academic, and FCAT 

achievement. The logistic modeling for the full range of cases (n = 5,966) demonstrated 

that, overall, absenteeism had a negative impact on the odds of a student successfully 

passing chemistry with a C or better. Suspensions, however, had no significant impact on 

model classification accuracy after controlling for the effects of demographic, all 

academic, and all FCAT achievement inputs.  

Tables 30 and 31 depict the logistic regression results for the standardized 

behavioral predictors, while controlling for demographic, academic, and FCAT 

achievement effects on the dichotomous outcome for passing chemistry with a letter 

grade of C or better, by grade level for the primary analysis for the full range of cases. 

These results were very similar from year to year in terms of the small to negligible 

magnitude of effect size as measured by the calculated Cohen’s d ranging from .053 to -
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.144, for both absenteeism and suspensions, respectively, across all models. As can be 

seen in Appendix C (see Table C11), the replicate subsample findings are comparable.    

Research Question 7.  How consistent is the calculated discipline GPAs of 

student grades from year-to-year? 

Assessment of the calculated academic GPA for course achievement by discipline 

through the employment of a correlation analysis (Pearson product-moment) 

demonstrated a significant but moderate conservation of the GPAs within and between 

grade-levels.  Table 32 depicts a significant conservation of letter grades from year to 

year for the primary analysis of the full range of cases (n = 5,966). As can be seen in 

Appendix D, the replicate subsample findings are comparable.  

 
Table 30 
  
Logistic Regression Considering Behavioral (Absenteeism) Predictor for Chemistry Course Achievement, 
Controlling for Suspensions, Demographics, and Academic and FCAT Achievement by Grade Level 

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Absenteeism 6th grade -.086 (.060) 1.433† .918 -0.047 .001 
Absenteeism 7th grade -.123 (.060) 2.05* .884 -0.068 .002 
Absenteeism 8th grade -.204 (.065) 3.138* .816 -0.112 .003 
Absenteeism 9th grade -.246 (.072) 3.417 .782 -0.136 .004 
Absenteeism 10th grade -.262 (.075) 3.493 .770 -0.144 .004 
Note. N = 5,966. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001, unless otherwise indicated with * where p < .05, or † denoting 
nonsignificance. Model classification accuracy = 79.1%; model Nagelkerke R2 = .287. Change in 

Nagelkerke R2 was calculated as the difference between the model with all predictors entered at the same 
time minus the same model with the variable of interest removed. 
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Table 31 
 
Logistic Regression Considering Behavioral (Suspension) Predictor for Chemistry Course Achievement, 
Controlling for Absenteeism and Demographic, Academic, and FCAT Achievement by Grade Level  

Predictor B (SE) t ratio Odds Ratio Cohen’s d ΔR2 
Suspension 6th grade -.004 (.089) 0.045† 0.996 -0.002 0 
Suspension 7th grade .097 (.096) 1.010† 1.101 0.053 .001 
Suspension 8th grade -.127 (.106) 1.198† 0.880 -0.070 0 
Suspension 9th grade .066 (.098) 0.673† 1.069 0.037 0 
Suspension 10th grade -.219 (.112) 1.955† 0.803 -0.121 .001 

Note. N = 5,966. ELL = English language learner; ESE = exceptional student education. All slopes and 
intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Model classification accuracy = 78.3%, model Nagelkerke R2 = .320. Change in 

Nagelkerke R2 was calculated as the difference between the model with all predictors entered at the same 
time minus the same model with the variable of interest removed. 
 

Table 32 

Correlation Analysis for Academic Course Discipline GPAs by Grade Level (n = 5,966) 

Course Grade Level 10 9 8 7 6 

Math 10 — .595 .471 .435 .422 
9  — .523 .429 .415 
8   — .553 .487 
7    — .591 
6     — 

English  10 — .584 .496 .427 .411 
9  — .553 .489 .471 
8   — .593 .494 
7    — .526 
6     — 

Science 9 — — .547 .510 .458 
8   — .531 .494 
7    — .546 
6     — 

History 10 — .476 .385 .328 .332 
9  — .473 .425 .404 
8   — .544 .430 
7    — .536 
6     — 

Note.  All values were significant at p < .001. 
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Summary 

 In general, the data analysis demonstrated that prior FCAT mathematics 

achievement level significantly and strongly predicted the odds of student enrollment 

over any other single predictor before the student’s entry into high school. Overall, 

demographic variables generally did not predict course enrollment; however, for students 

who received special learning services (excluding gifted students), the odds of chemistry 

course enrollment were nearly 1 time less likely ubiquitously throughout each applicable 

round of model testing.   

 In contrast, the data analysis for significant predictors of chemistry course 

achievement demonstrated that gender played a minor role in the odds of passing 

chemistry, where females were generally in a better position to pass chemistry than 

males. This was consistent with current research on the reversal of the gender gap 

(Buchmann, DiPrete, & McDaniel, 2008; Vincent-Lancrin, 2008). Socioeconomic 

vulnerability in terms of low SES negatively impacted student achievement, but the effect 

size was small compared to the effect sizes for FCAT and prior science course 

achievement. In general, absenteeism was a weak predictor of both enrollment and 

achievement; the rate of suspension did not significantly predict enrollment or 

achievement. Lastly, correlation analysis demonstrated that when calculated academic 

discipline letter grades are moderately conserved between academic years, however, 

because the relationship is only moderate in nature this finding demonstrates that a 

cumulative GPA hinders researchers and practitioners form examining difference in 

achievement that naturally occur from year to year.  
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Chapter 5: Discussion 

This dissertation evaluated the achieved data for a 2013 academic cohort of 

12,102 students while considering multiple predictors for both course enrollment and 

academic achievement in chemistry. Each predictor was evaluated to determine both the 

effect size and significant contribution to the overall model classification accuracy and 

with variance accounted. This was achieved while considering each predictor and 

controlling for demographic, academic, and/or behavioral student attributes.  

 The successful predictive models, which were the product of this study, may aid 

practitioners in identifying subsets of students at risk for non-enrollment and for those 

with low odds of success in a chemistry course. The reported predictive models 

successfully identified academic areas for which an early academic intervention may 

enhance both teaching and learning that may positively influence chemistry enrollment 

and subsequent performance in the 10th grade. Future research could evaluate the 

magnitude of success of curriculum or policy intervention in improving academic 

trajectories.   

The first research objective was to employ a robust and appropriate statistical 

model to predict student enrollment into chemistry or a course in lieu of chemistry and to 

identify specific student attributes that reduce the odds of chemistry course enrollment 

before student matriculation into the secondary education system. The percent of correct 

classifications and the strength of relationships between predictors and outcomes are 

useful to evaluate the accuracy of the predictive models; Given the binary outcome for 

course enrollment, logistic regression analysis was the most appropriate statistical 

method to address each of the subsequent research questions.   
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The first research question evaluated course achievement for each independent 

grade level preceding 10th grade (from sixth through ninth grade) in order to determine 

which most accurately predicted the proportion of students who enrolled in chemistry or 

a science course in lieu of chemistry. Considering these standardized predictors 

simultaneously, the results demonstrated that the seventh-grade logistic model classified 

81.3% of student enrollment behavior from prior course and FCAT achievement, 

accounting for 56.9% of the model variance. Likewise, both the eighth– and ninth-grade 

logistic models demonstrated excellent classification accuracy and accounted for similar 

levels of variance. The findings confirm prior research, which has demonstrated that prior 

achievement is predictive of future academic achievement (ACT, 2008; Bloom, Hill, 

Black, & Lipsey, 2008; Lebihan & Takogmo, 2015).  

Regarding academic predictors considered in the seventh-grade logistic model, 

performance on the FCAT mathematics assessment demonstrated a significant and 

moderate effect size as a predictor for the odds of chemistry course enrollment. 

Specifically, Cohen’s d was .497 for the seventh-grade FCAT predictor and .434 for 

FCAT reading—both of which were also relatively equivalent for sixth and eighth grade. 

When considered in this light, the FCAT mathematics results demonstrated that the 

FCAT predictors were strong indicators of chemistry course enrollment. Specifically, for 

FCAT mathematics for seventh grade, a student with an FCAT achievement level of 3 

was 14.96 times more likely to enroll in chemistry than a seventh grade student with an 

FCAT achievement level of 1. Likewise, for FCAT reading, a student with an FCAT 

achievement level of 3 was 10.19 times more likely to enroll in chemistry than a seventh 

grade student with an FCAT achievement level of 1. Similar results were achieved with a 
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separate analysis of a replicate subsample of 49.91% of the full range of cases (n = 

12,102).  

Further exploration of the data also revealed a significant and large effect size for 

the FCAT mathematics and reading predictors in the eighth grade when controlling for 

academic achievement. Specifically, Cohen’s d for the eighth-grade FCAT predictor was 

.522 and .416 for FCAT reading. A student with an FCAT achievement level of 3 was 

17.11 times more likely to enroll in a chemistry class than a student with an FCAT 

achievement level of 1. For FCAT reading, a student with an achievement level of 3 was 

9.59 times more likely to enroll in chemistry than a student with an FCAT achievement 

level of 1. When compared to the sixth grade, results indicated that the magnitude of the 

effect size for seventh and eighth grade was less; simply put, the R2 decreased. Within the 

sixth-grade model, however, FCAT achievement was again the strongest direct indicator 

of the likelihood of the chemistry enrollment outcome. In contrast, the ninth-grade 

pseudo-FCAT mathematic predictor demonstrated a negligible contribution to the model, 

with a Cohen’s d value of only .005; yet FCAT reading demonstrated a strong effect size, 

with a Cohen’s d value of .695. The data has demonstrated a degree of discontinuity in 

terms of effect sizes in the overall lack of FCAT score conservation observed between 

prior year’s mathematics FCAT scores and those of the ninth-grade FCAT predictors. 

This likely arose from two sources. First, the ninth-grade pseudo-FCAT mathematics 

predictor was derived from student performance on course-specific, district-developed 

achievement on final examinations. Second, there were multiple instruments with no 

reported test validation methods; this likely resulted in a derived substitute variable 

(pseudo-FCAT score) with extremely high variability when compared to actual prior 
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FCAT scores.    

Regarding the FCAT reading predictor, the large effect size of .695 allows for a 

reasonable prediction that students had indeed increased in reading proficiency over time 

since the last FCAT reading assessment. The FCAT, which was measured closest in time 

to the outcome, is expected to have a larger effect on the classification accuracy of the 

logistic model than older FCAT outcomes for any given student. This expectation would 

be extended to an FCAT mathematics test if such an instrument existed. Instead, a 

second, pseudo-FCAT mathematics score was derived from 10th-grade final course 

examination letter grades; however, this predictor—similar to the ninth-grade pseudo-

FCAT mathematics predictor—did not significantly predict achievement. The creation of 

the pseudo-FCAT mathematics predictor for this study facilitates a continuous analysis 

for the strength of all actual FCAT predictors as they pertain to the outcomes of interest.   

At the time of enrollment for the research cohort, no FCAT instrument existed for 

ninth and 10th grades’ mathematics as with sixth through eighth grade. One might 

speculate that if chemistry course enrollment were even partially driven by FCAT 

achievement, the most practical temporal point available to inform on an enrollment 

decision would be the actual FCAT data reported for eighth grade. This is because eighth 

grade would have been the last temporal point for which the FCAT mathematics exam 

was administered and is therefore the most practical score available for such purposes. 

This temporal proximity also likely explains the notably larger effect sizes for eighth-

grade FCAT predictors than for sixth– and seventh-grade FCAT predictors, being that 

both the sixth and seventh grades are more distal temporal points. Otherwise, the data 

demonstrated negligible differences in both model classification accuracy and variability 
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for models from sixth through eighth grade. The observed effect size for eighth-grade 

FCAT achievement predictors clearly deviated from the models for prior years, which 

directly supported the author’s claim that FCAT achievement, specifically in the eighth 

grade, informs student enrollment decisions. Moreover, the eighth-grade model 

demonstrated that students who scored at the FCAT achievement level of 3 or above 

demonstrated a 74.3% probability of subsequent chemistry course enrollment.  

The next research question examined student demographics for unique 

contributions to enrollment in chemistry while controlling for the effects of academic and 

FCAT achievement. The results demonstrated that, when all predictors were considered 

simultaneously, the seventh-grade logistic model correctly classified 81.4% of cases and 

accounted for 56.6% of student enrollment behavior. In regards to gender, female 

students were 1.076 times more likely to enroll in chemistry than male students were. In 

terms of probability, the model demonstrated that, when the entire cohort is considered, 

60.3% of females and 58.9% of males were likely to enroll in a chemistry course over an 

alternative science course. Females were slightly more likely to have enrolled; however, 

enrollment probabilities were similar enough to confirm prior research which has 

suggested that the gender gap in the sciences has narrowed over the course of the last 

decade (Ellison & Swanson, 2010; Goldin, Katz, & Kuziemko, 2006; Jacobs, 2005). 

Moreover, Legewie and DiPrete (2014) recently reported that there has been nearly a 

complete reversal in the gap for academic attainment between men and women. 

 In addition to gender, SES has long been an area of research. There is a large 

body of evidence suggesting that socioeconomic vulnerability is associated with 

diminished access to resources, which has overt and latent effects on learning outcomes, 
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especially among students at or below the poverty line (Sirin, 2005). In the context of this 

study, lower SES students were 7.2% less likely to enroll in chemistry courses than 

higher SES students were. 

Next, considering both gender and SES, higher SES male students were 7.2% 

more likely to enroll in chemistry than did lower SES male students. Likewise, higher 

SES female students were 7.1% more likely to enroll in chemistry than lower SES female 

students were. These results were consistent with Sirin’s (2005) findings and again 

demonstrated the persistence of low SES as a barrier to academic achievement. 

The second research question explored the effects of race. Race did not 

significantly contribute to the overall classification accuracy, nor did it account for 

variance in the model; however, it was still possible to compare the probability of student 

enrollment based on race. Black students were 1.7% less likely to enroll in chemistry than 

White students. Hispanic students were 5.8% less likely to enroll in chemistry than White 

students. Previous findings reported herein demonstrated that females had slightly higher 

odds of chemistry course enrollment; exploration of the effects of SES for females is 

defensibly within the scope of this study. Considering both race and SES, Black female 

students from lower SES were 5.4% less likely to enroll in chemistry than White female 

students from higher SES; moreover, these findings held true when considering males in 

the same context. Hispanic female students from lower SES were 1.2% less likely to 

enroll in chemistry, compared to White female students from higher SES. Though the 

magnitude of this probability may seem trivial, when considering a seventh-grade cohort 

of 10,000 students, for example, nearly 580 Hispanic students would not enroll in 

chemistry. Thus, for only about 7 students, SES would have no bearing on the enrollment 
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outcome. 

Next, special learning services, specifically ELL and ESE, were explored, 

controlling for academic achievement and demographics. In the seventh-grade model, if a 

student received ELL services, the probability of enrollment in chemistry was diminished 

by 2.4%; if a student received ESE services (excluding services for gifted students), the 

probability of enrollment was diminished by 4.3%. Therefore, the results for special 

learning services indicated a reduced likelihood of course enrollment as a function of 

disability.  

 The next research question explored the impact of student behavior—rate of 

absenteeism and number of suspensions—on enrollment in chemistry in the 10th grade, 

while controlling for academic courses, FCAT achievement level, and student 

demographics by grade level. Iver and Messel (2012) found that chronic absenteeism and 

suspensions could moderate high school outcomes. In this study, both rate of absenteeism 

and number of suspensions made a significant—albeit minimal—contribution to model 

classification accuracy; however, they did not uniquely account for variance in 

enrollment at any temporal point. Though the rate of absenteeism and number of 

suspensions did not contribute to the overall regression model, they may have immediate 

and/or direct individual effects. It is likely that frequent suspensions and chronic 

absenteeism are the exception rather than the norm. In this study, 75% of students in the 

cohort were absent 12 days or less, and 90% were suspended for three days or less. It is 

clear why the predictors had no effect in the seventh-grade model, for example. 

Nonetheless, the probabilities can still be explored at the individual level; for example, 

for each day a student was absent, the probability of chemistry enrollment decreased by 
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4.7%, after controlling for demographic and academic variables. Likewise, for each day a 

student was suspended, the probability of chemistry enrollment decreased by 3.4%. In 

both examples, we can see that these particular behavioral indicators are better employed 

in an analysis that is more proximal to the variable of interest as close to concurrently 

with the outcome as feasible. To this end, if practitioners are concerned for a particular 

subgroup, then isolating these variables for that particular subgroups may help in order to 

examine their effects on chemistry enrollment for a particular subgroup of interest.  

In summary, the results demonstrated that the seventh-grade logistic model best 

predicted chemistry enrollment in the 10th grade, when considering demographic, prior 

achievement, and behavioral data. In particular, FCAT achievement was the single 

strongest predictor in both the seventh– and eighth-grade models, and the data revealed 

that female students were more likely to enroll in chemistry than their male peers were. 

The data also confirmed the persistence of low SES as a barrier to academic achievement 

and demonstrated that the rate of neither absenteeism nor the number of suspensions had 

an effect on predictive modeling outcomes. Rather, it is more likely that absenteeism and 

suspensions are predictive of chemistry course enrollment among students who lie two or 

more standard deviations away from the mean (i.e., the effects are diminished closer to 

the mean). Receipt of special learning services (ELL and ESE) had a negative, moderate 

effect on the likelihood of chemistry enrollment. In practice, it is likely that students with 

special learning needs (with the exception of gifted students) require more core and 

remedial coursework, thus reducing the probability of enrollment in advanced courses 

such as chemistry. Lower chemistry enrollment between ELL and ESE students in this 

study appears to support this assertion. The data also demonstrated that Hispanic and, to a 
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lesser extent, Black students were less likely to enroll in chemistry than their White peers 

were. A proportion of the course enrollment rate could be explained by socioeconomic 

vulnerability. Finally, academic achievement, particularly in the case of science course 

achievement, significantly contributed to all predictive modeling outcomes in terms of 

classification accuracy, model variance accounted for, and change in model R2 while 

controlling for demographics, FCAT achievement, and behavior. Eighth-grade FCAT 

mathematics was the single strongest predictor of subsequent chemistry enrollment. In 

general, prior achievement in the sciences and mathematics was a particularly important 

factor for chemistry course enrollment, which is consistent with the literature.  

The next objective of this study was to employ a robust statistical model to predict 

student achievement in chemistry courses. In addition, employment of the logistic models 

was intentional in order to identify specific student attributes, which diminished the odds 

of chemistry achievement. This allows for purposeful identification of at-risk students 

preceding their matriculation into the secondary education system. The strength of 

relationships between predictors and outcomes and the percentage of correct 

classifications are useful to evaluate the accuracy of each predictive model. Coding 

achievement as a binary outcome for the course makes logistic regression analysis the 

most appropriate statistical method to address each of the subsequent research questions.   

The first research question evaluated achievement in the sixth, seventh, eighth, 

and ninth grades for which most accurately predicted the proportion of students who 

passed a chemistry course in the 10th grade with a letter grade of C or better. The 

findings demonstrated that, when the model considers all academic predictors 

simultaneously, the ninth-grade logistic model classified 79.5% of students who either 
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passed or failed chemistry based on prior course and FCAT achievement, accounting for 

40.1% of the model variance. Moreover, the model had 91.0% classification accuracy in 

predicting the odds of passing chemistry in the 10th grade, given the academic predictors. 

In particular, course GPAs in science, mathematics, and English were moderately strong 

predictors of the likelihood of chemistry course outcomes; science GPA was the strongest 

predictor of achievement. Specifically, 67.7% of students who passed a science course in 

ninth grade with a C or higher and enrolled in chemistry passed chemistry with a letter 

grade of C or higher. In contrast, only 15.7% of students who passed a science course in 

ninth grade with a C or higher and enrolled in chemistry subsequently failed the course. 

Moreover, 67.7% of students who passed a mathematics course in ninth grade with a C or 

higher and enrolled in chemistry also passed chemistry with a letter grade of C or higher. 

In contrast, only 15.7% of students who passed a mathematics course in ninth grade with 

a C or higher and enrolled in chemistry subsequently failed the course. The findings 

confirm prior research demonstrating that prior achievement, as measured by GPA, in 

both the sciences and mathematics are predictive of academic achievement in future 

courses (ACT, 2008; Bloom et al., 2008; Lebihan & Takogmo, 2015). Moreover, 

Harachiewicz et al. (2002) reported that high school performance was highly predictive 

of both short– and long-term academic success in post-secondary education. Ayan and 

Garcia (2008) confirmed Harachiewicz et al.’s findings, particularly for post-secondary 

chemistry. Likewise, research indicated that prior course achievement was strongly 

predictive of future achievement in subsequent courses in secondary education (Duncan 

et al., 2007; Hemmings et al., 2011; House et al., 1996; McKenzie & Schweitzer, 2001; 

Watts et al., 2014; Zeegers, 2004). Watts et al. (2014) reported significant results for 
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longitudinal learning gains in mathematics stemming from students who experienced 

early achievement in mathematics in preschool. According to Watts et al. (2014), the 

learning gains were higher for high school for mathematics achievement when compared 

to peers who abstained from enrollment in preschool and did not experience early 

academic success. Lesnick et al. (2010) had similar results for literacy. The literature 

supports an overt link between prior achievement in elementary and secondary school 

and course achievement at the post-secondary level. This research demonstrated that prior 

achievement increased the likelihood of achievement in chemistry. The current study’s 

logistic modeling confirmed the link between prior achievement and learning gains over 

time, as demonstrated by the increased effect size as well as the increase in the amount of 

variance accounted for across all modeling efforts.   

Therefore, this evidence supports the cumulative-learning theory. Problem-based 

learning remains strongly influenced by mastery of prior and successive skills, which 

accumulate as a temporal function of increasing higher-order cognitive ability (Yew, 

Chng, & Schmidt, 2011). It is not likely, however, for time alone on any given task to 

result in higher cognitive ability, nor is it likely for mastery of novice-level skills alone to 

ensure a student’s growth in reasoning ability. Rather, discipline-specific achievement 

over time is likely a better indicator of future performance within the same discipline 

(Siegler & Pyke, 2013).   

A Pearson product-moment correlation was calculated for each core discipline: 

mathematics, English, history, and science; there was a longitudinal effect whereby 

course GPAs within each discipline were moderately correlated with subsequent GPA in 

the same discipline. Similarly, prior science GPA was moderately correlated with 
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chemistry course achievement; there was a relationship between prior mathematics and 

English achievement and chemistry course achievement. This was expected because 

chemistry courses are, by nature, grounded largely in both basic and advanced algebra, 

and math skills are needed in order to solve word problems in chemistry—thus 

explaining the moderate effects observed in the logistic models for both the mathematics 

and English academic predictors. Moreover, the correlation analysis also revealed that 

teacher interpretations of student achievement as reported in the form of letter grades 

were relatively stable from year to year within each discipline, which served to calculate 

course-specific GPAs in this study.  Moreover, the importance of qualifying the academic 

variable with the correlation analysis is quintessential to the logistic modeling preformed 

in this study.  Correlational analysis fairly compares the calculated GPAs from year to 

year most, which is important when using course letter grades exclusively as the basis of 

any derived predictor.  Though prior research has shown that prior, performance is 

predictive of future performance some may argue that, potentially, there may exist, some 

subjective in the methodology pertaining to how the teacher(s) derived the letter grade for 

any particular course.  Unaccountable variability may exist certainly between teachers 

and may just as likely exist between grade-levels for the same academic disciplines. The 

moderate correlations within each discipline and over multiple years, demonstrate that the 

calculated discipline GPA is a fairly consistent conservation of a metric for academic 

progress despite the likely existence of the variability.  The data shows a moderate 

correlation for the calculated GPAs, which was, is important because this variable has an 

enormous influence on the outcomes of most of the logistic models reported herein. 

Lastly, correlation analysis demonstrated that when calculated academic discipline letter 
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grades are moderately conserved between academic years, however, because the 

relationship is only moderate in nature this finding demonstrates that a cumulative GPA 

hinders researchers and practitioners form examining difference in achievement that 

naturally occur from year to year. 

Likewise, the moderate relationship between the academic predictors and 

chemistry course achievement, as well as with the strong predictive power of the ninth– 

and seventh-grade logistic models, led to the inclusion of cumulative course averages into 

the logistic models. As expected, there was a moderately strong effect size for both 

cumulative science GPA and cumulative mathematics GPA as predictors of chemistry 

course achievement. These results were consistent with previous research findings that 

prior achievement in mathematics and science, as measured by GPA, was predictive of 

future outcomes in post-secondary school (Noble & Sawyer, 1987; 2002). Moreover, the 

current findings extend previous findings from the post-secondary literature to the 

secondary and middle grades, demonstrating that cumulative predictors (i.e., GPA) for 

core academic courses, as early as the sixth grade, can be employed in predictive 

modeling with high fidelity. 

Considering, then, standardized tests such as the SAT and ACT, which were 

designed and validated to predict freshmen achievement (Kobrin, Patterson, Shaw, 

Mattern, & Barbuti, 2008), it is not surprising to find research demonstrating the high 

correlation between SAT mathematics achievement and general chemistry achievement 

at the post-secondary level (Nordstrom, 1990). On the other hand, achievement tests such 

as the FCAT were designed to assess the level of student proficiency in mathematics and 

reading at fixed temporal points in order to evaluate achievement to date (Kim & Suen, 
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2014).   

 The next set of research questions explored student demographic attributes and 

behavior (rate of absenteeism and number of suspensions) for unique contributions to 

course achievement in chemistry, while controlling for the effects of academic 

achievement. The results demonstrated that, when all predictors were considered 

simultaneously, the ninth-grade logistic model correctly classified 79.8% of student 

enrollment behavior, accounting for 40.6% of the model variance. Female students were 

1.101 times more likely to pass chemistry than did male students. In terms of probability, 

the model demonstrated that, when the entire cohort was considered for course 

achievement, 65.6% of females and 63.4% of males were likely to pass a chemistry 

course over an alternative science course. Females were slightly more likely to pass 

chemistry with a C or better; however, the probabilities were similar enough to confirm 

prior research findings that the gender gap in the sciences has narrowed over the course 

of the last decade (Ellison & Swanson, 2010; Goldin et al., 2006; Jacobs, 2005). 

Moreover, Legewie and DiPrete (2014) recently found that there has been nearly a 

complete reversal in the gap for academic attainment between men and women.  

 In addition to gender, socioeconomic status has long been an area of research, and 

there is a large body of evidence suggesting that students below or at the poverty line 

have poorer learning outcomes than higher SES students (Sirin, 2005). In this study, 

lower SES students were 3.0% less likely to pass chemistry than did higher SES students. 

Considering both gender and SES, higher SES males were 3.0% more likely to pass 

chemistry than lower SES males. Likewise, higher SES females were 2.9% more likely to 

pass chemistry than lower SES females. These results were consistent with Sirn’s (2005) 
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findings and again demonstrated the persistence of SES as a barrier to academic 

achievement.     

 The next research question examined the effect of race. Race generally did not 

significantly contribute to the overall classification accuracy, nor did it account for 

variance in the regression model; however, it was still possible to compare the probability 

of passing chemistry based on race. Black students were 3.8% less likely to pass 

chemistry than White students and 1.1% less likely to pass chemistry than Hispanic 

students. Moreover, because previous findings demonstrated that females had slightly 

higher odds of passing chemistry, an explanation through data exploration for race and 

SES for females is justifiable. Black female students from lower SES were 5.0% less 

likely to pass chemistry than White female students from higher SES; these findings held 

true when considering males in the same context. These results were again consistent 

with prior research demonstrating that lower SES negatively influences student 

achievement (Sirin, 2005).  

Next, the impact of special learning services—specifically ELL and ESE—on the 

odds of completing a chemistry course with a letter grade of C or better was examined, 

controlling for academic achievement and demographics. The ninth-grade model 

demonstrated, for example, that if a student received services for ELL and enrolled in 

chemistry, the probability of passing chemistry was diminished by 3.7%; if a student 

received ESE (excluding giftedness), the probability of passing chemistry was diminished 

by 2.0%. The results for special learning services indicated that there was a reduced 

likelihood of passing chemistry simply as a function of disability.  

 To complete the second research objective, a second set of research questions 
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examined the impact of student behavior—rate of absenteeism and number of 

suspensions—on the odds of passing chemistry in the 10th grade, while controlling for 

demographic, academic, and FCAT achievement level by grade level. Iver and Messel 

(2012) found that chronic absenteeism and suspensions could moderate high school 

outcomes. In this study, absenteeism and suspension rates did not significantly contribute 

to the regression model. However, at the individual level in 10th grade, after controlling 

for prior achievement and demographics, each day a student was absent decreased the 

probability of the student passing chemistry with a C or better by 5.7%. Likewise, for 

each day that a student was suspended in the 10th grade, the probability of passing 

chemistry with a C or better decreased by 1.5%. These findings indicate that the rate of 

absenteeism and the number of suspensions only influence chemistry achievement at the 

individual level. It is likely that frequent suspensions and chronic absenteeism are the 

exception rather than the norm. Indeed, the results revealed that 90% of students in the 

10th grade were absent 17 or fewer days and were suspended one or fewer days. The rate 

of absenteeism or number of suspensions appears to only affect students who fall two or 

more standard deviations beyond the norm.   

In summary, the results overall demonstrated that the ninth-grade logistic model 

best predicted chemistry course achievement in the 10th grade when controlling for 

demographic, prior achievement, and behavioral data. In particular, prior science 

achievement predictors were the strongest indicators of chemistry course achievement. 

For all predictive models, the data revealed that female students were slightly more likely 

to pass a course in chemistry than their male peers. The data also confirmed the 

persistence of low SES as an obstacle to achievement and demonstrated that both the rate 
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of absenteeism and number of suspensions had only a weak, negligible effect on 

predicting chemistry achievement. Absenteeism and suspension rates were more overt at 

the individual level (i.e., among individuals two or more standard deviations away from 

the mean), negatively affecting academic achievement; in the larger regression model, 

however, the effects became silenced because absenteeism and suspensions were not the 

norm. Special learning services (ELL and ESE) had a negative—albeit weak—effect on 

the likelihood of passing chemistry. It is likely that students with special learning needs 

(excluding gifted students) have more difficulty with higher-order cognitive processes 

needed to successfully navigate chemistry coursework. As expected, ELL and ESE 

students had more difficulty passing chemistry. The data also demonstrated that race did 

not significantly influence chemistry course achievement. However, at the individual 

level, Black and, to a lesser extent, Hispanic students were less likely to pass a course in 

chemistry than their White peers.   

Finally, to address the three alternative theoretical frameworks for the views 

concerning best predictors of chemistry enrollment and achievement. The first view was 

that the level of prior achievement in mathematics and/or science in the early grades is 

key to future success and acts as a bottleneck for pathways into chemistry enrollment and 

achievement (see Figure 1). The data demonstrates that though prior mathematics and 

science achievement are slightly stronger predictors, in terms of effect size, the 

magnitude of these effect sizes are comparable when considering other academic 

predictors. The second alternative view is that more general achievement is key, such that 

mathematics and science is not better a predictor than reading-intensive courses such as 

English and/or history (see Figure 2). The data supports this alternative theoretical 
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construct where the effect sizes for the academic predictors are comparable at each 

temporal point of consideration. Finally, the third alternative hypothesis, derived from the 

literature has shown that demographics and/or behavior are important predictors even 

when controlling for academic achievement (see Figure 3). Overall, the data did not 

support the third conceptual framework.  In summary, the data supports the second 

alternative view by a) showing that math and science show similar predictive power as 

the English and history inputs (predictors), and b) demographics and behavior were not 

important (negligible effects) when predictors were entered into the models while 

controlling for prior academic achievement and demographics. This suggests the 

importance of early academic achievement and not behavior or demographics as the 

driving force for later chemistry enrollment and achievement.  

Recommendations 

 The findings demonstrated that prior science course GPA was the strongest 

predictor of passing chemistry, followed by prior mathematics course GPA. Findings 

were consistent for individual temporal points as well as across multiple years of data. 

Based on these findings, it would be advisable to use cumulative GPAs from prior 

science and mathematics courses to inform decisions related to enrollment into chemistry 

courses in place of the current eighth-grade FCAT mathematics achievement score.  

 The findings also demonstrated that course-specific, county-made standardized 

examinations should be excluded from the calculation of cumulative score averages for 

predictive modeling due to a general lack of validation methodologies across the 

instruments. To this end, when ninth– and 10th-grade mathematics final examination 

scores were considered as pseudo-FCAT proxies, the effects were negligible and 
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inconsistent with prior FCAT mathematics achievement scores. Based on these findings, 

it would be advisable to avoid constructing pseudo-proxy scores in lieu of standardized 

test scores.   

 The findings demonstrated that low SES remains a persistent obstacle for both 

course enrollment and achievement. Based on these findings, it may be advisable to 

increase resources for lower SES students in terms of access to school-based tutoring, 

perhaps before and/or after school, and greater access to course sustainment during the 

summer months when school is not normally in session. Improving access to these 

resources may increase both rate of enrollment and probability of success in a chemistry 

course.   

The findings also demonstrated that course achievement may be negatively 

affected by higher-than-average rates of absences and suspensions. Based on these 

findings, it may be advisable to develop and employ policy to decrease the number of 

days a student is absent or suspended. This may increase the probability of course 

achievement. 

This study did not consider the hierarchical nature of interaction or variance 

explained by individuals grouped by classroom, which are naturally nested within 

schools. Future work should focus on the contributions that arise from interactions among 

the predictors within a hierarchical structure. Additionally, the logistic models used in 

this study only considered archival data. Future research should consider the effects of 

psychological, neurological, and sociological factors on achievement outcomes at the 

individual, classroom, and school-site levels. It would also be advisable for future 

research to employ a cross-validation approach with separate cohorts of students or with 
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a more advanced replacement–resampling methodology.   

Limitations 

 The first major limitation in this study was the cross-validation approach used for 

model testing. As indicated in the data-processing section, each round of independent, 

replicate-model testing iterations was re-sampled from a random portion of the same 

cohort of students, which is useful in order to validate research findings but does not 

definitively demonstrate generalizability to future cohorts. Future research should cross-

validate with two separate cohorts of students. The next major limitation was the level of 

analysis. The reported findings of this study were only in consideration of the effects of 

performance at the individual level. The hierarchical variability in both the statistical and 

practical sense at the classroom and school-site levels was not accounted for when 

considering the predictors.   

The next limitation was the processing of the history predictor. Specifically, it 

was possible for students to enroll in multiple semester-long history courses in the same 

academic year; some students may have elected to take fewer history courses, which may 

have resulted in a slightly inflated history GPA. This was likely the reason why history 

had a slightly larger effect than expected when compared to history GPA in subsequent 

academic years, as well as when compared to English GPA, for instance. This was the 

case because there is far greater opportunity to enroll in history courses in any given 

academic year compared to other academic course, which must follow a specific 

sequence.   

Future Research 

 The reported predictive models explored in this study were able to classify 
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students accurately, for those who are at risk of either not enrolling or of performing 

poorly in the chemistry course. Both outcomes have reported effects on student 

performance at the post-secondary level. This dissertation tested a predictive model to 

address the need to identify students who are susceptible to diminished chances of course 

enrollment and achievement in chemistry at the high-school level. Furthermore, the 

model’s methodology is directly applicable to other school districts and student cohorts. 

The predictive modeling is purposely intended to be both transferable and easily 

generalizable to other cohorts. Given the lack of reported instruments in the literature, 

this study is critical for the future development of predictive modeling to progressively 

aid practitioners in academic trajectory estimation. Future research should explore 

additional populations excluded from this study.   

This study did not consider the hierarchical nature of interaction or variance 

explained by individuals grouped by classroom, which naturally occur within schools. 

Future work should focus on the contributions that arise from interactions among the 

predictors within a hierarchical structure. Additionally, the logistic models used in this 

study only considered archival data. Future research should consider the effects of 

psychological, neurological, and sociological factors on achievement outcomes at the 

individual, classroom, and school-site levels. It would also be advisable for future 

research to employ a cross-validation approach with separate cohorts of students or with 

a more advanced replacement–resampling methodology.   
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Table A1 
 
Mean and Standard Deviations for Variables with the Missing Values Compared to Mean and Standard 
Deviations after EM Replacement (n = 12, 102). 

 Raw Mean (SD)   EM Mean (SD) 

Variable     6th     7th     8th     9th     10th     6th 7th 8th 9th 10th 
Math 2.8 (1.0) 2.8 (1.0) 2.6 (1.0) 2.3 (1.1) 2.2 (1.1) 2.9 (1.0) 2.8 (1.0) 2.6 (1.0) 2.3 (1.1) 2.1 (1.1) 
English 3.1 (1.0) 1.8 (1.0) 2.9 (1.0) 2.6 (1.1) 2.6 (1.1) 3.1 (1.0) 1.8 (1.0) 2.9 (1.0) 2.6 (1.1) 2.6 (1.1) 
Science 3.0 (1.0) 2.9 (1.0) 2.7 (1.0) 2.4 (1.1) 2.4 (1.0) 3.0 (1.0) 2.9 (1.0) 2.7 (1.0) 2.4 (1.1) 2.4 (1.1) 
History 3.1 (1.0) 3.0 (1.0) 2.9 (1.0) 2.5 (1.1) 2.6 (1.0) 3.1 (1.0) 3.0 (1.0) 2.9 (1.0) 2.5 (1.1) 2.6 (1.0) 
FCAT 
read 

3.0 (1.1) 3.0 (1.2) 2.6 (1.1) 2.7 (1.2) 2.7 (1.3) 3.0 (1.2) 3.0 (1.2) 2.6 (1.1) 2.7 (1.2) 2.7 (1.2) 

FCAT 
math 

2.8 (1.2) 3.0 (1.2) 3.1 (1.2) 2.2 (1.3) 2.2 (1.3) 2.8 (1.3) 3.0 (1.2) 3.1 (1.2) 2.2 (1.3) 2.2 (1.3) 

Note. Outcome excludes EM-replaced data in all analyses.  
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Results for Chemistry Enrollment Based on the Replicate Subsample 
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Table B1 
 
Sixth-Grade Logistic Regression Predicting Enrollment into Chemistry, Controlling for Academic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Math .171 (.056) 3.05* 1.187 0.095 .001 
English .246 (.059) 4.169 1.279 0.136 .002 
History .326 (.060) 5.433 1.386 0.180 .004 
Science .208 (.061) 3.410 1.231 0.115 .002 
FCAT Math .642 (.052) 12.35 1.901 0.354 .023 
FCAT Reading .740 (.050) 14.8 2.096 0.408 .035 

Note. Data were constructed from a random resampling of 49.91% of the full data set for replication. ELL = 
English language learner; ESE = exceptional student education. All slopes and intercepts were significant at 
p < .001 unless otherwise indicated with * where p < .05 or with † denoting nonsignificance. Model 
classification accuracy = 77.9%; model Nagelkerke R2 = .461. Change in Nagelkerke R2 was calculated as 
the difference between the model with all predictors entered at the same time minus the same model with 
the variable of interest removed. 
 
 
Table B2 
 
Seventh-Grade Logistic Regression Predicting Enrollment into Chemistry, Controlling for Academic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Math .170 (.058) 2.931 1.186 0.094 .002 
English .167 (.063) 2.651 1.182 0.092 .002 
History .370 (.061) 6.066 1.448 0.204 .010 
Science .255 (.063) 4.048 1.291 0.141 .010 
FCAT Math .767 (.061) 12.57 2.152 0.423 .026 
FCAT Reading .610 (.061) 10.000 1.840 0.336 .036 

Note. Data were constructed from a random resampling of 49.91% of the full data set for replication. ELL 
= English language learner; ESE = exceptional student education. All slopes and intercepts were 
significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting nonsignificance. 
Model classification accuracy = 82.0%; model Nagelkerke R2 = .543. Change in Nagelkerke R2 was 
calculated as the difference between the model with all predictors entered at the same time minus the same 
model with the variable of interest removed. 
 
 
Table B3 
 
Eighth-Grade Logistic Regression Predicting Enrollment into Chemistry, Controlling for Academic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Math -.046 (.048) .958† .958 -0.024 0 
English .353 (.051) 6.921 1.421 0.194 .007 
History .332 (.052) 6.385 1.391 0.182 .005 
Science .196 (.053) 3.698 1.218 0.109 .002 
FCAT Math .784 (.053) 14.79 2.178 0.429 .035 
FCAT Reading .713 (.046) 15.5 1.999 0.382 .034 

Note. Data were constructed from a random resampling of 49.91% of the full data set for replication. ELL = 
English language learner; ESE = exceptional student education. All slopes and intercepts were significant at 
p < .001 unless otherwise indicated with * where p < .05 or with † denoting nonsignificance. Model 
classification accuracy = 77.1%; model Nagelkerke R2 = .466. Change in Nagelkerke R2 was calculated as 
the difference between the model with all predictors entered at the same time minus the same model with 
the variable of interest removed. 
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Table B4 
 
Ninth-Grade Logistic Regression Predicting Enrollment into Chemistry, Controlling for Academic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Math -.012 (.049) .245† .988 -0.007 .002 
English .266 (.050) 5.32 1.305 0.147 .006 
History .129  (.046) 2.804* 1.138 0.071 .003 
Science .427 (.051) 8.372 1.533 0.236 .012 
FCAT Math .163 (.042) 3.881 1.177 0.090 .005 
FCAT Reading .957 (.045) 21.267 2.603 0.527 .090 

Note. Data were constructed from a random resampling of 49.91% of the full data set for replication. ELL = 
English language learner; ESE = exceptional student education. All slopes and intercepts were significant at 
p < .001 unless otherwise indicated with * where p < .05 or with † denoting nonsignificance. Model 
classification accuracy = 75.8%; model Nagelkerke R2 = .443. Change in Nagelkerke R2 was calculated as 
the difference between the model with all predictors entered at the same time minus the same model with 
the variable of interest removed. 
 
 
Table B5 
 
10th-Grade Logistic Regression Predicting Enrollment into Chemistry, Controlling for Academic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Math .066 (.045) 1.467† 1.068 0.036 0 
English .356 (.046) 7.739 1.428 0.196 .009 
History -.122 (.041) 2.98* .885 -0.067 .001 
FCAT Math -.032 (.039) .820† .968 -0.018 0 
FCAT Reading 1.026 (.042) 24.428 2.790 0.566 .111 

Note. Data were constructed from a random resampling of 49.91% of the full data set for replication. ELL = 
English language learner; ESE = exceptional student education. All slopes and intercepts were significant at 
p < .001 unless otherwise indicated with * where p < .05 or with †denoting nonsignificance. Model 
classification accuracy = 75.1%; model Nagelkerke R2 = .399. Change in Nagelkerke R2 was calculated as 
the difference between the model with all predictors entered at the same time minus the same model with 
the variable of interest removed. 
 
 
Table B6 
 
Sixth-Grade Logistic Regression Predicting Enrollment into Chemistry, Controlling for Demographic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .089 (.036) 2.62* 1.093 0.049 .001 
SES .036 (.037) .97† 1.037 0.020 0 
ELL -.103 (.035) 2.94* .902 -0.057 .001 
ESE -.142 (.045) 3.155 .868 -0.078 .001 
Black .050 (.138) .36†   1.051 0.027 0 
White .244 (.124) 1.97† 1.277 0.135 0 
Hispanic .070 (.127) .551† 1.073 0.039 0 

Note. Data were constructed from a random resampling of 49.91% of the full data set for replication. ELL = 
English language learner; ESE = exceptional student education. Other set as the reference race category. 
All slopes and intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or 
with † denoting nonsignificance. Model classification accuracy = 77.9%; model Nagelkerke R2 = .461. 
Change in Nagelkerke R2 was calculated as the difference between the model with all predictors entered at 
the same time minus the same model with the variable of interest removed. 
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Table B7 
 
Seventh-Grade Logistic Regression Predicting Enrollment into Chemistry, Controlling for Demographic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .069 (.044) 1.568 1.072 0.038 0.001 
SES -.175 (.049) 3.571 .840 -0.096 0 
ELL -.092 (.043) 2.139 .912 -0.051 0.002 
ESE -.198 (.051) 3.882 .821 -.11 0.002 
Black .049 (.072) .680 1.050 .027 0 
White .146 (.080) 1.825 1.157 .080 0 
Hispanic .105 (.076) 1.381 1.111 .058 0 

Note. Data were constructed from a random resampling of 49.91% of the full data set for replication. ELL = 
English language learner; ESE = exceptional student education. Other set as the reference race category. 
All slopes and intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or 
with †denoting nonsignificance. Model classification accuracy = 82.0%; model Nagelkerke R2 = .543. 
Change in Nagelkerke R2 was calculated as the difference between the model with all predictors entered at 
the same time minus the same model with the variable of interest removed. 
 
 
Table B8 
 
Eighth-Grade Logistic Regression Predicting Enrollment into Chemistry, Controlling for Demographic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .091 (.034) 2.68* 1.08 .044 0 
SES .043 (.038) 1.131† 1.047 .044 0 
ELL -.169 (.035) 4.828 .839 -.097 .003 
ESE .068 (.139) .489 .859 -.084 .001 
Black .247 (.125) 1.98† 1.068 .036 0 
White .125 (.129) .969† 1.308 .148 0 
Hispanic .146 (.042) 3.476† 1.137 .071 0 

Note. Data were constructed from a random resampling of 49.91% of the full data set for replication. ELL = 
English language learner; ESE = exceptional student education. Other set as the reference race category. 
All slopes and intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or 
with † denoting nonsignificance. Model classification accuracy = 77.1%; model Nagelkerke R2 = .466. 
Change in Nagelkerke R2 was calculated as the difference between the model with all predictors entered at 
the same time minus the same model with the variable of interest removed. 
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Table B9 
 
Ninth-Grade Logistic Regression Predicting Enrollment into Chemistry, Controlling for Demographic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .081 (.034) 2.38* 1.08 .044 0 
SES .086 (.038) 2.26* 1.090 .048 0 
ELL -.240 (.035) 6.857 .786 -.133 .007 
ESE -.157 (.043) 3.651 .855 -.086 .002 
Black -.017 (.139) .122† .938 -.035 0 
White .156 (.127) 1.228† 1.168 .086 0 
Hispanic .087 (.130) .669† 1.091 .048 0 

Note. Data were constructed from a random resampling of 49.91% of the full data set for replication. ELL = 
English language learner; ESE = exceptional student education. Other set as the reference race category. 
All slopes and intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or 
with † denoting nonsignificance. Model classification accuracy = 75.8%; model Nagelkerke R2 = .443. 
Change in Nagelkerke R2 was calculated as the difference between the model with all predictors entered at 
the same time minus the same model with the variable of interest removed. 
 
 
Table B10 
 
10th Grade Logistic Regression Predicting Enrollment into Chemistry, Controlling for Demographic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .130 (.033) 3.939 1.139 .072 .002 
SES .059 (.036) 1.639† 1.060 .032 0 
ELL -.244 (.033) 7.394 .783 -.135 .009 
ESE -.149 (.042) 3.548 .862 -.082 .002 
Black .128 (.135) .948† 1.137 .071 0 
White -.208 (.121) 1.719† .812 -.115 0 
Hispanic -.016 (.124) .129† .984 -.009 0 

Note. Data were constructed from a random resampling of 49.91% of the full data set for replication. ELL = 
English language learner; ESE = exceptional student education. Other set as the reference race category. 
All slopes and intercepts were significant at p < .001 unless otherwise indicated with * where p < .05 or 
with †denoting nonsignificance. Model classification accuracy = 75.1%; model Nagelkerke R2 = .399. 
Change in Nagelkerke R2 was calculated as the difference between the model with all predictors entered at 
the same time minus the same model with the variable of interest removed. 
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Table B11 
 
Logistic Regression Predicting Enrollment into Chemistry, Controlling for Behavioral Predictors Based on 
the Replicate Subsample 

Variable B (SE) t ratio Odds Ratio Cohen’s d ΔR2 

 
Absenteeism 
 

     

10th Grade  -.024 (.004) 6.0 0.957 -0.024 .054 
9th Grade  -.003 (.005) 0.6† 1.006 0.003 .039 
8th Grade  .011 (.005) 2.2* 1.007 0.004 .035 
7th Grade  .025 (.006) 4.17 1.026 0.014 .018 
6th Grade  .005 (.006) 0.83† 1.005 0.003 .016 

Suspensions 
 

     

10th Grade  -.153 (018) 8.5 0.858 -0.084 .019 
9th Grade  -.077 (.015) 5.13 0.926 -0.042 .010 
8th Grade  -.023 (.015) 1.53* 0.978 -0.012 .008 
7th Grade  -.039 (.016) 2.44 0.962 -0.021 .006 
6th Grade  -.046 (.021) 2.19 0.955 -0.025 .003 

Note. Change in Nagelkerke R2 was calculated as the difference between the model with all predictors 
entered at the same time minus the same model with the variable of interest removed. All slopes and 
intercepts are significant at p < .001 unless otherwise indicated with * where p < .05 or with † denoting 
nonsignificance. Absenteeism model classification accuracy = 78.0%; model Nagelkerke R2 = .447. 
Suspension model classification accuracy = 78.3%; model Nagelkerke R2 = .470. Data was derived from a 
random sample of 49.91% of the full range of cases. 
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Appendix C 

Results for Chemistry Achievement Pass (Grade of C or Better) Versus Fail Based on the 

Replicate Subsample 
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Table C1 
 
Sixth-Grade Logistic Regression Predicting Chemistry Course Achievement, Controlling for Academic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Math .748 (.085) 8.8 2.114 0.413 .033 
English .458 (.089) 5.146 1.582 0.253 .011 
History -.066 (.090) .733† .936 -0.036 0 
Science .174 (.092) 1.891† 1.190 0.096 .001 
FCAT Math .184 (.077) 2.390* 1.202 0.101 .002 
FCAT Reading .279 (.076) 3.671 1.322 0.154 .005 

Note. Data were derived from the 49.74% of the full data set for replication. Model classification accuracy 
= 95.2%; model Nagelkerke R2 = .261. Change in Nagelkerke R2 was calculated as the difference between 
the model with all predictors entered at the same time minus the same model with the variable of interest 
removed. The pseudo-FCAT math predictor was constructed from achievement on course-specific final 
examinations (ninth and 10th grades only). All slopes and intercepts are significant at p < .001 unless 
otherwise indicated with * where p < .05 or with † for nonsignificance.  
 
 
Table C2 
 
Seventh-Grade Logistic Regression Predicting Chemistry Course Achievement, Controlling for Academic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Math .717 (.080) 8.962 2.049 0.395 .034 
English .297 (.092) 3.228 1.346 0.164 .005 
History .284 (.082) 3.463 1.329 0.157 .005 
Science .296 (.086) 3.442 1.345 0.163 .005 
FCAT Math .236 (.079) 2.99* 1.266 0.130 .004 
FCAT Reading .271 (.074) 3.662 1.311 0.149 .005 

Note. Data were derived from the 49.74% of the full data set for replication. Model classification accuracy 
= 92.1%; model Nagelkerke R2 = .257. Change in Nagelkerke R2 was calculated as the difference between 
the model with all predictors entered at the same time minus the same model with the variable of interest 
removed. The pseudo-FCAT math predictor was constructed from achievement on course-specific final 
examinations (ninth and 10th grades only). All slopes and intercepts are significant at p < .001 unless 
otherwise indicated with * where p < .05 or with † for nonsignificance.  
 
 
Table C3 
 
Eighth-Grade Logistic Regression Predicting Chemistry Course Achievement, Controlling for Academic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Math .513 (.074) 6.932 1.671 0.283 .020 
English .188 (.079) 2.38* 1.206 0.103 .003 
History .378 (.079) 4.785 1.460 0.209 .010 
Science .265 (.082) 3.232 1.304 0.146 .005 
FCAT Math .432 (.076) 5.684 1.541 0.238 .014 
FCAT Reading .213 (.071) 3.0* 1.237 0.117 .004 

Note. Data were derived from the 49.74% of the full data set for replication. Model classification accuracy 
= 92.1%; model Nagelkerke R2 = .301. Change in Nagelkerke R2 was calculated as the difference between 
the model with all predictors entered at the same time minus the same model with the variable of interest 
removed. The pseudo-FCAT math predictor was constructed from achievement on course-specific final 
examinations (ninth and 10th grades only). All slopes and intercepts are significant at p < .001 unless 
otherwise indicated with * where p < .05 or with † for nonsignificance.  
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Table C4 
 
Ninth-Grade Logistic Regression Predicting Chemistry Course Achievement, Controlling for Academic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Math .356 (.081) 4.395 1.428 0.196 .008 
English .457 (.082) 5.573 1.579 0.252 .013 
History .340 (.073) 4.657 1.406 0.188 .009 
Science .599 (.087) 6.885 1.821 0.330 .020 
FCAT Math .238 (.068) 3.5 1.268 0.131 0 
FCAT Reading .197 (.071) 2.775 1.218 0.109 .003 

Note. Data were derived from the 49.74% of the full data set for replication. Model classification accuracy 
= 91.8%; model Nagelkerke R2 = .359. Change in Nagelkerke R2 was calculated as the difference between 
the model with all predictors entered at the same time minus the same model with the variable of interest 
removed. The pseudo-FCAT math predictor was constructed from achievement on course-specific final 
examinations (ninth and 10th grades only). All slopes and intercepts are significant at p < .001 unless 
otherwise indicated with * where p < .05 or with † for nonsignificance.  
 
 
Table C5 
 
10th-Grade Logistic Regression Predicting Chemistry Course Achievement, Controlling for Academic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Math .698 (.078) 8.949 2.009 0.385 .029 
English .949 (.084) 11.298 2.582 0.523 .048 
History .449 (.069) 6.507 1.566 0.247 .015 
FCAT Math .285 (.066) 4.318 1.330 0.157 .006 
FCAT Reading .350 (.073) 4.794 1.420 0.193 .008 

Note. Data were derived from the 49.74% of the full data set for replication. Model classification accuracy 
= 92.7%; model Nagelkerke R2 = .492. Change in Nagelkerke R2 was calculated as the difference between 
the model with all predictors entered at the same time minus the same model with the variable of interest 
removed. The pseudo-FCAT math predictor was constructed from achievement on course-specific final 
examinations (ninth and 10th grades only). All slopes and intercepts are significant at p < .001 unless 
otherwise indicated with * where p < .05 or with †for nonsignificance.  
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Table C6 
 
Sixth-Grade Logistic Regression Predicting Chemistry Course Achievement, Controlling for Demographic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .141 (.051) 2.76* 1.152 0.078 .003 
SES -.207 (.055) 3.764 .813 -0.114 .005 
ELL .125 (.066) 1.894† 1.134 0.069 .001 
ESE -.086 (.071) 1.211† .918 -0.047 0 
Black -.565 (.212) 2.66* .568 -0.312 0 
White -.217 (.190) 1.142† .805 -0.120 0 
Hispanic -.432 (.194) 2.227* .649 -0.238 0 

Note. Data were derived from the 49.74% of the full data set for replication. Model classification accuracy 
= 78.7%; model Nagelkerke R2 = .278. Change in Nagelkerke R2 was calculated as the difference between 
the model with all predictors entered at the same time minus the same model with the variable of interest 
removed. The pseudo-FCAT math predictor was constructed from achievement on course-specific final 
examinations (ninth and 10th grades only). Other set as the reference race category. All slopes and 
intercepts are significant at p < .001 unless otherwise indicated with *where p < .05 or with †for 
nonsignificance.  
 
 
Table C7 
 
Seventh-Grade Logistic Regression Predicting Chemistry Course Achievement, Controlling for 
Demographic Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .149 (.051) 2.92* 1.160 0.082 .003 
SES -.247 (.056) 4.411 .781 -0.136 .008 
ELL .097 (.065) 1.492† 1.102 0.054 .001 
ESE -.133 (.071) 1.87* .875 -0.074 .001 
Black -.551 (.212) 2.6* .576 -0.304 0 
White -.287 (.190) 1.510† .751 -0.158 0 
Hispanic -.469 (.195) 2.40† .625 -0.259 0 

Note. Data were derived from the 49.74% of the full data set for replication. Model classification accuracy 
= 76.4%; model Nagelkerke R2 = .274. Change in Nagelkerke R2 was calculated as the difference between 
the model with all predictors entered at the same time minus the same model with the variable of interest 
removed. The pseudo-FCAT math predictor was constructed from achievement on course-specific final 
examinations (ninth and 10th grades only). Other set as the reference race category. All slopes and 
intercepts are significant at p < .001 unless otherwise indicated with * where p < .05 or with † for 
nonsignificance.  
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Table C8 
 
Eighth-Grade Logistic Regression Predicting Chemistry Course Achievement, Controlling for 
Demographic Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .175 (.052) 3.365 1.191 0.096 .005 
SES -.233 (.057) 4.088 .792 -0.129 .007 
ELL .083 (.065) 1.277† 1.086 0.045 .001 
ESE -.084 (.073) 1.15† .919 -0.047 .001 
Black -.434 (.216) 2.01* .648 -0.239 0 
White -.134 (.193) .694† .874 -0.074 0 
Hispanic .289 (.198) 1.459† .749 -0.159 0 

Note. Data were derived from the 49.74% of the full data set for replication. Model classification accuracy 
= 78.6%; model Nagelkerke R2 = .319. Change in Nagelkerke R2 was calculated as the difference between 
the model with all predictors entered at the same time minus the same model with the variable of interest 
removed. The pseudo-FCAT math predictor was constructed from achievement on course-specific final 
examinations (ninth and 10th grades only). Other set as the reference race category. All slopes and 
intercepts are significant at p < .001 unless otherwise indicated with * where p < .05 or with † for 
nonsignificance.  
 
 
Table C9 
 
Ninth-Grade Logistic Regression Predicting Chemistry Course Achievement, Controlling for Demographic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t-ratio Odds Ratio Cohen’s d ΔR2 
Gender .101 (.054) 1.87† 1.106 0.056 .002 
SES -.078 (.059) 1.32† .925 -0.043 .001 
ELL .091 (.070) 1.3† 1.096 0.051 .001 
ESE -.065 (.075) .867† .937 -0.036 .001 
Black -.397 (.223) 1.780† .673 -0.218 0 
White -.088 (.201) .438† .916 -0.048 0 
Hispanic -.281 (.206) 1.364† .755 -0.155 0 

Note. Data were derived from the 49.74% of the full data set for replication. Model classification accuracy 
= 78.7%; model Nagelkerke R2 = .365. Change in Nagelkerke R2 was calculated as the difference between 
the model with all predictors entered at the same time minus the same model with the variable of interest 
removed. The pseudo-FCAT math predictor was constructed from achievement on course-specific final 
examinations (ninth and 10th grades only). Other set as the reference race category. All slopes and 
intercepts are significant at p < .001 unless otherwise indicated with * where p < .05 or with † for 
nonsignificance.  
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Table C10 
 
10th-Grade Logistic Regression Predicting Chemistry Course Achievement, Controlling for Demographic 
Predictors Based on the Replicate Subsample 

Predictor B (S.E.) t ratio Odds Ratio Cohen’s d ΔR2 
Gender .069 (.058) 1.190† 1.072 0.038 .001 
SES -.009 (.063) .143† .991 -0.005 0 
ELL .044 (.072) .611* 1.045 0.024 0 
ESE -.019 (.082) .232† .981 -0.011 0 
Black -.297 (.244) 1.217† .743 -0.164 0 
White -.081 (.218) .371† .923 -0.044 0 
Hispanic -.334 (.224) 1.491† .716 -0.184 0 

Note. Data were derived from the 49.74% of the full data set for replication. Model classification accuracy 
= 83.2%; model Nagelkerke R2 = .494. Change in Nagelkerke R2 was calculated as the difference between 
the model with all predictors entered at the same time minus the same model with the variable of interest 
removed. The pseudo-FCAT math predictor was constructed from achievement on course-specific final 
examinations (ninth and 10th grades only). Other set as the reference race category. All slopes and 
intercepts are significant at p < .001 unless otherwise indicated with * where p < .05 or with † for 
nonsignificance.  
 
 
Table C11 
 
Logistic Regression Predicting Chemistry Course Achievement, Controlling for Behavioral Predictors 
Based on the Replicate Subsample 

Variable B (SE) t ratio Odds Ratio Cohen’s d ΔR2 

 
Absenteeism 
 

     

10th Grade  -.673 (.064) 10.516 0.510 -0.371 .058 
9th Grade  .005 (.054) 0.092† 0.604 -0.278 .033 
8th Grade  .011 (.051) 0.216† 0.660 -0.229 .025 
7th Grade  .205 (.052) 3.942* 0.749 -0.159 .015 
6th Grade  .026 (.046) 0.565† 0.730 -0.174 .018 

Suspensions 
 

     

10th Grade  -.785 (.437) 1.796* 0.456 -0.433 .018 
9th Grade  -.423 (.411) 1.029† 0.651 -0.237 .007 
8th Grade  -.158 (.156) 1.013† 0.708 -0.190 .006 
7th Grade  -.255 (.196) 1.301† 0.718 -0.183 .006 
6th Grade  -.254 (.177) 1.435† 0.805 -0.120 .002 

Note. Change in Nagelkerke R2 was calculated as the difference between the model with all predictors 
entered at the same time minus the same model with the variable of interest removed. All slopes and 
intercepts are significant at p < .001 unless otherwise indicated with * where p < .05 or with † for 
nonsignificance. Absenteeism model classification accuracy = 79.8%; model Nagelkerke R2 = .244. 
Suspension model classification accuracy = 79.0%; model Nagelkerke R2 = .280. Data was derived from a 
random sample of 49.74% of the full range of cases. 
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Appendix D 

Intercorrelations from Year-to-Year for the Replicate Subsample 
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Table D1 
 
Correlation Analysis for Academic Course GPA by Grade Level Based on the Replicate Subsample (n = 
2,967).  

Discipline Grade Level 10 9 8 7 6 

Math 

10 —     
9 .598 —    
8 .486 .524 —   
7 .476 .484 .590 —  
6 .491 .472 .558 .630 — 

English 

10 —     
9 .603 —    
8 .497 .563 —   
7 .452 .488 .565 —  
6 .493 .508 .524 .553 — 

Science 

9  —    
8  .566 —   
7  .526 .547 —  
6  .487 .522 .558 — 

History 

10 —     
9 .482 —    
6 .384 .505 —   
7 .350 .487 .567 —  
6 .334 .424 .468 .542 — 

Note. All correlations are significant at p < .001.  


