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By 
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Ensuring the resilience of self-adaptive systems used in critical infrastructure systems is a 

concern as their failure has severe societal and financial consequences.  The current trends in the 

growth of the scale and complexity of society’s workload demands and the systems built to cope 

with these demands increases the anxiety surrounding service disruptions.  Self-adaptive 

mechanisms instill dynamic behavior to systems in an effort to improve their resilience to 

runtime changes that would otherwise result in service disruption or failure, such as faults, 

errors, and attacks.  Thus, the evaluation of a self-adaptive system’s resilience is critical to 

ensure expected operational qualities and elicit trust in their services.  However, resilience 

benchmarking is often overlooked or avoided due to the high cost associated with evaluating the 

runtime behavior of large and complex self-adaptive systems against an almost infinite number 

of possible runtime changes. 
 

Researchers have focused on techniques to reduce the overall costs of benchmarking 

while ensuring the comprehensiveness of the evaluation as testing costs have been found to 

account for 50 to 80% of total system costs.  These test suite minimization techniques include the 

removal of irrelevant, redundant, and repetitive test cases to ensure that only relevant tests that 

adequately elicit the expected system responses are enumerated.  However, these approaches 

require an exhaustive test suite be defined first and then the irrelevant tests are filtered out, 

potentially negating any cost savings. 

 

This dissertation provides a new approach of defining a resilience changeload for self-

adaptive systems by incorporating goal-oriented requirements engineering techniques to extract 

system information and guide the identification of relevant runtime changes.  The approach 

constructs a goal refinement graph consisting of the system’s refined goals, runtime actions, self-

adaptive agents, and underlying runtime assumptions that is used to identify obstructing 

conditions to runtime goal attainment.  Graph theory is then used to gauge the impact of 

obstacles on runtime goal attainment and those that exceed the relevance requirement are 

included in the resilience changeload for enumeration.  The use of system knowledge to guide 

the changeload definition process increased the relevance of the resilience changeload while 

minimizing the test suite, resulting in a reduction of overall benchmarking costs.  Analysis of 

case study results confirmed that the new approach was more cost effective on the same subject 

system over previous work.  The new approach was shown to reduce the overall costs by 

79.65%, increase the relevance of the defined test suite, reduce the amount of wasted effort, and 

provide a greater return on investment over previous work by a factor of two. 
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Chapter 1 

Introduction 

Introduction 

The growing heterogeneity, scale, and dynamism of modern systems has the research 

community and industry turning to self-adaptive systems to deal with their resulting complexity 

and unmanageability (Almeida & Vieira, 2012a; Ganek & Corbi, 2003).   The autonomic 

functionality of self-adaptive systems reduces the burden on human operators to manage, 

configure, and troubleshoot them as they can self-configure, self-optimize, self-heal, or self-

protect to internal and external changes with greater speed and precision and with little or no 

human intervention  (Almeida & Vieira, 2011; Ganek & Corbi, 2003; IBM, 2003).  The goal of 

resilience benchmarking is to evaluate and validate a system’s persistence of service delivery in 

the presence of changes (i.e. its resilience) in a reproducible and cost-effective manner (Almeida 

& Vieira, 2012a).  However, there are several open research challenges related to resilience 

benchmarking, with the definition of a representative changeload being the most obscure. 

Almeida and Vieira (2012a) proposed a risk-based approach that reduced the considered 

change space and identified the relevant changes to include in a representative changeload.  

However, not all included changes fulfilled the purpose of disturbing the system and evoked its 

adaptive capabilities, resulting in a high cost of benchmarking.  This study addressed this issue 

by extending the risk-based approach to utilize system knowledge to further reduce the 

considered change space and overall cost of resilience benchmarking.   

The rest of this section introduces the changeload and discusses the open research 

challenge of defining a balanced and cost-effective changeload.   
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Changeloads 

Resilience benchmarking requires the inclusion of a well-defined and relevant set of 

changes that  include the runtime system dynamics that are not considered in traditional 

dependability evaluation (Almeida & Vieira, 2012a; A. B. Brown et al., 2004; Madeira et al., 

2002; Meyer, 2009; Salehie & Tahvildari, 2009).  The workload and operating environment 

cannot be static and must include changes that employ the SUB’s self-adaptive capabilities as 

real-world operating conditions would (Almeida & Vieira, 2011; A. B. Brown et al., 2004).  

Changes include faults, attacks, failures, expected and unforeseen variations of internal (e.g. 

resource exhaustion, availability of new features) and external (e.g. network congestion, sub-

system changes) contexts of a system, or its components, that may impact its ability to maintain 

runtime goals (Almeida & Vieira, 2012a; Huebscher & McCann, 2004).  Therefore, the 

changeload must model the fluctuations and variations of the system’s overall stress to provide a 

realistic use-case for evaluation purposes (Almeida & Vieira, 2012b). 

Changeloads encompass faultloads, extend their modeling, and their application, to 

characterize the dimension of change within dynamic systems.  Thus, they share several open 

research challenges, which are discussed below. 

Changeload Challenges 

Defining a relevant changeload for the evaluation of self-adaptive system resilience is a 

daunting research challenge due to the complexity of self-adaptive systems and the large number 

of potential changes that may impact their attainment of goals, which may also be dynamic at 

runtime (Almeida & Vieira, 2011; Andersson, Lemos, Malek, & Weyns, 2009; Bondavalli et al., 

2009; Brun et al., 2009; B. Cheng et al., 2009; Salehie & Tahvildari, 2009).  Defining a 

resilience benchmark for all system-types is an unachievable goal (Almeida, Madeira, & Vieira, 
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2010), therefore, the benchmarking domain is divided to reduce the problem space into tractable 

and tenable segments (Bondavalli et al., 2009).  However, this is a difficult task as the domain 

boundaries may not be obvious, such as components, systems (e.g. large, complex, or distributed 

systems), runtime behavior, and application types (Bondavalli et al., 2009). 

While defining changeloads utilizing field data is ideal, accessing such data may not be 

possible for many systems as runtime changes may not be recorded or shared due to intellectual 

property concerns (Almeida & Vieira, 2012a).  Evaluators experience the same challenges 

defining changeloads as they do with faultloads, specifically the lack of strict and systematic 

approaches for their definition (Moorsel et al., 2009) and an absence of standardized metrics and 

procedures for their utilization (Almeida & Vieira, 2011; Bondavalli et al., 2009).  This leads to a 

reliance on unstructured expert analysis, the utilization of inconsistent field data, the inclusion of 

loosely related reports, and ad-hoc / system-specific evaluations that increase the overall cost of 

resilience benchmarking (Almeida & Vieira, 2012a; Barbosa, Vinter, Folkesson, & Karlsson, 

2005; Moorsel et al., 2009; Xavier, Hanazumi, & Melo, 2008) by incorporating test cases that are 

repetitive, irrelevant, and unrepresentative (Barbosa et al., 2005; Jorgensen, 2002).  For example, 

Barbosa et al. (2005) demonstrated that ineffective faults can account for up to 85% of a defined 

faultload for memory and CPU bit-flip faults.   

Identifying the most realistic and relevant changes from the change space is particularly 

challenging due to the consideration of the many dimensions of variability (such as those 

affecting resources, interfaces, hardware, and so on) that directly and indirectly affect the SUB’s 

runtime behavior (Almeida & Vieira, 2012a; B. Cheng et al., 2009) while ensuring they are 

sufficiently representative, reproducible, scalable, portable, and cost-effective (Almeida & 

Vieira, 2011; Bondavalli et al., 2009; Moorsel et al., 2009).  A system’s change space extends 
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the fault space, which is typically extremely large (Barbosa et al.), by encompassing any and all 

possible variations in the operating environment, internal conditions, inputs, workloads, 

faultloads, attackloads, and user interactions, or sequences and combinations thereof, that may 

subject the system to any type of stress which may or may not result in failure (Almeida et al., 

2010; Almeida & Vieira, 2012b).  The high degree of complexity and runtime dynamics of self-

adaptive systems and their environments (Bondavalli et al., 2009; Ganek & Corbi, 2003) makes 

the number of potential runtime changes virtually unbounded (Almeida & Vieira, 2012b). 

The cost of benchmarking is directly related to the number of test cases (e.g. faults or 

changes) that are considered, included, and ultimately enumerated in the benchmarking process 

(Cin et al., 2002; Xavier et al., 2008).  This relationship can be shown by using the cost model 

defined in Equation 1, where the total cost of a software testing strategy, ( )C Strategy , against a 

set of test cases, T  , is comprised of the costs of system analysis, Ca , test selection, Cs , test 

execution, Ce , result analysis and understanding, Cu , and result checking, Cc . 

( ) ( ) ( ) ( ) ( ) ( )C strategy Ca T Cs T Ce T Cu T Cc T      

Equation 1: Leung and White (1991) Cost Model 

Thus, the cost of attaining full change space coverage by utilizing an exhaustive 

changeload is impractical and unreasonably expensive due to the extremely large change space 

(Almeida & Vieira, 2012b; Barbosa et al., 2005). 

More practical approaches were required to enable the reproducible definition of 

changeloads consisting of a minimal set of changes required for resilience benchmarking of self-

adaptive systems (Almeida & Vieira, 2012a) as it remained labor intensive and costly (Moorsel 

et al., 2009).  The lack of standarized methods resulted in the challenges described were 



 

5 

 

addressed by the Almeida and Vieira (2012a) and their risk-based approach.  Their contribution 

is described in the following section followed by a description of this study’s goal. 

Problem Statement 

Resilience benchmarking of self-adaptive systems is critical due to their use for mission 

critical and infrastructure services.  However, benchmarking and testing is often avoided due to 

the high cost and labor required to identify all of a system’s potential runtime changes and test 

the system against them (Quadri & Farooq, 2010).  Almeida and Vieira (2012a) proposed a 

method for identifying relevant changes and defining resilience changeloads for self-adaptive 

systems.  However, their technique suffered from high cost due to the consideration of the entire 

change space caused by the use of vague constructs for the system’s goals and operating 

conditions.  This study extended prior work and addressed the problem of high evaluation costs 

and labor associated with resilience benchmarking of self-adaptive systems by utilizing system 

knowledge to reduce the considered change space.  The following section presents the risk-based 

approach followed by a discussion of the approach’s limitations. 

Prior Work 

Almeida and Vieira (2012a) proposed a risk-based approach for defining changeloads in 

which Software Risk Evaluation (SRE) techniques were extended and adapted to identify and 

analyze the potential risks to the self-adaptive system goals.  The techniques were borrowed 

from the identification and analysis phases of SRE, which focus on identifying and 

characterizing the risks that may prevent a development team from accomplishing project goals.  

The original SRE steps are outlined below followed by the Almeida and Vieira (2012a) 

extension. 
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Software Risk Evaluation Steps 

The first step in SRE is to define a general criterion against which the results of changes 

can be measured prior to the project’s commencement, called the Threshold of Success (ToS), 

which defines the boundary between success and failure of the project.  Next, the risks to the 

ToS are captured in risk statements, written in prose, that include the negative conditions under 

which the project may be classified as unsuccessful.  The risk statements are elicited in a 

condition / consequence format that describes the potential conditions, or circumstances, which 

cause anxiety to project participants and their negative consequences.  Risk attributes are then 

defined to provide greater understanding of risk conditions and their consequences and serve as a 

useful method for their prioritization.  Risk attributes typically include the impact of the risk to 

the ToS (e.g. Catastrophic, critical, or marginal), timeframe of identification (e.g. Long, medium, 

or short), and its probability of occurrence (e.g. High, medium, or low).  Once general risk 

attributes have been identified, they are associated with the risk statements (from the first step) 

and assigned attribute levels (e.g.  Catastrophic impact, Short identification interval, Low 

probability of occurrence).  Finally, the identified risks are prioritized based on their associated 

attributes.  The prioritization can be done using a multi-voting scheme, Pareto Top-N (risk 

exposure cut-off such as impact vs. probability), or comparison ranking (using pair-wise 

comparison of defined risk statements).   

 Ultimately, the definition and prioritization of risks associated with a project rely almost 

exclusively on the experience of the involved experts.  These activities are typically conducted 

using free-form brainstorming (i.e. informally) or utilizing a taxonomy of risks and determining 

their applicability to the specific project as defined by the Software Engineering Institute (SEI)’s 

Taxonomy of Software Development for risk identification (Almeida & Vieira, 2012a).  The 

project’s personnel use this information to create risk management and mitigation plans for the 
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identified risks in an effort to ensure the project’s successful completion (Williams, Behrens, & 

Pandelios, 1999). 

Almeida and Vieira Proposed Extension 

Almeida and Vieira (2012a) extended and adapted the SRE steps to resilience 

benchmarking by applying the identification and analysis techniques to a self-adaptive system’s 

operation.  Specifically, they adapted the threshold of success (ToS) definition, applied the SRE 

risk categorization and prioritization to the SUB, and then mapped the SRE risk analysis phases 

to the changeload definition process, as depicted below in Figure 1. 

Definition of ToS

Identification of Risk 
Statements

Definition of Risk Attributes

Evaluation of Risk Attributes

Prioritization of RIsks

Identification of Base 
Scenario

Identification of Change 
Scenarios

Definition of CS Attributes

Evaluation of CS Attributes

Evaluation of CS Attributes

Risk Analysis Changeload Definition

 

Figure 1: Mapping of the phases of the changeload definition with risk analysis phases 

Of particular importance is the identification of the basic drivers of the SUB, or its high-

level goals, which is vital for the identification and characterization of the change scenarios, 

described below (Almeida & Vieira, 2012a).  Almeida and Vieira (2012a) argued that detailed 

descriptions of the SUB’s goals, workload, and operational conditions are not necessary to define 

the changeload.  Instead, abstract characterizations of these elements are all that is needed, 

though they did concede that having detailed descriptions of the goals might assist the 
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changeload definition process.  Thus, the first step of the changeload definition process is to 

identify and prioritize the generic goals of systems in the benchmark domain (i.e. the specific 

system-type) in an effort to cope with the diversity of applications and guide system analysis, as 

conducted in dependability and performance benchmarking (Madeira et al., 2002; Moorsel et al., 

2009).  An example used within their study, and throughout this paper, is adaptive database 

management systems (ADBMS) which are typically governed by the following prioritized goals: 

throughput, availability, and response time (Almeida & Vieira, 2012a). 

 The ToS was defined as the base scenario under which all identified goals are 

maintained, a typical workload is executed, and the operational context of the SUB is static; 

essentially its “golden run”.  It is independent of the changeload and offers a baseline against 

which the system evaluator can compare metric values obtained in the presence of the 

changeload.  The base scenario specification is defined below in Equation 2: 

 

Equation 2: Base Scenario Specification 

The specification defined the base scenario as a set of three elements: the typical 

workload, , the typical operating conditions and resources (hardware and software) 

within which the goals are obtained and the workload executed, , and 

the fixed goals of the SUB, .  The goals were predefined by a Service Level Agreement 

(SLA), were fixed, or defined by some other specification that described the attributes or 

requirements the SUB must fulfill during runtime (e.g. minimize response time, maximize 

throughput). 

 _ , _ ,typical typical fixedBase Scenario workload operating conditions goals

typicalworkload

_ typicaloperating conditions

fixedgoals



 

9 

 

 The SRE procedure for identifying risk statements was utilized to define change 

scenarios.  The change scenarios are derived from the base scenario and defined a set of each 

possible representative change, or sequence of changes, that may affect the SUB’s ability to 

achieve and maintain the runtime goals specified in the base scenario.  To identify the relevant 

classes and types of changes Almeida and Vieira (2012a) proposed the following methodology: 

1. Identify and select the potential sources of changes, which may include internal or 

external hardware, software, and operational environment.   

2. Identify the classes of changes that may originate from the previously identified 

change sources.  For example, an ADBMS whose potential source of change are its 

human operators, may have a potential change class of “administrative mistakes” or 

“variation in service requests.” 

3. Identify the specific types of changes that may impact the base scenario’s defined 

goals.  For example, an ADBMS may have a specific change of “increase in the 

number of requests per second” for the “variation in service requests” change class. 

The change specification is shown in Equation 3: 

 

Equation 3: Change Specification 

The source of the change, source, and the change type previously defined, type, represent a 

single change the SUB may experience.  The evaluator then converts the defined changes into 

concrete system changes once the relevant classes and change types have been defined for the 

SUB.  For example, “increase in the number of requests” can be converted into a more specific 

change, such as “15% increase in requests per second.” 

 ,Change source type
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The specific changes are specified using the following format (added for clarity and not 

included in the original specification), , where 

the trigger instant, ti , determined the predefined instant the SUB would be subjected to the 

change, duration , which specified the amount of time it was affected by the particular change, 

and the relative quantity, amount , of the change to subject the SUB.  Examples of change 

amounts are “50% available throughput”, “100% connectivity loss”, and a “90% reduction of 

available memory” (Almeida & Vieira, 2012a).  These additional details are required to ensure 

each change scenario is unique as the same change triggered at different moments may result in 

different behaviors depending on the SUB’s context (Almeida & Vieira, 2011, 2012a; B. Cheng 

et al., 2009; Huebscher & McCann, 2004). 

The evaluator then used the set of specific changes in the change scenario specification, 

outlined below in Equation 4, and more clearly in Equation 5, where the change scenario is a set 

of specific changes that are experienced by the SUB from a base scenario context. 

  

Equation 4: Change Scenario Specification 

 

Equation 5: Modified Change Scenario Specification 

Change scenario attributes were then defined in a similar fashion as risk attributes, where 

expert analysis and voting schemes were utilized (in the absence of available field data) to assign 

relative impact and probability to each change scenario.  The association of change scenario 

attributes provided a manner of characterizing each change scenario and a means of establishing 

their relevance. 

 _ , , ,specific change change ti duration amount

 

_ ,
_

( , , , )

Base Scenario
Change Scenario

change ti duration amount

  
  
  

  _ _ , _Change Scenario Base Scenario specific change
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The changeload was then defined by selecting the most relevant and representative 

change scenarios defined in the previous steps.  To facilitate this process the authors proposed 

using expert judgment, a multi-voting scheme, or creating an exposure matrix and defining a cut-

off level.  The later consisted of a matrix based on two or more dimensions of change scenario 

attributes and their associated scales.  Then the change scenario attributes were correlated and an 

associated level of representativeness (e.g. “Mandatory” inclusion in the changeload, “Very 

High” representativeness, etc.) was assigned to each potential combination of attributes.  The 

evaluator then defined the cut-off level as the minimum level of representativeness a change 

scenario had to possess for inclusion in the changeload, which followed the initial definition of 

the ToS. 

For instance, all scenarios with a “Medium” or higher representativeness ranking were 

included.  In that case a scenarios with “Very High” probability of occurrence, a “Catastrophic” 

impact, and a “Mandatory” ranking would be included in the changeload, while a change 

scenario with a “Low” probability of occurrence, “Marginal” impact, and “Low” 

representativeness ranking would be omitted as its attributes did not warrant the resource 

investment in its evaluation.  Finally, the changeload was defined as a set of the most relevant 

and probable change scenarios, depicted below in Equation 6. 

 

Equation 6: Changeload Specification 

An important consideration is that the order of the change scenarios that comprised the 

changeload was significant as each variation may result in significantly different adaptive 

behavior (Almeida & Vieira, 2012; B. Cheng et al., 2009).  The evaluator then took the 

changeload specification and implemented the changes for the specific system.  That is, the 

 ChangeLoad ChangeScenarios
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changeload and its corresponding change scenarios were converted into executable code that the 

benchmarking system could execute against the SUB.  Almeida and Vieira (2012a) presented a 

simple case study of an adaptive database management system (ADBMS) to demonstrate the 

applicability of their approach. 

Contribution Summary 

The Almeida and Vieira (2012a) approach provided a procedure for identifying the 

potential risks associated with a system without utilizing any details of the target system or its 

self-adaptive capabilities.  The procedure utilized a step-wise refinement approach, starting with 

high-level generic context and using deductive reasoning to develop more detailed descriptions 

of risks to the SUB’s general goals.  Their approach also provided a specification with which to 

develop a standardized changeload definition.  The specification provided a methodological 

approach to defining change within dynamic systems. 

Issues 

As previously mentioned, defining a relevant changeload for benchmarking the resilience 

of self-adaptive systems has several open research challenges.  Almeida and Vieira (2012b) 

identified the most pressing issues of changeload definitions, which included the selection of 

specific changes that exercise the adaptive mechanisms of interest within a system, the reduction 

of the considered change space due to the exponential growth in the number of changes that a 

system may encounter, the identification of the relevant sequences of changes to mimic their 

occurrence in the real-world, and the definition of the specific timing and scheduling of change 

injection into the SUB (and workload) to represent real-world operating conditions.  Their 

approach addressed the identification of relevant changes and the reduction of the considered 



 

13 

 

change space issues by adapting established software engineering and project management 

techniques to identify and analyze potential risks to include in a changeload. 

The risk-based approach suffered from several shortcomings, including the utilization of 

highly abstract goals and operating conditions to determine the drivers, and ultimately the 

behavior, of the SUB.  The use of vague and high-level constructs lead to several challenges in 

the identification and analysis phases of the approach, the process of identifying the SUB’s 

context, and the associated changes that may affect it (B. Cheng et al., 2009).  These 

shortcomings resulted in the consideration of an extremely large change space which 

significantly increased the benchmark’s scope, overall time and labor required to conduct it, and 

the total cost of the benchmarking procedure (Pressman, 2005).  The following section provides 

a discussion of each of the shortcomings listed above followed by a summary of the resulting 

issue present in the risk-based approach. 

Vague treatment of System Goals 

Almeida and Vieira (2012a) stated that the identification of the SUB’s goals is the most 

important aspect of defining its base scenario, and ultimately a relevant changeload, as the base 

scenario is the baseline from which all changes are identified and against which all self-adaptive 

values are compared.  The authors affirmed that only a high-level understanding of the SUB’s 

generic goals was sufficient and that detailed knowledge was not necessary, though it may aid 

the process. 

Further, Almeida and Vieira (2012a) postulated that only a high-level understanding of 

typical goals of the class to which the SUB pertains was required, and that this provided 

sufficient information to identify runtime changes that would effectively evaluate a self-adaptive 

system’s resilience.  However, the use of high-level goals to define changeloads did not provide 
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sufficient insight into the SUB to allow analysis of its runtime behavior, discovery of the specific 

causes of system change, and the characteristics of the SUB’s response using engineering 

principles (B. Cheng et al., 2009).  This was caused by a lack of detail, and ultimately 

understanding, between the specific goals of the SUB, its capabilities, and its behavior associated 

with ensuring goal attainment in a dynamic environment (B. Cheng et al., 2009). 

The use of high-level goals to drive the changeload definition process, coupled with the 

complex nature of self-adaptive systems and their interactions with the operating environment 

(B. Cheng et al., 2009), abstracted complex relationships which made their analysis difficult 

(Lorenzoli, Tosi, Venticinque, & Micillo, 2007).  This practice may have also introduced 

inaccuracies into the changeload definition process (Moorsel et al., 2009) that can compound 

with each subsequent step.  Further, the evaluator had the daunting responsibility of defining the 

benchmark domain (components, system, application domain) and key benchmark elements such 

as measures, workload, faultload, attackload (all components of the changeload), while 

considering the possible trade-offs between representativeness, portability, practicality, and cost 

of the benchmark (Almeida & Vieira, 2012a; Bondavalli et al., 2009).  Analysis of their 

approach and issues that existed with the vague treatment of system goals are discussed below. 

Abstraction is used to focus on a limited number of details at a time (Almeida & Vieira, 

2011).  The original study used this technique in an attempt to reduce the number of goals to 

consider, and ultimately, the total number of risks to be enumerated by only using high-level 

aspects of the SUB in Step A.  However, vital details are lost when the level of abstraction is too 

high, especially when there is a high degree of variability, complexity, and uncertainty present 

within the SUB (B. Cheng & Atlee, 2007). 
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Almeida and Vieira (2012a) stated that goal definition and prioritization should occur 

prior to defining the changeload.  However, it was not clear how the evaluator should deal with 

goals that may conflict at runtime or have complex relationships common to large self-adaptive 

systems (B. Cheng et al., 2009) since the number of goals, functionality, features, relationships, 

and interactions grew with the size of the SUB (Bondavalli et al., 2009).  For instance, a web 

server may be configured to maximize its performance by reducing its availability, such as its 

maximum number of connections  (Hellerstein, Diao, Parekh, & Tilbury, 2004).  It’s unclear 

how the base scenario would be defined without knowledge of the underlying conditions (B. 

Cheng et al., 2009) that trigger its multiple adaptive trajectories (Almeida & Vieira, 2011). 

Another example is that of the Znn.com, a self-optimizing web server built on the 

RAINBOW framework, which optimizes its performance, cost, and content fidelity in response 

to its workload (S. W. Cheng, Garlan, & Schmerl, 2009).  Defining a base scenario based on a 

simple list of these goals would be a daunting task without understanding their underlying 

relationship (Bondavalli et al., 2009; B. Cheng et al., 2009).  It is difficult to define changes to 

the SUB’s generic operating conditions and goals (B. Cheng et al., 2009; Tamura et al., 2012) as 

its relevant operations and interactions (Pressman, 2005) may not be apparent due to the 

abstraction of fine-grained self-adaptive capabilities (B. Cheng et al., 2009). 

Thus, the lack of detail regarding the goals and their relationships caused the evaluator to 

consider a significantly larger change space (i.e. all combinations of goal relationships and their 

underlying requirements) due to the inability of filtering out those that are not applicable to the 

SUB (Pressman, 2005).  This fact introduced additional issues when trying to define a ToS 

relative to the SUB, and even more so when multiple goals must be attained concurrently (e.g. 

minimum throughput, maximum response time, minimum latency), which is typically the case 
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with complex self-adaptive systems and further expands the number of changes considered (Brun 

et al., 2009; Weyns, Iftikhar, Iglesia, & Ahmad, 2012). 

Vague treatment of Operating Conditions 

The risk-based approach also presented similar issues with the treatment of operating 

conditions.  Runtime goal achievement is dependent on the current operating conditions of the 

SUB (e.g. internal and external context) (B. Cheng et al., 2009), and therefore, detailed 

knowledge of its operating conditions is necessary to define the base scenario, evaluate goal 

attainment, and correlate system context to runtime behavior (Pressman, 2005; Tamura et al., 

2012). 

In the case of dependability benchmarking of static systems, the base scenario would be 

defined as an absence of faults (Kanoun, Madeira, & Arlat, 2002).  That is, the SUB is operating 

within anticipated conditions (such as resources and workload) and services are being provided 

at expected levels (Bondavalli et al., 2009).  In the case of resilience benchmarking of self-

adaptive systems, these operating conditions are defined as those in which the SUB runs a typical 

workload and does not need to adapt (i.e. self-configure, self-optimize, self-heal, or self-protect) 

to attain and maintain runtime goals (Almeida & Vieira, 2012a). 

The base scenario must include the specific conditions, such as operational context and 

system-level properties, under which all runtime goals are obtained without employing self-

adaptive capabilities so that deviations from that state are identifiable (B. Cheng et al., 2009; 

Tamura et al., 2012).  The SUB’s determination of whether it should adapt is dependent on its 

goals and its changing context, so they must be well understood by the evaluator to fully 

characterize its response to a change (Bondavalli et al., 2009; B. Cheng et al., 2009).  An 
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analysis of the issues resulting from the vague treatment of operating conditions is discussed 

below. 

The approach did not clarify how an evaluator would define the operating conditions for 

a system whose self-adaptive capabilities include a self-optimization mechanism, such as 

throughput awareness.  It was unclear if the operating conditions would have to guarantee a static 

context for all systems in the class (or for the specific system), if the operating conditions were 

considered before or after optimization, what degree of granularity and detail was required for 

the operating conditions and their relationship to the goals, how variations to the operating 

conditions (i.e. change scenarios) that would elicit an adaptive response were defined, and 

finally, how the SUB’s adaptive responses affected its operating conditions (B. Cheng et al., 

2009). 

Further, the identification of change scenarios, Step B in the approach, considered the 

possible sources of change to the SUB (e.g. hardware, environment), defined and classified 

specific change classes (e.g. software and hardware changes, human interaction), and finally 

extracted specific change types from the defined classes (e.g. database table drops, software 

updates) (Almeida & Vieira, 2012a).  The risk-based approach did not utilize constraining 

properties to reduce the change space and benchmark’s scope (Robert Laddaga & Robertson, 

2000; Pressman, 2005).  Thus, the evaluator considered all possible sources of change that may 

affect the system-type which unnecessarily considered the entire change space consisting of any 

and all changes in its hardware, software, component, sub-system, interaction point, and 

workload the system-type may encounter (Bondavalli et al., 2009; van Lamsweerde & Letier, 

1998). 
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Detailed knowledge of the SUB's goals was necessary to be able to define changes that 

deviate from the base scenario’s context and employ its self-adaptive capabilities (B. Cheng et 

al., 2009; Tamura et al., 2012), instead of arbitrarily extending the considered change space by 

defining any possible changes that may have caused it to do so (Barbosa et al., 2005; Jorgensen, 

2002).    Similarly, there was no way of determining when a sufficient number of changes were 

identified (i.e. change coverage), if vital changes were ignored, or if the identified changes were 

even possible or pertinent given the SUB’s capabilities (Moorsel et al., 2009). 

The identification of relevant changes posed a significant challenge (Almeida & Vieira, 

2012a), especially if insufficiently guided.  A single change may have introduced unanticipated 

side effects and indirectly affect other runtime goals (B. Cheng et al., 2009).  There was no way 

to systematically determine the extent of a change’s effects on the SUB without knowledge of its 

operational context and their relationship to its goals (B. Cheng et al., 2009), leaving the 

evaluator little option but to define and enumerate the large number of test cases (Robert 

Laddaga & Robertson, 2000; Pressman, 2005).  The evaluator then translated the identified 

changes into concrete changes (i.e. executable code) and determined the appropriate trigger 

instant, duration, and amount for each (Almeida & Vieira, 2012a).  However it was not clear how 

these details were being determined, or how the changes were being selected for translation 

when field data was not available, leaving little option but to translate them all. 

For instance, Almeida and Vieira (2012a) used the example of a “10% increase in the 

number of requests per second commencing 5 minutes after starting execution of the workload 

and ceasing 2 minutes thereafter” which may or may not have resulted in any self-adaptive 

capabilities being employed to maintain goals.  The assumption was that it would result in 

activation of self-adaptive mechanisms and provide relevant feedback to the evaluator, however, 
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this may not have been the case, and instead it may result in additional costs (e.g. labor and 

effort) of analyzing and enumerating a larger number of changes than was necessary. 

The shortcomings of the risk-based approach outlined in the previous section resulted in 

high benchmarking costs, discussed below. 

Cost 

The risk-based approach suffered from high cost due to the consideration of the entire 

change space resulting from the use of imprecise constraints (vague goals and operating 

conditions) throughout the procedure (Pressman, 2005).  The risk-based approach’s identification 

of changes and their correlation to the change space is illustrated in the following example. 

Consider a self-adaptive HTTP Web Server, Self-System A, which possesses self-

optimizing mechanisms that adjust the number of allowed connections to ensure QoS 

requirements of low response times.  The risk-based approach considered the high-level goal of 

"self-optimization" and any change that may affect the SUB in any way.  These changes were 

defined as those affecting hardware, H , software, S , or the SUB’s internal context, I , as defined 

in Equation 7. 

internalContext

changes

changes

changes

H hardware

S software

I







 

Equation 7: Definition of Change 

Changes originating in the SUB’s environment (i.e. external to the system), E , are 

defined as all possible hardware or software changes, as defined in Equation 8. 

changesE environment H S    

Equation 8: Definition of Environment Changes 
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Finally, the change space, CS , was defined as all possible internal and external changes 

that may affect the SUB, as depicted in Equation 9. 

CS E I   

Equation 9: Definition of the Change Space 

The risk-based approach considered only the SUB’s high-level capabilities, high levelSC  , 

that relate to the self-optimizing mechanisms, as defined in Equation 10. 

{ |  is any capability relating to the SUB}

{ |  is a self-optimizing capability of the SUB}

high levelSC x x

x x

 


 

Equation 10: Definition of High-Level System Capabilities 

Further, the high-level goals, high levelG  , were identified for the SUB, as shown in Equation 

11. 

{ |  is any goal that genrally relates to the SUB}

 { |  is any goal that relates to QoS}

high levelG x x

x x

 


 

Equation 11: Definition of High-Level System Goals 

Finally, the considered changes,
risk basedCC 

, was defined by the risk-based approach as 

those changes that affect the SUB’s high-level capabilities, high levelSC  , from attaining and 

maintaining its high-level goals, high levelG  , as depicted in Equation 12. 

{ | ,   affects  maintenance of }

{ | ,   affects the self-optimizing capabilities maintenance of the QoS goal}

risk based high level high levelCC x x CS x SC G

x x CS x

   

 
 

Equation 12: Changes Considered by the Risk-Based Approach 

As illustrated, the risk-based approach considered any possible change that may have 

affected Self-System A, or its goals, regardless of if the SUB could detect the change, if the 
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change would elicit an adaptive response, or if the goal was maintained by a self-adaptive 

mechanism, which made
risk basedCC 

very large.  The issue became very prevalent for large 

complex self-adaptive systems (Bondavalli et al., 2009; Salehie & Tahvildari, 2009) due to the 

complex interaction between the SUB, its dynamic environment, and its emergent behavior 

(Bondavalli et al., 2009; B. Cheng et al., 2009).  

The use of an exhaustive changeload (a test everything approach) is impractical as it 

introduces high cost, high labor, and increased difficulty into the resilience benchmark (Salehie 

& Tahvildari, 2009; Vieira & Madeira, 2004), though it may exhibit a high degree of change 

coverage (Moorsel et al., 2009).  Similarly, the risk-based approach required the evaluator to 

consider the risks in a general manner, organize them into categories, classes and types, and 

analyze each individual change to determine its relevance to the SUB based on their expected 

impact and probability of occurrence (Almeida & Vieira, 2012a). 

If few changes were analyzed and deemed irrelevant in the selection phase, ( )Cs T  

mentioned in Equation 1, the evaluator would incur significant cost (Bondavalli et al., 2009) by 

having to invest time, labor, and other resources to enumerate a larger number of changes against 

the SUB (Vieira & Madeira, 2004).  That is, ( )Ce T  , ( )Cu T  and ( )Cc T ,  would be very large.  

Conversely, if many changes were deemed irrelevant the evaluator would experience reduced 

costs associated with the enumerating changes, ( )Ce T , ( )Cu T  and ( )Cc T , but incur a greater cost 

by manually analyzing the entire risk space, ( )Cs T . Ultimately, finding the best possible balance 

between the representativeness of the changeload and the practicality of the benchmark 

determines the usefulness of the benchmark procedure and is an open research challenge 

(Almeida & Vieira, 2011, 2012b; A. B. Brown et al., 2004). 
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Regardless of the outcome of the change analysis, the consideration of the entire change 

space, or defining an exhaustive changeload, for a large and complex self-adaptive system is 

very costly and impractical (Kanoun et al., 2002; Salehie & Tahvildari, 2009; Vieira & Madeira, 

2004).  The authors attempted to reduce the change space by utilizing a cut-off level in Step E of 

the risk-based approach, described below. 

In Step E, the changeload was defined by including only those change scenarios whose 

representativeness (the combination of the change scenario’s impact and probability) superseded 

the evaluator’s cut-off level (defined for the exposure matrix - e.g. High) and directly affected 

the size of the enumerated changes,
risk basedEC 

, in final changeload, depicted in Equation 13. 

 

{ | , cut-off }

{ | , high}

| , {high, very high, mandatory}

risk based risk based impact impact

risk based impact

risk based impact

EC x x CC x

x x CC x

x x CC x

 





  

  

  

 

Equation 13: Enumerated Changes in the Risk-Based Approach 

The definition of the cut-off level was subjective, based solely on the evaluator’s 

knowledge or via multi-voting when multiple experts were involved, which made it difficult to 

verify and justify (Burgman, Fidler, Mcbride, Walshe, & Wintle, 2006).  There was no way of 

knowing if the resulting changeload adequately affected the SUB with complex goal 

relationships (B. Cheng et al., 2009) or if it elicited an adaptive response (Almeida & Vieira, 

2012b; Barbosa et al.; Friginal, de Andres, Ruiz, & Gil), save for experimentation (Robert 

Laddaga & Robertson, 2000), which was not cost effective (Bondavalli et al., 2009).  

Furthermore, change scenarios that were under the cut-off level (and excluded from the 

final changeload) may have actually devastated the SUB even more than those included since 

they may cause subsequent changes with greater impact resulting in failure (Almeida & Vieira, 
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2011).  The cut-off level needed to be defined in a more objective manner in which the SUB’s 

goals, and the change’s impact to those goals, were considered directly to ensure a high degree of 

change coverage (B. Cheng et al., 2009; Moorsel et al., 2009).  Ultimately the cut-off level 

determined the thoroughness and change coverage of the evaluation (Moorsel et al., 2009; 

Pressman, 2005) and implied a degree of system robustness (Lemos et al., 2010) but it could not 

be verified or audited using a systematic approach (Moorsel et al., 2009). 

In their follow-up paper, Almeida and Vieira (2012b) concluded that more work was 

necessary to address these research challenges and adequately reduce the considered change 

space, provide better insight, knowledge, and modeling of changes in highly dynamic systems 

and environments (Almeida & Vieira, 2012b).  This study extended the risk-based approach to 

address these issues and reduce the cost of resilience benchmarking of self-adaptive systems, 

described in the following section. 
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Goal 

The goal of this dissertation consisted of the extension of risk-based approach to further 

address the open research challenges identified in Almeida and Vieira (2012b), specifically the 

identification of relevant changes and the reduction in the size of the considered change space, in 

an effort to reduce the overall cost and labor associated with resilience benchmarking of self-

adaptive systems.  The study utilized system knowledge, specifically detailed descriptions of the 

SUB’s goals and its self-adaptive capabilities, to identify and analyze only the relevant changes 

that result in adaptive responses of interest for resilience evaluation (Almeida & Vieira, 2012b).  

This approach differed from the risk-based approach, which considered the entire change space 

and gradually filtered out irrelevant changes.  Further, this study applied both approaches to a 

self-adaptive system to provide a basis for comparison and demonstrate the extended changeload 

definition process.   

Discrete mathematics has been used to describe and analyze software testing strategies 

(Jorgensen, 2002).  Its use achieves a high degree of rigor, precision, and efficiency over 

informal analysis and comparative methods (Jorgensen, 2002).  For instance, a set of tests, T , 

used to evaluate a system, S , can be represented as the test function ( )S T  (Jorgensen, 2002).  

Both T and ( )S T  can be formally defined using declarative statements, logical operations, and 

then manipulated using set operations (e.g. union, intersection, subset), in a similar manner 

utilized in the Cost section above (Jorgensen, 2002; Leung & White).  The use of set theory, 

functions, and relationships provide a straightforward method for representing and comparing 

different testing strategies (Jorgensen, 2002; Leung & White, 1991).  In the case of this study, 

comparison of the risk-based and goal-oriented approaches was straightforward and conducted 
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using set theory.  The similarities between the two approaches allowed for direct comparison of 

their outputs (Galeebathullah & C.P.Indumathi, 2010; Leung & White, 1991). 

The measurement of success for this study was a reduction in overall resilience 

benchmarking costs which was quantified using the Leung and White (1991) software testing 

cost model presented in Equation 1.  The cost model defined the total cost of a software testing 

strategy, ( )C Strategy , against a set of test cases, T  , and is comprised of the costs of system 

analysis, Ca , test selection, Cs , test execution, Ce , result analysis and understanding, Cu , and 

result checking, Cc . 

Cost savings were quantified using an adjusted version of the Leung and White (1991) 

cost model shown in Equation 1 to compare the costs of the risk-based approach, ( )C risk based  

, and the goal-oriented approach, ( )C goal oriented  , to satisfy the cost inequality depicted in 

Equation 14. 

( ) ( )C goal oriented C risk based    

Equation 14: Leung and White (1991) Cost Model Strategy Comparison Inequality 

Confirmation of success was attained if the goal-oriented approach reduced the overall 

cost of resilience benchmarking by ensuring the inequality holds true, that is, it reduced the 

number of test cases such that any additional selection costs were offset (Leung & White, 1991; 

Xavier et al., 2008).  Thus, the goal-oriented approach was more cost-effective if the cost savings 

inequality shown in Equation 15 held true.  Appendix A contains a detailed description of the 

inequality and variable definitions. 
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Equation 15: Simplified Test Suite Cost Comparison Inequality (rewritten) 

The goal-oriented approach would succeed in reducing the overall cost of resilience 

benchmarking by decreasing the number of changes that required consideration throughout the 

process and reducing the total number of changes in the resulting changeload requiring 

enumeration (Xavier et al., 2008). 

Relevance and Significance 

This work was relevant due to the growing reliance on self-adaptive systems and the need 

to ensure the resilience of their services.  Businesses, institutions, and governments required their 

systems to be resilient in dynamic environments with the capability to handle the unpredictable 

workloads created by our modern information society (IBM, 2003).  Development and 

management of critical systems able to handle the explosion of information requiring storage and 

computation, while keeping pace with constant demands for increased performance and reduced 

costs, is an increasingly difficult and complex task (B. Cheng et al., 2009; Ganek & Corbi, 2003; 

Vieira & Madeira, 2003).   

Software developers met these needs by continually exploiting growing computational 

power, producing more sophisticated software systems that were more versatile, flexible, robust, 

dependable, energy-efficient, customizable, secure, and configurable (B. Cheng et al., 2009; 

IBM, 2003; Madeira et al., 2002).  The resulting exponential growth in the number, variety, and 

size of systems, sub-systems, and components created highly distributed and heterogeneous 

environments which were difficult to maintain and whose runtime behavior was difficult to 
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predict (IBM, 2003).  For example, the value of the Internet has fueled significant growth in 

storage subsystems (e.g. Database Management Systems) which are now capable of holding 

petabytes of information and are only a component of an even larger system, or system of 

systems, requiring its own management, configuration, and tuning (IBM, 2003). 

Managing large infrastructure systems became too costly and error prone and resulted in 

an increase in the frequency and impact of service outages (Ganek & Corbi, 2003).  For instance, 

management and maintenance of critical infrastructure systems grew to 70 – 90 percent of total 

system cost and up to one-half of an organization’s IT budget (Ganek & Corbi, 2003; Group, 

2002).  Management tasks in these large-scale production systems were too labor-intensive and 

stressful as they required the operators to decipher large amounts of data and make critical 

decisions within seconds, resulting in the prevalence of errors, failures, and outages (Ganek & 

Corbi, 2003).  For instance, downtime due to security related service outages at brokerages 

houses and banking firms were estimated to cost $4,500,000 and $2,600,000 per incident per 

hour (Group, 2002), respectively, with about 40 percent of these outages resulting from operator 

error (e.g. poor configuration, tuning, or management) (Ganek & Corbi, 2003).  These errors 

were not caused by poor training or lack of capability but by the inherent complexity of the 

systems and the pressures of making split-second decisions with a high degree of uncertainty 

(Ganek & Corbi, 2003).  

Further, the economic impact was estimated at almost $3,000,000 per hour for the energy 

sector and $2,000,000 per hour for the telecommunications industry (Group, 2002) and did not 

include the societal impact (e.g. pain, suffering, and potential loss of life) experienced by those 

relying on these critical infrastructure services.  Some of the most frequent causes of reported 

outages were management errors, user error and inadequate change control in systems, 
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performance overload and insufficient bandwidth in networks, and performance overload and 

configuration errors in database systems (Ganek & Corbi, 2003).  Thus, proactively handling 

system management and maintenance issues in highly complex systems and environments was a 

top priority (Ganek & Corbi, 2003). 

Industry, governments, and the research community have turned to self-adaptive systems 

to cope with the growing complexity and manageability of these systems in an effort to reduce 

errors, failures, and overall downtime (Bondavalli et al., 2009; B. Cheng et al., 2009; Ganek & 

Corbi, 2003; Group, 2002; IBM, 2003).  They incorporated self-adaptive capabilities into their 

systems as the autonomic responses and mechanisms were better equipped to deal with the 

uncertainties of the system’s operating conditions (Almeida & Vieira, 2012a; Moorsel et al., 

2009; Salehie & Tahvildari, 2009).  Automating complex management tasks reduced the need 

for human intervention which liberated the highly skilled technical staff from having to install, 

configure, operate, tune, and maintain critical systems, enabling them to focus on tasks with 

higher organizational value (IBM, 2003).  Self-adaptive capabilities are found in web and 

database servers (Graefe, Idreos, Kuno, & Manegold, 2010), multimedia services (Bra et al., 

2003), unmanned vehicles (B. Cheng et al., 2009), and are incorporated into large-scale legacy 

systems to extend their utility passed their end-of-life (Hurtado, Sen, & Casallas, 2011; Parekh, 

Kaiser, Gross, & Valetto, 2006; Zhang & Cheng, 2007).  The increased reliance on self-adaptive 

systems made their resilience a top priority to those who may experience financial or social 

impact by their failure (Almeida & Vieira, 2012a; B. Cheng et al., 2009).  Evaluation and 

benchmark methods are vital to instill confidence in the system’s safety, quality, and overall 

resilience, provide methods for verifying claimed properties, reduce long-term system costs, and 
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reduce the frequency and impact of outages (Bondavalli et al., 2009; Garlan, 2010; Moorsel et 

al., 2009). 

Barriers and Issues 

The problem of defining a cost-effective changeload for the resilience benchmarking of 

self-adaptive systems was, and continues to be, inherently difficult to solve for several reasons. 

First, if cost or time were not a concern it would be appropriate to define and enumerate 

all possible changes in all possible contexts of the system (Vieira & Madeira, 2004).  The 

changeload would grow exponentially due to the scale and complexity of self-adaptive system’s 

behavior, components, and interconnections (B. Cheng et al., 2009; Cin et al., 2002; Vieira & 

Madeira, 2004), as described in the previous sections.  However, defining and enumerating all 

possible changes in an exhaustive changeload was impractical (Vieira & Madeira, 2004), and 

potentially impossible in practice (Quadri & Farooq, 2010), due to the costs associated with 

defining and enumerating a large number of change scenarios (Leung & White, 1991).   

A second issue was defining a minimized changeload that provided maximum coverage.  

This has been shown to be NP-Complete and can be re-expressed as an optimization problem 

(Harrold, Gupta, & Soffa, 1993; Hemmati, Briand, Arcuri, & Ali, 2010).  Therefore, a minimized 

changeload can only be approximated utilizing heuristics, greedy algorithms, genetic algorithms, 

and other selection techniques (Galeebathullah & C.P.Indumathi, 2010).  These techniques 

reduce the changeload size by removing redundant, obsolete, and ineffective change scenarios 

(Barbosa et al., 2005; Galeebathullah & C.P.Indumathi, 2010; Harrold et al., 1993).  However, 

they require the changeload to be defined for the entire change space and are then reduced, 

wasting resources on the identification of redundant and ineffective change scenarios (Barbosa et 

al., 2005; Roberto, 2013).  The goal-oriented approach utilized system knowledge to guide the 
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test selection strategy in order to overcome this issue, avoid the identification and definition of 

irrelevant changes, and produce a minimized changeload. 

Another approach, such as model based-testing (MBT), are systematic, generate change 

scenarios based on models, and can be proven complete (B. Cheng et al., 2009; Hemmati et al., 

2010).  However, MBT suffers from scalability issues when utilized against complex systems 

(Hemmati et al., 2010).  For instance, thousands of change scenarios can be generated for even 

modest systems utilizing well-known coverage criteria, such as all transition-pairs or all-

roundtrip paths (Hemmati et al., 2010), which is not cost-effective. 

A third issue was maximizing the error detection rate during system evaluation while 

using a minimum number of test cases.  Additionally, the changeload’s cost-effectiveness must 

be maximized while ensuring it fully characterizes the system and evaluates goal attainment 

(Almeida & Vieira, 2011; Hemmati et al., 2010; Quadri & Farooq, 2010; Roberto, 2013; Vieira 

& Madeira, 2004).  Unjustified or unguided test case omission reduced the changeload’s error 

detection rate and can omit tests that are vital to the end-user (Hemmati et al., 2010).  

Conversely, not removing all ineffective tests resulted in increased cost, which hindered 

evaluation efforts (Barbosa et al., 2005; Quadri & Farooq, 2010; Vieira & Madeira, 2004).  

Defining a changeload that balanced coverage, user expectations, real-world conditions, and cost 

continues to be difficult and labor intensive (Quadri & Farooq, 2010).  The goal-oriented 

approach utilized system knowledge to identify the self-adaptive elements of interest and then 

defined relevant changes for their direct evaluation in order to ensure test coverage of the 

system’s resilience mechanisms.  

A solution that addressed the above concerns would add to the body of knowledge and 

potentially provide a basis for future research. 
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Assumptions, Limitations, and Delimitations 

The goal of this dissertation was to reduce the overall cost of resilience benchmarking of 

self-adaptive systems by reducing the considered change space when defining a resilience 

changeload.  The approach utilized system knowledge to limit the identification and definition of 

changes to those that directly affected a system feature or service protected by a self-adaptive 

mechanism.   

An assumption of this study was that the self-adaptive mechanisms that introduce the 

systematic or localized change would not introduce additional changes, such as a fault or failure, 

which would then prompt a series or loop of self-adaptive responses.  Furthermore, self-adaptive 

responses and state transitions occurred within known operational states.  These assumptions 

ensured that all adaptation and system states were fixed and did not involve emergent behavior, 

allowing behavioral verification and validation.  Another assumption was that the defined 

changes accurately reflected actual changes experienced by the SUB within its production 

environment and its intended use.  These assumptions were in-line with previous studies where 

the runtime behavior of complex systems was evaluated in the presence faults, failure, and other 

runtime changes (Almeida & Vieira, 2012a; Bondavalli et al., 2009; Cámara, Lemos, Vieira, 

Almeida, & Ventura, 2013; Graefe et al., 2010; Khalil, Elmaghraby, & Kumar, 2008; Vieira & 

Madeira, 2004). 

A limitation of the study was the behavior, structure, and functionality of the target 

system, particularly its self-adaptive mechanisms and capabilities.  The analysis, conclusions, 

and identified changes were only accurate and relevant for the particular implementation, which 

may limit the applicability of the results.  However, the process and approach was generalized 

and not system-specific.  Additionally, some adaptive trajectories or emergent behavior may not 
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be obvious without in-depth analysis of either documentation or source code, and may not be 

identifiable without experimentation.  For example, a multistep adaptive response (an adaptation 

triggers another) to a change may be by design, where the system continuously over- and under-

compensates to environmental changes until it reaches equilibrium.  However, these adaptations 

were omitted, unless explicitly documented, since the focus of this study is to reduce the cost of 

resilience benchmarking while ensuring coverage of known adaptive functionality. 

A delimitation of this study was that all the self-adaptive capabilities and mechanisms of 

the target system were fixed and known a priori.  This delimitation limited the applicability of 

the study’s results to those systems without evolving capabilities, updatable adaptive 

mechanisms, or emergent behaviors.  Due to the degree of diversity within self-adaptive systems, 

other studies have also limited their focus to specific system-types or functional-families to 

increase the feasibility of defining relevant resilience changeloads (Almeida & Vieira, 2012a; 

Vieira & Madeira, 2004).  This study took a similar approach by making the above stated 

assumptions and delimitations which were reasonable and in line with the previous study. 

Definition of Terms 

Operating Environment The environment in which the system operates that cannot be 

directly managed by the system, such as available system 

memory, workload, or network connection (Madeira et al., 2002). 

Self-Adaptive A computing environment or software system with the ability to 

manage aspects of its operation and dynamically adapt to change 

in accordance to business policies, objectives, and run-time goal 

attainment.  They can be either self-configuring, self-healing, 

self-optimizing, or self-protecting (Ganek & Corbi, 2003) 

Change Any significant event in the context of a system or environmental 

resource, internal system state, interface, or component that may 

affect the system’s ability to attain runtime goals.  These can 
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include attacks, failures, faults, updates, or workload variations 

(Ganek & Corbi, 2003). 

Managed Resource A system component, module, or resource that can be managed 

by the system at runtime (Ganek & Corbi, 2003). 

Sensor An interface that provides information about the state and 

operation of a managed resource (Ganek & Corbi, 2003). 

Effector An interface that allows the system to modify the operational 

state of a managed resource (Ganek & Corbi, 2003). 

Fault Exceptional conditions that may occur internally, such as 

hardware or software faults, or externally, such as those that 

occur within the operating environment, which disrupts expected 

system operation (Gil et al., 2002; Madeira et al., 2002). 

Failure Is a state in which an error reaches a service interface and alters 

the offered service in such a way that expected service qualities 

are no longer met (Gil et al., 2002). 

Change Trajectory The context / operational state of the system as it adapts to a 

sequence or group of changes.  Temporal order of changes often 

determine specific change trajectories (Almeida & Vieira, 2011). 

Functional Testing Testing in which the only information utilized is the software 

specification in which inputs are mapped to expected outputs, 

commonly referred to as black box testing (Jorgensen, 2002). 

Black-box Testing Testing in which the implementation of a system is not known 

and considered as a black box, where the function of the black 

box is understood completely in terms of its inputs and outputs 

(Jorgensen, 2002). 

Test An act of exercising a software system in an effort to find failures 

or to demonstrate its correct operation (Jorgensen, 2002). 

Test Case A set of inputs and expected outputs used to test program 

behavior (Jorgensen, 2002). 

Fault Space The set of all possible faults that may affect a system, its 

components, or its environment (Vieira & Madeira, 2004). 

Change Space The set of all possible changes that may affect a system, its 

components, or its environment (Almeida & Vieira, 2012a). 
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Resilience Encompasses all attributes of quality where a system works well 

and can be trusted in a changing environment and in the presence 

of faults, failures, errors, and attacks (Almeida et al., 2010). 

Summary 

Trends and projections depicted an increase in the need for performance, resilience, and 

reduced costs of infrastructure systems to meet the growing demand of modern society.  

However, the increased complexity of these systems in response to growing demand negatively 

contributed to the management and maintenance of these systems, as they were more prone to 

outages and errors, which resulted in loss of revenue or disruption in service. 

Self-adaptive capabilities endowed a system with autonomic features of self-management 

or self-healing, which reduced the reliance on human-operators to conduct routine maintenance 

tasks or troubleshoot issues.  Benchmarking and validation of resilience was of utmost 

importance due the reliance on the critical infrastructure services maintained by self-adaptive 

mechanisms.  However, testing was often labor intensive and cost-prohibitive due to the scale 

and complexity of these systems.  This resulted in insufficient or incomplete testing of runtime 

functionality, or in many cases, testing was omitted as a cost-saving strategy.  Therefore, since 

software testing can account for 50 to 80% of total system costs, a method for reducing the cost 

of resilience benchmarking of self-adaptive systems while maintaining test coverage was 

required. 

Barriers existed in achieving this goal.  Maximizing the cost-effectiveness of the test 

suite, while simultaneously maintaining test coverage, was difficult.  Additionally, the 

determination of which tests could be omitted to reduce costs continues to be an open research 

question.  Special care must be observed in maintaining this balance as a solution that does not 
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sufficiently reduce the cost of benchmarking, or negatively impacted the test coverage of the 

suite, was unacceptable. 

The risk-based approach presented in this chapter is representative of the current research 

that has attempted to address these problems.  It consisted of utilizing Software Risk Evaluation 

(SRE) techniques to identify the risks threatening the achievement of the system’s goals.  As 

such, this research proposed an extension to the risk-based approach to utilize goal-oriented 

requirements engineering techniques to extract system knowledge and determine if cost-savings 

and greater effectiveness can be realized over previous research. 

The next chapter provides a review of the literature providing an overview of 

performance benchmarking, dependability benchmarking, and resilience benchmarking as it 

relates to self-adaptive systems, followed by a discussion of the benchmarking cost saving 

techniques found within the literature.  
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Chapter 2 

Review of the Literature 

Introduction 

A comprehensive review of the risk-based approach for defining resilience changeloads 

has been conducted and its corresponding shortcomings were discussed in the Problem 

Statement.  The discussion has demonstrated the need to extend the risk-based approach to 

reduce the cost of resilience benchmarking while ensuring the selection of relevant changes that 

exercise the pertinent system functionality.  This section discusses the concepts that were 

pertinent to this study, such as performance benchmarking, dependability benchmarking, and 

resilience benchmarking, and then culminating with a discussion of existing cost-savings 

techniques for system benchmarking. 

Benchmarking 

Benchmarks are a generic way of characterizing a system's runtime behavior, called the 

system under benchmark (SUB), by simulating real-world operating conditions (such as expected 

workloads) and analyzing the quantitative output produced using metrics, which provided a 

standardized method of evaluating and comparing alternative implementations (Almeida & 

Vieira, 2012a; Bondavalli et al., 2009; A. B. Brown et al., 2004; Kaddoum, Raibulet, Georg, 

Picard, & Gleizes, 2010).  Their results were used to gauge a system’s effectiveness in its 

intended operating environment, set realistic expectations for its Quality of Service (QoS), 

provided assurance and verification of key property claims, and abstracted a system’s technical 

details to allow non-technical end-users to compare alternative systems in a straightforward 
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manner (Almeida & Vieira, 2011; A. B. Brown et al., 2004; Kaddoum et al., 2010; Weicker, 

1990). 

Work on benchmarking focused primarily on performance aspects of systems, such as 

CPU, operating system, and file system performance (Almeida & Vieira, 2012a; Traeger, Zadok, 

Joukov, & Wright, 2008).  Performance benchmarks were composed of three major components, 

the workload, which was the computational load for the SUB (Cin et al., 2002), performance 

metrics, and execution rules (Almeida & Vieira, 2012a).  They were classified as real, ad-hoc, 

synthetic, application, or trace benchmarks (Agrawal, Arpaci-Dusseau, & Arpaci-Dusseau, 

2008). 

A real application benchmark was the use of the application that the end-user intended to 

run on the system as a benchmark for the system, with the obvious advantage that the benchmark 

results corresponded directly to the actual scenario the end-user cared about, and was the most 

representative of its real-world performance (Agrawal et al., 2008).  However, this technique was 

impractical as was impossible to determine the specific use of a system for each potential end-

user, especially in the case of general-purpose and commercial off-the-shelf (COTS) systems 

(Traeger et al., 2008). 

Ad-hoc benchmarks were created by a system’s author for in-house use, were not 

available to outside parties, and were not reproducible.  The code for in-house benchmarks were 

not widely used or distributed, which resulted in differing implementations, increased errors, and 

made their results difficult to compare (Traeger et al., 2008). 

Synthetic benchmarks were solely written to simulate real-world workloads and 

performed no useful computations, such as the TPC-C benchmark, by the Transaction Processing 

Performance Council (TPC) which was used for online transaction processing (OLTP) 
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benchmarks for database management systems (DBMS) (Weicker, 1990).  TPC-C mimicked the 

activity of a wholesale supplier where multiple users executed data-intensive transactions against 

a database (Council, 2010).  Synthetic benchmarks were widely available, standardized, and 

were highly reproducible, but their workloads did not always represent real-world conditions 

accurately (Agrawal et al., 2008; Traeger et al., 2008; Weicker, 1990). 

Application benchmarks were distilled from real and purposeful programs that were 

representative of those used in a particular industry or within a system-type, such as LINPAC, 

which was a package of libraries used in sophisticated Fortran programs and was originally a 

major component of a scientific application (Fernandez & Garcia, 1999; Weicker, 1990).  They 

were also widely available and representative, but their results were highly dependent on the 

language and libraries used in their implementation, which made them prone to gaming 

(Weicker, 1990). 

Finally, trace benchmarks recreated real workloads by logging operations and replaying 

them under controlled conditions, and if done correctly, they were the most representative 

benchmark type (Traeger et al., 2008).  However, the lack of standardized methods for capturing 

and replaying traces, coupled with variations in benchmark system setups, made their results 

difficult to compare and interpret due to the complex interactions of their components (Agrawal 

et al., 2008).  Further, real-world traces were not readily available due to privacy concerns of 

both the creator (e.g. proprietary technologies) and their users (e.g. capturing of personal 

information) (Traeger et al., 2008). 

Measurements were taken of the SUB while it computed the workload, such as those 

mentioned above, using performance metrics.  A performance metric is a standard method of 

measuring and quantifying a property of interest, such as bytes per second (bps), millions of 
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instructions per second (MIPS), millions of floating point operations per second (Mflops), or 

transactions per minute (tpmC), and allowed the direct comparison of systems (Agrawal et al., 

2008; Council, 2010). 

There were several challenges with performance benchmarking, such as finding the 

balance between the representativeness and practicality of the benchmark (A. B. Brown et al., 

2004).  For instance, a benchmark with a high degree of representativeness (i.e. it represents a 

production environment and system configuration very well) often resulted in complex and 

costly benchmarking setups and procedures, which reduced its reproducibility and portability 

over different systems (Fernandez & Garcia, 1999; Moorsel et al., 2009). 

Another challenge was determining the appropriate workload to adequately characterize a 

system so that the properties of interest were isolated in a realistic manner (Fernandez & Garcia, 

1999). For example, CPU benchmark results were often influenced by a number of factors other 

than the CPU, such as the programming language characteristics of the benchmark, compiler 

optimizations used, runtime libraries utilized within the benchmark code, and the cache sizes of 

the involved components (e.g. CPU and disk caches) (Weicker, 1990).  Thus, benchmark results 

must be considered with the context of tasks performed and measurement assumptions to ensure 

proper interpretation and comparison (Weicker, 1990). 

Benchmarks are useful tools that provide means of comparing systems on various 

performance properties, identify performance problems and bottlenecks, and motivate system 

design improvements (Fernandez & Garcia, 1999).  Useful benchmarks are those that are 

representative of the system domain, produce expressive results that adequately describe the 

SUB, are repeatable, portable over different systems, and verifiable (Almeida & Vieira, 2011; A. 

B. Brown et al., 2004; Fernandez & Garcia, 1999).  Despite the large amount of research 
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focusing on performance benchmarks, researchers continued to address the challenges of 

defining representative workloads due to the growth in complexity of both modern systems and 

their usage characteristics (Almeida et al., 2010; IBM, 2003). 

Dependability Benchmarking 

Society’s use of networked devices for critical infrastructure services increased 

awareness of the importance of failures that resulted in undesirable repercussions, such as loss of 

revenue, prestige of a company, trust in a service, and even loss of life (Ganek & Corbi, 2003; 

Madeira & Koopman, 2001). Performance and functionality were no longer the only motivation 

for improvements in technology products as the technology industry was increasing its emphasis 

on designing systems that could function in the presence of faults and failures, that is, systems 

that were dependable (Kanoun et al., 2002; Madeira & Koopman, 2001). 

Dependability is an integrating concept that combines the attributes of availability, 

reliability, safety, integrity, and maintainability of systems that is attained by incorporating fault 

prevention, fault tolerance, fault removal, and fault forecasting capabilities into a system (A. 

Avizienis, J. C. Laprie, B. Randell, & C. Landwehr, 2004).  Thus, a dependable system is one 

with ability to delivery services, via fault prevention and tolerance mechanisms, that could be 

justifiability trusted by avoiding service disruptions due to frequent and severe faults, using fault 

removal and forecasting features (A. Avizienis et al., 2004; Kanoun et al., 2004).  Faults are 

defined as exceptional, abnormal, or stressful conditions that result in system failure, or more 

precisely, a state in which a system no longer accomplishes its intended purpose or goals (Vieira 

& Madeira, 2003). 

Thus, the goal of dependability benchmarking was to provide a systematic means of 

characterizing the behavior of computer systems in the presence of faults, typically evaluated 
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from the end-user’s perspective of their expected services, in a reproducible and cost-effective 

manner (Cin et al., 2002; Kanoun et al., 2002; Kanoun et al., 2004).  Dependability benchmarks 

extended performance benchmarks by subjecting the SUB to representative faults while it 

executed workloads typically utilized in performance benchmarks (Almeida & Vieira, 2011; A. 

B. Brown et al., 2004; Cin et al., 2002; Kanoun et al., 2004).  For example, the well-known 

dependability benchmark DBench used TPC-C as its workload. 

The injection of the faults was a critical experimental technique for assessing and 

verifying dependability (Moorsel et al., 2009; Xavier et al., 2008) as it provided insight into the 

SUB’s tolerance and recovery capabilities in the presence of simulated faults (Kanoun et al., 

2002; Salehie & Tahvildari, 2009; Vieira & Madeira, 2003).  Faults included internal and 

external faults affecting software, hardware, network, and human components (Cin et al., 2002). 

Faultloads 

The faultload captured the additional dimension of fault injection in dependability 

benchmarking.  It was a set of representative faults to be injected into the SUB and included their 

intended location (e.g. in code, memory, or in hardware), insertion time (e.g. when they should 

be injected), relative distribution within time and space, and fault type (Cin et al., 2002; Kanoun 

et al., 2004).  Some examples of faults include register bit-flips to simulate CPU hardware faults, 

data corruption to simulate software faults, read / write timeouts to simulate disk faults, and 

packet loss to simulate network interface faults (Cin et al., 2002).  The SUB's reaction to the 

faultload was measured utilizing dependability metrics, such as mean time to failure (MTTF) and 

total uptime, which allowed the direct comparison of systems using quantitative results (A. B. 

Brown et al., 2004; Madeira et al., 2002).   
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The faultload was critical to dependability benchmarking but was non-trivial to define.  

The following section discusses several challenges associated with faultload definitions. 

Faultload Challenges 

Defining a representative faultload was the most difficult and obscure aspect of 

dependability benchmarking (Kanoun et al., 2002; Madeira et al., 2002; Madeira & Koopman, 

2001) and was more complex than defining workloads for performance benchmarks (Kanoun et 

al., 2002).  In particular, determining the essential elements of the evaluation domain, identifying 

the features of interest, and defining the most applicable faults of the faultload in a practical and 

reproducible manner were difficult and labor intensive tasks (Kanoun et al., 2002).  This was a 

result of a lack of available field data (Almeida & Vieira, 2011; Moorsel et al., 2009) and the 

complex nature of computer faults (Vieira & Madeira, 2004). 

Further, the faultload had to portray a high degree of representativeness, completeness, 

implementability, portability, and repeatability, while being comprised of the minimal number of 

faults to ensure its cost-effectiveness (Cin et al., 2002).  Of particular importance were its 

representativeness, which directly related to the accuracy of the benchmark results (Cin et al., 

2002), portability, which ensured its ability to directly compare different systems (Moorsel et al., 

2009; Vieira & Madeira, 2004), and cost-effectiveness, which determined its practicality and 

reproducibility (Kanoun et al., 2004). 

A system’s fault space was comprised of all possible sources of faults, affecting any 

component or interface of the system, that may or may not result in failure (Vieira & Madeira, 

2004).  The fault space could be very large as it grew exponentially in relation to the number of 

system components, features, and interfaces (Bondavalli et al., 2009).  An exhaustive faultload, 

which contained all possible faults in the fault space, was often recommended in literature (Cin 
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et al., 2002; Kanoun et al., 2004) because it ensured a high degree of fault coverage and a greater 

possibility of uncovering unknown flaws and defects (Vieira & Madeira, 2004).  However, this 

practice became increasingly impractical as the complexity and size of the SUB increased, 

especially with respect to cost (Cin et al., 2002; Xavier et al., 2008).  Cost referred to the overall 

cost of dependability benchmarking, which included: the time and effort involved in considering 

and defining the fault space, the analysis and selection of faults to include in the faultload, and 

the time and resources required to enumerate the faultload in the experimental phase of the 

benchmark (Ganek & Corbi, 2003; Kanoun et al., 2004).  Thus, the cost of a dependability 

benchmark was directly related to the number of faults considered, included, and enumerated 

(Xavier et al., 2008). 

Several techniques were proposed to reduce the considered fault space and the cost of 

dependability benchmarking.  For example, many classes of low-level hardware faults exhibited 

similar high-level characteristics, so simulating hardware faults at higher logical layers reduced 

the number of hardware faults in the faultload (Cin et al., 2002).  Similarly, software faults could 

also be abstracted using established software defect classifications, such as the Orthogonal 

Defect Classification (ODC), which classified software defects in a set of non-overlapping 

classes (Cin et al., 2002). Thus, fewer faults needed to be considered and enumerated as the 

results of a single fault was representative of the entire fault class (Xavier et al., 2008). 

The considered fault space could also be filtered (i.e. reduced) using knowledge of the 

SUB’s dependability features, services, and the visibility of a fault’s resulting failure (Barbosa et 

al., 2005; Cin et al., 2002; Friginal et al., 2011).  For instance, the fault space for simulating 

hardware faults (i.e. memory and CPU register bit-flips) could be optimized by eliminating faults 

with low representativeness (Barbosa et al., 2005).  These faults were defined as faults that were 
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repetitive, such as those that occurred in the same location but at different times, and faults that 

lacked relevance, such as those that never resulted in a failure (Barbosa et al., 2005; Friginal et 

al., 2011).  Examples of the latter were bit-flips that were injected into a register before a write 

operation occurred and were subsequently overwritten, and bit-flips that were injected but were 

never read for useful computations (i.e. activated) (Barbosa et al., 2005). 

Evaluators also used system knowledge, its context of use, and properties of the SUB’s 

environment to discern relevant faults from the fault space (Friginal et al., 2011).  With this 

knowledge, the evaluator could determine which faults would actually impact the SUB and the 

elements of interest, such as those that exercised its dependability mechanisms (Barbosa et al., 

2005; Friginal et al., 2011).  Selecting faults based on environmental properties significantly 

reduced the number of considered faults due to its inherent complexities and direct effect on the 

SUB (B. Cheng & Atlee, 2007; Kanoun et al., 2002; Pressman, 2005). For instance, ambient 

noise and signal attenuation greatly impacted the availability and integrity of data transfers over 

wireless networks (Friginal et al., 2011) but had little to no relevance for stationary infrastructure 

systems.  Another example was the risk of physical damage or attack (e.g. hitting or dropping the 

system) which was very relevant for mobile systems but not for database systems. 

The use of system knowledge significantly reduced the considered fault space, increased 

the relevance of the faults incorporated into the faultload, and reduced the cost of dependability 

benchmarking (Barbosa et al., 2005).  Reducing the considered fault space and overall cost of 

dependability benchmarking was critical as exhaustive faultload were expensive, labor intensive, 

and wasted resources by evaluating the SUB against irrelevant faults (Barbosa et al., 2005; 

Madeira & Koopman, 2001) 
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Dependability benchmarking focused on measuring and comparing the dependability and 

performance of systems, with the goal of verifying system behavior and dependability features in 

the presence of faults (Kanoun et al., 2002; Kanoun et al., 2004).  Researchers continue to 

address the challenges within the n-dimensional problem space of dependability benchmarking 

that were caused by the huge complexities found within the application domain, operating 

environment, the very nature of faults, and interaction of all these elements (Kanoun et al., 2004; 

Madeira & Koopman, 2001).  Defining a good workload, and even more so for a good faultload, 

was a pragmatic process that required observation and analysis of the SUB’s functionality, 

structure, and the constraints and assumptions imposed upon it by its environment (Cin et al., 

2002). 

Self-Adaptive Systems 

Modern systems have increased in complexity and have become unmanageable due to the 

adoption of heterogeneous, dynamic, and interconnected systems of systems that addressed the 

growing needs of society (Almeida & Vieira, 2012a; Ganek & Corbi, 2003).  As a consequence, 

industry and the research community focused on developing systems that were capable of 

performing standard maintenance, optimization tasks, and recovery operations in response to 

changes within themselves and their operating environment with little or no human intervention, 

called self-adaptive systems (Almeida & Vieira, 2011; B. Cheng et al., 2009; IBM, 2003).  They 

were organized into four main categories: self-configuring, self-optimizing, self-healing, and 

self-protecting systems (Almeida & Vieira, 2011; B. Cheng et al., 2009; IBM, 2003).   

The autonomic operation of self-adaptive systems allowed them to quickly adapt to 

highly variable workloads, respond to unpredictable operating conditions, and make performance 

enhancing changes while reducing system maintenance costs, failures due to operator error, and 
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overall system downtime (Ganek & Corbi, 2003; IBM, 2003; Kaddoum et al., 2010).  They were 

not bound by predefined execution paths, or the static logic typical of traditional systems, which 

endowed them with dynamic runtime behavior (Ganek & Corbi, 2003). They gathered and 

utilized contextual information of their operation and environment to optimize their responses to 

change and were typically implemented with a closed-loop mechanism (i.e. adaptation loop) 

called the MAPE-K (Monitoring, Analyzing, Planning, Execution, and Knowledge) loop 

(Almeida & Vieira, 2012a; Ganek & Corbi, 2003; IBM, 2003; Moorsel et al., 2009).  The 

MAPE-K loop consisted of system capabilities responsible for monitoring its context (internal 

and external to the system), analyzing changes to its context, planning adaptive responses to 

those changes using its newly gathered data and its previous knowledge, executing its adaptation 

plans, and finally updating its knowledgebase with its newly acquired information (IBM, 2003; 

Robert Laddaga & Robertson, 2000).  These systems were expected to be resilient in achieving 

and maintaining their predefined goals by adapting (proactively and reactively) their behavior 

and structure in response to runtime changes (Almeida & Vieira, 2012a).   

The property of resilience merged concepts of performance, dependability, and security 

(Almeida et al., 2010).  It pertained to a system’s persistence of trusted service delivery when 

faced with circumstances that were beyond its normal (i.e. ideal) operating conditions (Almeida 

& Vieira, 2011; Laprie, 2008) which inhibited its ability to satisfy runtime requirements and 

goals (Almeida & Vieira, 2012a; Bondavalli et al., 2009; Ganek & Corbi, 2003; IBM, 2003).  

Society’s reliance on self-adaptive systems for large-scale, mission critical, and infrastructure 

systems (Bondavalli et al., 2009) increased the urgency of finding methods for the assessing their 

resilience and other runtime attributes (Almeida & Vieira, 2012b). 
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Resilience Benchmarking  

The need to evaluate a system’s ability to maintain expected service levels in the 

presence of changes other than faults became critical due to the increased reliance of highly 

complex infrastructure systems designed with self-adaptive capabilities (Almeida & Vieira, 

2011; A. B. Brown et al., 2004; IBM, 2003).  Benchmarking, which provided methods for 

evaluating such characteristics, had focused primarily on evaluating the performance and 

dependability of static systems whose runtime behavior was predictable and constrained to fixed 

execution paths (Almeida & Vieira, 2012a; Bondavalli et al., 2009; IBM, 2003).  However, 

traditional benchmarking methodologies could not be applied to self-adaptive systems “as-is” 

because they did not provide insight into their complex runtime behavior and potential variations 

in system response (Bondavalli et al., 2009). 

Further, traditional dependability benchmarks focused on identifying conditions that 

caused the SUB to enter a failure state (such as an invalid input), while resilience benchmarks 

focused on the transient behavior of the SUB in response to a change (such as a step variation in 

workload) and its final operational state (e.g. transient, stable, or a failure state) (Hellerstein et 

al., 2004).  Therefore, dependability benchmarks were extended to include other facets of change 

experienced by self-adaptive systems, such as internal and environmental variances, to fully 

assess their capabilities (Almeida & Vieira, 2011; Bondavalli et al., 2009; Salehie & Tahvildari, 

2009).  

Resilience benchmarking extended dependability benchmarking by providing methods to 

evaluate and compare the dynamic runtime behavior of self-adaptive systems when faced with 

changes, which were typically overlooked by traditional dependability benchmarks (Almeida & 
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Vieira, 2011; Bondavalli et al., 2009).  As in dependability benchmarking, resilience was 

evaluated as the SUB executed a representative workload, such as those used in performance 

benchmarking (Kanoun et al., 2004; Moorsel et al., 2009).  Measurements were taken of specific 

system attributes, such as behavior and performance characteristics, utilizing specialized 

resilience metrics (Almeida & Vieira, 2011; Huebscher & McCann, 2004; Kaddoum et al., 2010; 

Robert Laddaga & Robertson, 2000).  Resilience metrics included CPU performance (CPUP), 

Working vs. Adaptivity Time (WAT), and adaptation latency (Kaddoum et al., 2010).  Thus, a 

resilient system had to be able to adapt to changes in service demands (i.e. workloads), faults and 

attacks (i.e. faultloads), and other types of perturbations that imposed changes onto the SUB, but 

may not have necessarily resulted in failure (Almeida et al., 2010). 

Just as adaptive capabilities endowed a system with an additional dimension of runtime 

dynamism, the additional dimension of change was captured to assess a system’s effectiveness 

while coping with change, called the changeload, described in the Chapter 1 (Almeida et al., 

2010 2011; Almeida & Vieira, 2012b; A. B. Brown et al., 2004). 

Cost Saving Techniques 

Testing is the most critical and expensive phase of the Software Development Lifecycle 

(SDLC).  Software maintenance costs, of which testing is a component, can range from 50 to 

80% of total software cost over the life of the system (Leung & White, 1991) and can even 

exceed this range when the system if repeatedly modified and tested (Harrold et al., 1993; Leung 

& White, 1991).  This phase was critical for self-adaptive systems as their complexity and scale 

required repeated testing to validate their complex runtime characteristics (B. Cheng et al., 

2009).  This section discusses techniques found in literature aimed at reducing the cost of 

software testing. 
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In Barbosa et al. (2005) the authors proposed a fully automated technique of reducing the 

cost of fault injection that reduced the considered fault-space using assembly-level knowledge of 

the target system.  The technique mapped each register and memory location within the compiled 

code and determined those injection points that would not result in a system disturbance, that is, 

the ineffective faults.  Only those locations that had a corresponding READ operation 

immediately after the fault injection point were considered.  This was coupled with fault classes 

being defined and the testing of a single class member in the optimized fault-space to further 

increase the technique’s cost-savings by removing redundant and overlapping test cases. 

The authors utilized a Motorola MPC565 microcontroller to facilitate the injection of the 

bit-flip faults during the execution of two workloads – a quicksort algorithm and a jet engine 

controller – that demonstrated the technique’s feasibility and effectiveness within general 

computing and mission critical applications.  The quicksort application executed within two 

minutes, its fault-space optimization required only twenty seconds to complete, and each of its 

fault injection experiments required less than thirty seconds.  During the experiment’s “golden 

run,” the processor executed 34 distinct assembly opcodes and 815 total instructions.  The jet 

engine controller workload required twelve hours for its golden run, ten minutes for its fault-

space optimization, and fault-injection experimentation required less than two minutes per 

experiment.  Its golden run executed an average of 88 unique opcodes and 231 instructions. 

The experiments identified three primary outcomes: detected errors, which were those 

that were signaled by the hardware error detection mechanisms of the processor; wrong outputs, 

which were errors that were not detected by the processor and resulted in incorrect application 

output; and non-effective errors, which were errors that did not affect the system’s execution 

during the experiment.   
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The results of the experiments showed an increase in injected fault effectiveness, which 

increased from 5% to 47.7% in the optimized fault-space using the quicksort workload and from 

4.4% to 38.2% using the jet controller workload.  Table 1 summarizes the study’s fault-space 

optimization results. 

Workload 
Campaign 

Type 

Size of Fault-Space 

(registers) 

Size of Fault-Space 

(memory) 

Jet Engine 

Controller 

Non-optimized 5.0 x 108 1.9 x 1011 

Optimized 7.7 x 106 3.3 x 106 

Table 1: Fault-Space Optimization Results 

The technique resulted in a fault-space ratio of only 1.5% and 0.0017% of the original 

register and memory fault spaces, respectively.  These results related to the jet engine controller 

running on the 32-bit processor utilizing 100 KB of memory during its execution.  The 

optimization technique successfully reduced the fault-space by two orders of magnitude for the 

registers and five orders of magnitude for memory.  The fault-space optimization reduced the 

total memory fault-space by 99.9983% and the register fault-space by 98.5% while the 

effectiveness of the considered faults increased by 33.8%.   

The optimized fault-space allowed for the consideration and selection of fewer faults but 

did not reduce the error coverage of the faultload.  For example, the optimized faultload included 

only 1559 faults, a reduction of 72.69%, but increased the fault effectiveness from 2.0% to 

19.1%.  The reduction of the faultload equated to substantial cost-savings over the non-optimized 

fault-space since cost is directly tied to the considered fault-space, size of the faultload, and 

number of executed experiments (Leung & White, 1991). 

The authors concluded that further optimization was possible by analyzing error 

propagation as they observed that faults in some registers had a greater tendency to generate 

wrong outputs that caused detected errors in other registers.  This type of post-injection analysis, 
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coupled with the techniques pre-injection analysis, could further reduce the fault-space and 

increase the selected faultload’s effectiveness.  Finally, specific components could be targeted to 

evaluate specific error detection or recovery mechanisms directly, speeding the evaluation and 

further reducing the faultload’s size.  The study showed that investments in the analysis and 

selection phases of test suite definition process using pre-injection techniques provided 

significant cost savings by reducing the considered fault-space, optimizing the test suite, and 

reducing the total number of tested faults. 

In Xavier et al. (2008) the authors proposed a technique that reduced the number of test 

cases for a program by discarding redundant and repetitive tests from the test suite.  This was 

accomplished by combining automated model checking and program verification that ensured 

the testing criteria (coverage requirements) were met.  The technique first defined testing criteria 

to guide the test case definition process.  The study focused on testing exception handling 

capabilities of a program, specifically, the detection of an error, the activation of an exception, 

and finally, the handling of the exception via fault recovery mechanisms.  They also defined du-

pairs between associated exception objects and their utilization, in addition to exception event 

activations and deactivations (i.e. exception throw and catch logic).  Thus, the test coverage 

criteria included all throw commands, all catch commands, all exception definitions, all 

definition-use pairs, all exception activations, and all exception activation and deactivation (i.e. 

catches) pairs. 

Since the testing criteria related to code coverage, specifically of structural testing, the 

test cases focused on executing each program command associated with exception handling.  The 

authors constructed an automated tool, called OCongraX, to extract the points and objects of 

interest.  It was guided by the previously defined testing criteria and then generated the 
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respective test cases.  Once the test suite was defined, the authors utilized Java PathFinder to 

define bad practice properties and check them against the program model, where some bad 

practices included non-specific exception catches, empty catch statements, and non-specific 

exception throwing.  By combining the tools, they avoided unexpected halts of testing activities 

that needed manual recovery from unforeseen errors due to bad practices, they replaced the 

poorly implemented exception handling statements to allow testing to focus on system 

validation, and they avoided executing redundant test cases that would reevaluate tested code and 

already satisfied testing criteria.  Java PathFinder ensured that system properties were preserved 

while OCongraX tested the program’s fault-tolerance capabilities. 

The authors demonstrated their technique and tool in an experiment where the deadlock 

freedom of a concurrent program was tested.  The technique reduced the test-space by 25% and 

ensured 100% test criteria coverage.  The study showed that the combination of pre- and post-

injection analysis techniques successfully reduced the programs test-space.  Additionally, their 

tool automated the test case definition process for exception handling mechanisms, which 

reduced the labor costs of manual transcription.  However, the manual analysis required to define 

the coverage and testing criteria utilized by the tool may add additional costs to the technique, 

which could potentially negate the cost-savings from the test-space reduction, especially for 

large-scale self-adaptive systems (B. Cheng et al., 2009; R. Laddaga, 2006).  The model-

checking step was conducted using the Java PathFinder automated tool, which analyzed the Java 

byte-code of the test program.  However, the tool suffered from known scalability issues which 

occurred when the test program’s size and complexity increased (Visser, Pasareanu, & Khurshid, 

2004), which posed significant issues for large-scale self-adaptive systems (B. Cheng et al., 
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2009).  Finally, not all systems could be modeled, at all or easily, since their complexities may 

negate any potential cost savings (Andersson et al., 2009; R. Laddaga, 2006). 

In Harrold et al. (1993) the authors proposed a technique to reduce the number of test 

cases within a test suite by removing redundant and obsolete test cases while maintaining test 

coverage.  Their technique could be utilized in several phases of the SDLC, including initial 

program development, structural changes, and when both structural and functional changes were 

made to the system.  Their technique utilized a heuristic to reduce the number of total test cases 

by only including those test sets with the greatest cardinality over the tested requirements, 

described below. 

Their algorithm first included all test sets,
iT , in the test suite,TS  , associated with at least 

one valid requirement,
ir , and with a cardinality of one (i.e. containing a single test case 

it ).  It 

then marked all test sets within TS containing any of the
it ’s within the selected

iT ’s.  Then it 

processed the higher order cardinalities within TS  (e.g. 2, 3, and so on) and selected the 
iT ’s that 

had not been marked, repeatedly until the maximum cardinality, _MAX CARD , had been 

evaluated, thus marking all 
iT ’s containing duplicate test cases withinTS .  Finally, the algorithm 

returned a representative set, RS , of test sets that satisfactorily covered all valid requirements.  

In this manner, the algorithm marked and excluded both redundant and obsolete test cases and 

included only the highest order cardinal test sets that pertained to the requirements and coverage 

criterion, defined as each definition-usage pair (i.e. du-pair) found within the program code.  The 

algorithm is shown below in Figure 2. 
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Figure 2: Algorithm ReduceTestSuite for finding a representative set from a group of sets 

The authors demonstrated the technique’s efficiency by analyzing its worst-case run-

time.  Let n  denote the number of tests sets
iT , nt denote the number of test cases

it , and

_MAX CARD  the maximum cardinality within the group of sets.  ReduceTestSuite consisted of 

two data-intensive steps: computing the occurrences of test cases within test sets of varying 

cardinality and selecting the next test case to add to the optimized set.  The first step took 
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( * _ )O n MAX CARD  because there are n sets that were examined once.  The second step 

required examining the occurrences of each test case, which required at most

( * _ )O nt MAX CARD .  This was repeated at most n times because the selected test case is 

covered by at least one other test set.  Thus, the overall runtime was   _O n n nt MAX CARD .  

The authors ran simulations of their algorithm against several test programs, which proved its 

cost-effectiveness as it performed better in practice.  Their results are shown in Table 2. 

Procedure Test Cases 
Actual Associated 

Testing Sets 

Constructed Associated 

Testing Sets 

trityp 16 1.50 9.28 

atof 2 .07 .13 

getop 4 .28 .80 

calc 7 .23 .60 

qsort 5 .10 .30 

trityp2 19 .27 2.35 

sqroot 6 .07 .35 

sqroot2 6 .10 .41 

sqroot3 6 .25 .62 

sqroot4 5 .08 .20 

sqroot5 6 .10 .25 

Table 2: Run-times for ReduceTestSuite for Actual and Constructed Associated Testing 

Sets 

In each iteration, they executed the algorithm against a program (“procedure” column) 

and recorded the actual associated testing sets runtime (i.e. the observed runtime) and the 

constructed associated testing sets runtime (i.e. worst-case calculated runtime).  The results 

showed that the algorithm’s actual runtime was between 46% and 88% better than the estimated 

worst-case runtime. 

Finally, the authors conducted several experiments during the program development, 

program maintenance for program improvement, and program enhancement phases.  The 

coverage criterion used is the definition-use pair, or du-pairs, which consisted of the definition 
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and use of a variable within its code.  They defined full coverage as testing all du-pairs.  The 

program development phase consisted of typical functional testing after program development 

was completed, Experiment 1, and is shown in Table 3.  The technique was then used to reduce 

the test suite and replaced the original test cases in the later experiments. 

Procedure Source Lines du-pairs 
Original 

Test Cases 

Redundant 

Test Cases 
Reduction (%) 

trityp 21 39 16 3 18.7 

atof 17 63 2 1 50.0 

getop 19 33 5 3 60.0 

calc 33 3 11 4 36.4 

qsort 20 43 4 2 50.0 

sqroot 19 13 5 2 40.0 

Table 3: Experiment 1 - Reduction during Program Development 

The results of Experiment 2, testing after program maintenance for performance 

improvement, are shown in Table 4.  The authors made implementation changes to the programs 

without changing their functionality, such as making them more efficient or changing their 

internal structure. 

Procedure Source Lines du-pairs 
Original 

Test Cases 

Redundant 

Test Cases 
Reduction (%) 

trityp2 30 42 13 7 54.6 

sqroot2 21 25 6 2 33.3 

sqroot3 33 44 5 1 20.0 

sqroot4 17 17 7 2 28.6 

sqroot5 17 24 5 1 20.0 

Table 4: Experiment 2 - Reduction during program maintenance for performance 

improvement 

Table 5 depicts the results of Experiment 3, where the technique was used during 

program maintenance for program enhancements.  Here the authors modified the programs, both 

functionally and structurally, by adding new features and modifying existing ones. 
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Procedure Source Lines du-pairs 
Original 

Test Cases 

Redundant 

Test Cases 
Reduction (%) 

calc2 41 4 80 0 0.0 

calc3 60 4 13 4 30.8 

calc4 72 4 14 0 0.0 

calc5 86 16 18 3 16.7 

getop2 27 57 4 1 25.0 

getop3 38 69 5 2 40.0 

Table 5: Reduction during program maintenance for program enhancements 

The results showed a decrease in the total number of test cases in almost all experiments, 

with the test suites reduction ranging from 19% to 60% during program development, 20% to 

55% when structural changes were introduced during maintenance, and 0% to 40% when 

functional and structural enhancements were introduced during maintenance. 

The study showed that the size of the test suite can be reduced using analysis techniques 

and coverage criteria in a similar fashion as Xavier et al. (2008). The authors demonstrated that 

the actual runtime of the algorithm was significantly better than the worst-case 2( )O n time 

complexity for the small test programs (less than 100 lines of code).  However, the technique 

may not be practical for large systems (e.g. 1 million lines of code) as the time complexity 

became very large and increasingly significant.  Finally, the definition of du-pairs, even if 

automated, was impractical for a large-scale self-adaptive system due to their dynamic execution 

paths that were difficult to predict at runtime (IBM, 2003). 

In Galeebathullah and C.P.Indumathi (2010) the authors proposed a test suite reduction 

approach by selecting a minimum set of effective test cases from the application’s test space in 

an effort to reduce the overall cost of software testing, in a similar fashion as Harrold et al. 

(1993).  The technique also omitted redundant test cases and included only those that were the 

most effective in providing the greatest degree of test coverage.  In this instance, coverage was 

defined as the degree to which a test plan satisfied the greatest number of requirements tested. 
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The authors utilized set theory to define the minimized test suite, 
minT , as the intersection 

between the set of test cases, Ti , satisfying requirements in the requirements set, R , with the set 

of requirements satisfied, Ri  ,  by the test cases in the original test suite, T .  For example, the 

table below depicts a test case coverage matrix, which contains the relationships identified 

between requirements and test cases, where test case 1, t1, satisfies the test coverage of 

requirements 1, 3, and 5, and so on.  As shown, t1 and t4 satisfy all requirement testing which 

results in the omission of t2 and t3 from
minT . 

  Test Case 

Requirement Cardinality t1 t2 t3 t4 

1 2 X  X  

2 2  X  X 

3 3 X X X  

4 2 X   X 

5 2   X X 

Table 6: Test Case Coverage Matrix 

The authors utilized the test suite size reduction (SSR) metric to calculate the percentage 

of overall test suite reduction, defined below in Equation 16: 

minT T
SSR

T


  

Equation 16: SSR Metric 

Where T  was the number of original test cases,
minT was the number of test cases in the 

reduced set, and SSR  was the reduction percentage, where a larger value denoted greater test 

suite reduction.  They demonstrated the technique’s effectiveness using a small case study which 

produced similar results as traditional greedy and HGS heuristic methods (Chvatal, 1979).  

The technique was relatively simple to implement given that all required information, 

such as the requirement and test case sets, were captured in a machine-readable format so that 
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the algorithm could determine their relationships.  Alternatively, the evaluator could manually 

complete the preparation step if the number of test cases and relationships was small.  Otherwise, 

the labor required for the automation may not have justified the cost savings, especially if they 

were large or complex (Cin et al., 2002; Galeebathullah & C.P.Indumathi, 2010).  Further, 

conversion to a machine-readable format may not be possible for all requirements, such as those 

written in prose (Potts, 1995), or for test cases that required human interaction (A. B. Brown et 

al., 2004) as they are both have associated challenges. 

Finally, the technique presented in this study could be further refined to incorporate test 

and requirement classes and dependencies, where only a single test case needs to be enumerated 

to validate a class of tests.  Ultimately, the cost savings was directly related to the SSR value, 

which was dependent on the number of elements in the test set (i.e. the number of tests) and 

relates to Equation 1.  This supported this study’s direction to reduce the number of considered 

and enumerated test cases in an effort to reduce resilience benchmarking costs for self-adaptive 

systems. 

Summary 

This section discussed several studies that proposed techniques to address the high costs 

associated with benchmarking, testing system behavior, and verifying requirements in the 

presence of exceptional conditions.  Studies have been discussed that consider the individual test 

sets and omit the redundant test cases in an effort to minimize the test suite, while seeking to 

maximize test set coverage of functional requirements (Galeebathullah & C.P.Indumathi, 2010).  

Other studies have been presented that utilize test coverage criteria and system analysis to further 

reduce the size of the test suite by omitting ineffective and redundant test cases from a test suite 

(Barbosa et al., 2005; Harrold et al., 1993; Xavier et al., 2008).  Each technique provided a 
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method for reducing the size of a test suite in an effort to reduce software-testing costs.  A 

reoccurring theme is to utilize system analysis to guide the selection of test cases, with source 

code analysis being the most effective.  The results showed test suite reductions ranging from 

10% to 99%, which validated their effectiveness of test suite minimization.  The presented 

studies reinforced the premise of this study that utilizing system analysis and verification of 

desired runtime behavior can reduce the cost of resilience benchmarking of self-adaptive 

systems. 

 The next chapter describes the methodology used for this study, the goal-oriented 

approach, and the case study utilized to verify the approach’s effectiveness. 
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Chapter 3 

Methodology 

Overview of Research Methodology 

This study detailed an approach that reduced the cost of resilience benchmarking of self-

adaptive systems.  The approach built upon the risk-based approach proposed by Almeida and 

Vieira (2012a) while incorporating goal-oriented requirements engineering techniques and 

theories proposed by Dardenne, Lamsweerde, and Fickas (1993), Feather, Fickas, Lamsweerde, 

and Ponsard (1998), and van Lamsweerde and Letier (1998). 

 The guiding principle of the approach was to minimize the effort invested in the 

definition and enumeration of ineffective changes during the changeload definition process as 

they contributed negatively toward the overall cost of evaluation (Barbosa et al., 2005; Roberto, 

2013).  This differed from the minimization approaches discussed in the preceding sections as 

they required the definition of an exhaustive changeload first and then discarded the ineffective 

and redundant changes (Barbosa et al., 2005; Harrold et al., 1993; Quadri & Farooq, 2010).  The 

overhead incurred by defining a large number of changes could outweigh the cost-savings 

achieved by the minimization technique (B. Cheng et al., 2009; Leung & White, 1991).  

Therefore, this research proposed a goal-oriented approach that balanced the cost-effectiveness 

and coverage of resilience evaluation of self-adaptive systems by utilizing system knowledge to 

avoid the costs incurred by the definition and enumeration of ineffective changes.  It is followed 

by a case study that demonstrated its effectiveness. 

This was a valid method as it has been performed in the previous changeload study, the 

risk-based approach proposed by Almeida and Vieira (2012a), in dependability faultload studies 
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(Madeira et al., 2002; Vieira & Madeira, 2003, 2004), and in the test suite reduction studies 

discussed in the Chapter 2 (Barbosa et al., 2005; Galeebathullah & C.P.Indumathi, 2010; Harrold 

et al., 1993), where the respective techniques were proposed and validated via a case study on a 

fictitious system, or by experimentation.  A description of the goal-oriented approach is 

presented in the next section followed by a description of the case study that demonstrated its 

application and the application of the risk-based approach. 

Approach Overview 

The goal-oriented approach extended the risk-based approach by incorporating additional 

analysis and identification techniques in each step of the process.  The risk-based approach 

consisted of five primary steps focused on the identification and definition of the system and its 

relevant changes, as discussed in detail in the Problem Statement.  They are: 

 Step A: Identification of the Base Scenario 

 Step B: Identification of Change Scenarios 

 Step C: Definition of Change Scenario Attributes 

 Step D: Evaluation of Change Scenario Attributes 

 Step E: Definition of the Changeload 

 

The goal-oriented approach mirrored the five-step process of the risk-based approach, 

with the following steps listed below: 

 Step A: Identification of System Goals 

 Step B: Identification of Obstacles 

 Step C: Definition of Obstacle Attributes 

 Step D: Evaluation of Obstacle Attributes 

 Step E: Definition of the Changeload 

 

Extensions to each step are described below. 
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Step A: Identification System Goals 

The identification of the system’s goals is the most critical milestone of the changeload 

definition process as they are the driver for the identification and characterization of the change 

scenarios that may affect the system at runtime (Almeida & Vieira, 2012a).  The goal-oriented 

approach extended the identification of the base scenario, Step A of the risk-based approach, to 

include elaboration and refinement of the previously defined generic goals using WHY and 

HOW goal refinement techniques. 

The HOW goal refinement technique is a method for refining a goal until concrete sub-

goals are identified (van Lamsweerde & Letier, 2000).  For example, the evaluator determines 

HOW the system accomplishes the goal of “maintaining high performance” by analyzing its 

components and associating the “minimization of response time” sub-goal to it.  The low-level 

goals are specified using a similar notation as proposed by Almeida and Vieira (2012a), shown 

below in Equation 17 and an example is shown in Equation 18, where attainment of a high-level 

goals implies attainment of its lower-level goals. 

 g | g high levelG G    

Equation 17: Definition of Low-Level System Goals 

 
minimize response time,

g | g
maximize content fidelity

high levelG G 

 
    

 
 

Equation 18: Low-Level System Goal Definition for example Self-System A 

If the set of system requirements is represented by R , the set of environmental 

assumptions, As , the set of domain properties, D , then the following relationship must hold true 

for each goal, g , in G , as the relationship in Equation 19 shows.  Assumptions are defined in 

Step B. 
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   , , |    with   , , |R As D g R As D false   

Equation 19: Goal Attainment Verification 

The relationships state that each goal must be attainable by the system within the 

constraints imposed by its operating environment and requirements (van Lamsweerde, 2000).  

Domain properties are properties of an object or operation in the environment that holds 

independent of the system and includes physical laws, regulations, and other constraints imposed 

by environmental agents (van Lamsweerde & Letier, 2000).   

The WHY goal refinement technique provided a method of discovering implicit higher-

level goals from stated goals (van Lamsweerde, 2000).  Stated goals were analyzed and 

continually asked WHY the goal is important, necessary, and relevant to the system in order to 

discover the higher-level goals underpinned by it.  This process continued until relationships 

could be constructed between all stated and identified goals.  For example, it was determined that 

the goal of “maintaining high performance” existed to ensure that more visitors could be served 

by the system.  Therefore, the “serve more visitors” goal was the new root goal and “maximize 

performance” became its sub-goal.  The combination of goal refinement techniques guided the 

system analysis to determine the underlying sub-goals of the system’s generic goals and establish 

relationships between them.  Then the underlying assumptions for attainment and their 

responsible agents were identified in Step B.  The agent is then directly exercised to leverage the 

cost-reduction technique recommended by Barbosa et al. (2005).   

Step A included a visual aid to graphically depict the goal hierarchy and highlight the 

goal dependencies and relationships, described below.  The inclusion of a goal graph provided 

the basis for goal prioritization, documentation, and additional analysis conducted in the 

following steps. 
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In Dardenne, Lamsweerde, and Fickas (1993) the authors proposed the KAOS 

methodology of goal-oriented requirements engineering, which was later extended in van 

Lamsweerde (2000) and G. Brown, Cheng, Goldsby, and Zhang (2006) to include obstacles.  

The extension contained a graphical specification for the representation of goal refinement trees 

and their relationships.  Figure 3 depicts the specification for unrefined / soft goals, refined / 

formalized goals, sub-goal to goal links, sub-goal to goal OR-refinement links, sub-goal to goal 

AND-refinement links, goal conflicts, system assumptions, obstacles, agents, and actions. 

 

Figure 3: KAOS Glyph Specification 

A refined goal graph was created utilizing the KAOS specification and the information 

derived from the analysis of the system, in the format depicted in Figure 4. 

Unrefined / Soft Goal 

Refined / Formalized Goal 

Goal to Sub-Goal Link 

Sub-Goal to Goal OR-refinement Link 

Goal Conflict 

Sub-Goal to Goal AND-refinement Link 

Agent 

Assumption 

Obstacle 

Action 
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Refined Sub-GoalRefined Sub-Goal

Unrefined High-Level Goal

Refined Sub-Goal Refined Sub-Goal

...

...Refined Sub-Goal Refined Sub-Goal

...

...

...

...

 

Figure 4: Initial Goal Refinement Graph Format 

The initial goal graph for example Self-System A was simply the unrefined goal to 

“maximize performance,” as depicted in Figure 5. 

 

 

Figure 5: Initial Goal Graph of example Self-System A 

The goal-refinement graph illustrated the relationships between the soft goals and their 

refined sub-goals.  Figure 6 and Figure 7 depict the previously refined goals utilizing the HOW 

and WHY refinement techniques, respectively. 

Minimize response timeMaximize content fidelity

Maximize Performance

 

Figure 6: HOW Goal Refinement Graph for example Self-System A 

Maximize Performance 
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Minimize response timeMaximize content fidelity

Maximize Performance

Serve more visitors

 

Figure 7: WHY Goal Refinement Graph for example Self-System A 

The HOW goal-refinement graph was created in a top-down approach, where the 

unrefined goal was refined and specified into formalized sub-goals.  The WHY goal-refinement 

graph was created in a bottom-up approach, where the refined and unrefined goals were 

elaborated and correlated with others to develop higher-level relationships. 

The inclusion of a visualization technique improved upon the original approach as it 

allowed for a more intuitive analysis of the interactions and relationships of the system’s goals 

(Almeida & Vieira, 2012a; Morandini, Penserini, & Perini, 2008; van Lamsweerde, 2001).  

Further, visualization techniques have been shown to be an essential feature for communicability 

and understanding of complex systems as they simplify the depiction of complex relationships, 

dependencies, and logic (G. Brown et al., 2006; B. Cheng et al., 2009; van Lamsweerde, 2000, 

2001). 

Step B: Identification of Obstacles 

Step B, the identification of obstacles, consisted of two sub-steps.  The first was the 

identification of system actions, responsible agents, and assumptions of the system and their 

incorporation into the initial goal graph created in Step A.  The second consisted of expanding 

the goal refinement graph by identifying and incorporating the obstacles that affected the 

previously identified actions, agents, assumptions, and goals. 
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Step B Part 1: Action, Agent, and Assumption Analysis 

An action is something the system performs, such as an act or operation, to achieve or 

maintain a runtime goal in response to a change (Dardenne et al., 1993).  The SUB’s runtime 

behavior was revealed by identifying the system’s self-adaptive actions.  This was accomplished 

by applying additional HOW refinement to the goal refinement graph defined in Step A and 

asking HOW the SUB ensures the attainment of each runtime goals.  The actions are defined as 

depicted in Equation 20. 

  |  A a a g   

Equation 20: Definition of Self-Adaptive Action 

For example, the evaluator reviews example Self-System A’s associated documentation, 

or source code, and identified that it is capable of increasing and decreasing the fidelity of served 

content in response to measured response time in an effort to ensure the goal of maximum 

performance (S. W. Cheng et al., 2009).  Its self-adaptive actions were captured as shown in 

Equation 21. 

 

increase content fidelity,

 |  decrease content fidelity,

measure response time

A a a g

 
 

    
 
 

 

Equation 21: Self-Adaptive Action Definition for example Self-System A 

Agent analysis is conducted, followed by assumption analysis, on the SUB’s goal 

refinement graph.  An agent is a part of the SUB’s operation, including human beings, physical 

devices, components, and code blocks, that had the ability to make runtime decisions of their 

behavior based on their operational context (Dardenne et al., 1993).  Agent analysis pertained to 

the review of system actions and the identification of the system’s agent responsible for 

performing each of the identified actions defined in A  (Dardenne et al., 1993).   
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Let Ag be the set of all system agents, ag , which perform an action, a , in the set of 

identified actions, A , in response to a change, c , in the set of all possible changes, CS , as 

defined in Equation 22. 

 , ,Ag ag ag a a A c CS     

Equation 22: Definition of Self-Adaptive Agents 

For example, the documentation, or source code, was again reviewed for example Self-

System A and asked WHO is responsible for the identified actions in A .  Three primary agents 

were discovered, including a sensor to measure response time, an effector to increase and 

decrease content fidelity served to users, and a self-adaptive control loop responsible for the 

coordination of both agents, as shown in Equation 23. 

 
response time sensor,

, , fidelity effector,

self-adaptive control loop

Ag ag ag a a A c CS

 
 

      
 
 

 

Equation 23: Self-Adaptive Agent definition for example Self-System A 

The goal refinement graph was then expanded with the identified actions and agents 

(bold outline) in the format defined in Figure 8.  Figure 9 depicts the expanded goal refinement 

graph for example Self-System A. 
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Action

Agent

Action

Refined High-Level Goal

Refined Sub-GoalRefined Sub-Goal

Refined Sub-Goal Refined Sub-Goal

...

...

...

...

...

...

Action

Agent

Action

Refined Sub-Goal Refined Sub-Goal...

...

...

...

 

Figure 8: Expanded Goal Refinement Graph with Actions and Agents Format 

 

Minimize response timeMaximize content fidelity

Measure Increase in response time

Response Time Sensor

Decrease content fidelity

Increase content fidelity

Fidelity Effector

Communicate Sensor 
reading to Effector

Self-Adaptive Control 
Loop

Measure Decrease in response time

Maximize Performance

Serve more visitos

 

Figure 9: Expanded Goal Refinement Graph with Actions and Agents example Self-System 

A 
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Finally, assumption analysis is conducted on the goal refinement graph.  Self-adaptive 

systems are designed to ensure the system’s ability to operate as expected while experiencing 

runtime changes, especially changes in runtime assumptions that are assumed constant 

throughout its execution (Cámara, Lemos, Laranjeiro, Ventura, & Vieira, 2013).  Thus, the 

inclusion of assumption analysis was vital for the resilience benchmarking of self-adaptive 

systems as unpredictable and changing assumptions were a source of major problems (van 

Lamsweerde, 2000). 

An assumption is a fact pertaining to the SUB’s goals, agents, actions, or their 

relationships, that is expected to be true at runtime (Feather, Fickas, Lamsweerde, & Ponsard, 

1998).  While the classic definition of assumptions only included environmental assumptions 

(van Lamsweerde, 2000), assumptions related to any aspect of the system were considered to 

ensure coverage of all runtime constraints and possible sources of change. 

Assumption analysis is the process of analyzing the goal refinement graph to identify 

hidden assumptions and operational constraints that are often taken for granted (Feather et al., 

1998).  Changes in runtime assumptions introduce unforeseen operational conditions, which may 

lead to unexpected runtime behavior with undesirable results, such as loss of goal attainment or 

failure (B. Cheng et al., 2009; van Lamsweerde, 2000).  Each goal, action, and agent identified in 

the goal refinement graph was analyzed and asked the question of WHAT conditions needed to 

exist for a goal to be achieved and maintained, for an action to be performed with the expected 

outcomes, and an agent to operate as desired. 

Let As be the set of all assumption sub-sets, iAs , which contain the set of assumptions, 

ias , affecting an action, agent, or goal node, i , in the goal refinement graph, as shown in 

Equation 24, that satisfies the relationship depicted in Equation 25.  Equation 25 states that 
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agents are able to perform their actions, and those actions are achieve the system’s goals, when 

all assumptions meet expectations. 

 

 

 is an assumption on ,i

i

As as as i i A Ag G

As As

   


 

Equation 24: Definition of an Assumption 

 
 

 

, |

, |

, |

Ag

A

G

Ag As A

A As G

G As false







 

Equation 25: Assumption and Node Satisfaction Relationship 

For example, the increase and decrease content fidelity actions are analyzed and it is 

reasoned that access to the configuration file was necessary for this action to occur.  Similarly, 

the fidelity effector was assumed to be functioning properly to perform those actions.  Finally, 

the fidelity effector is assumed to have sufficient resources available to function properly, such 

as CPU and memory.  This process continued for each node until all were analyzed and their 

assumptions identified, as shown in Equation 26. 

 

 

Configuration file is accessible,
 is an assumption on ,

Valid Sensor Reading

Effector Operational,

 is an assumption on , Sensor Operational,

Sufficient Resources Availa

A

Ag

As as as a a A

As as as ag ag Ag

 
    

 

  

   

 

ble

 is an assumption on , Sufficient Resources Available

, ,

G

A Ag G

As as as g g G

As As As As

 
 
 
 
 

  



 

Equation 26: Assumption Definition for example Self-System A 

The identified assumptions were incorporated into the goal refinement graph (bold 

outline) in the format specified in Figure 10 and depicted in Figure 11. 
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Action

Agent

Action

Assumption

Refined High-Level Goal

Refined Sub-GoalRefined Sub-Goal

Refined Sub-Goal Refined Sub-Goal

...
...

...

...

...

Assumption...

...

Action

Agent

Action

Assumption

Refined Sub-Goal Refined Sub-Goal...

...

Assumption...

...

...

 

Figure 10: Expanded Refinement Goal Graph with Actions, Agents, and Assumptions 

Format 

 

Minimize response timeMaximize content fidelity

Measure Increase in response time

Response Time Sensor

Decrease content fidelity

Increase content fidelity

Fidelity Effector

Communicate Sensor 
reading to Effector

Self-Adaptive Control 
Loop

Measure Decrease in response time

Maximize Performance

Sufficient Resources Available

Effector Operational

Configuration File is Accessible

Valid Sensor Reading

Sensor Operational

Serve more visitos

 

Figure 11: Expanded Goal Refinement Graph with Actions, Agents, and Assumptions for 

example Self-System A 
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Step B Part 2: Obstacle Analysis 

Obstacle analysis and identification techniques were then employed to identify 

obstructing conditions under which a goal is unachievable (i.e. Equation 19 was violated).  

Obstacles may directly obstruct a goal, or indirectly obstruct it, by affecting an assumption, 

action, or agent required for its attainment (van Lamsweerde & Letier, 2000).  Obstacles 

provided a straightforward method of identifying relevant changes within the system and its 

environment as they were directly related to the system’s runtime goals and changes to runtime 

assumptions (van Lamsweerde & Letier, 2000).  Each assumption, agent, action, and goal 

identified in the goal refinement graph was analyzed and asked the question of WHAT 

obstructing conditions may the system face with at runtime that would cause a goal to be 

unattainable, cause an action to be performed with undesired outcomes or not at all, or cause an 

agent to operate inconsistently or fail. 

Let O be the set of all obstacle sub-sets, iO , which contain the set of obstacles, io , 

obstructing an assumption, action, agent, and / or a goal node, i , in the goal refinement graph as 

shown in Equation 27, satisfying the relationship depicted in Equation 28. 

 

 

 obstructs ,i i

i

O o o i i As A Ag G

O O

    


 

Equation 27: Definition of an Obstacle 

 

 

, , , | (obstruction)

,   | (domain-consistency)

as ag a g o

O D false

 
 

Equation 28: Obstacle Satisfaction Relationship 

The relationship states that the obstacle must be consistent with what is known of the 

domain (domain-consistency) and that its negation, that is, the absence of obstructing conditions 

or runtime changes yields the necessary conditions for goal achievement (van Lamsweerde & 



 

75 

 

Letier, 2000).  For instance, an obstacle could not state that the system is simultaneously on- and 

off-line as such behavior is infeasible. 

Example Self-System A’s assumption of sufficient resources being available was 

analyzed and it was reasoned that a lack of available resources, such as CPU or memory 

exhaustion, would obstruct the agent’s ability to function and it’s attainment of the goal to 

maximize performance.  This analysis continued until all nodes had been evaluated, as depicted 

in Equation 29. 

 

Configuration file locked / Inaccessible,

Resource Exhaustion (CPU),

 obstructs , Resource Exhaustion (Memory),

No Sensor Reading,

Invalid Sensor Reading

 obstructs ,

As

Ag

O o o as as As

O o o ag

 
 
  

    
 
 
  

  

   

 

Effector Failure,

Effector Not Available,

Sensor Failure,

Sensor Not Available

 obstructs , Communication Error

Resource Exhaustion (CPU),
 obstructs ,

Resource Exhaust

A

G

ag Ag

O o o a a A

O o o g g G

 
 
 

   
 
  

  

  

 

ion (Memory)

, , ,As Ag A GO O O O O

 
 
 



 

Equation 29: Assumption Definition for example Self-System A 

The identified obstacles were well suited to describe relevant changes to the SUB as they 

were based on the system’s capabilities, goals, assumptions, domain knowledge, and captured its 

undesirable runtime conditions. 

Finally, the identified obstacles were incorporated into the goal refinement graph (bold 

outline) to provide detail of their interaction and effects on the overall system in the format 

depicted in  

Figure 12.  Figure 13 depicts the expanded goal graph for the example Self-System A. 
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Figure 12: Expanded Goal Refinement Graph with Actions, Agents, Assumptions, and 

Obstacles Format 

Minimize response timeMaximize content fidelity

Measure Increase in response time

Response Time Sensor

Decrease content fidelity

Increase content fidelity

Fidelity Effector

Configuration File Locked

Resource Exhaustion 
(CPU)

Sensor Failure
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Sensor Not Available

Effector Failure
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No Sensor Reading
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reading to Effector

Self-Adaptive Control 
Loop
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Configuration File is Accessible

Valid Sensor Reading

Sensor Operational

Serve more visitors

 

Figure 13: Expanded Goal Refinement Graph with Obstacles, Assumptions, Agents, and 

Actions for example Self-System A 
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Step C: Definition of Obstacle Attributes 

The definition of change scenario attributes in the risk-based approach, Step C, defined 

the change scenario attributes of impact and probability utilizing a combination of expert opinion 

and multi-voting when field data was not available (Almeida & Vieira, 2012a).  The risk-based 

approach also used a qualitative scale for change scenario impacts, such as “medium” and 

“minimal”, without finite thresholds, as presented in Chapter 1 and shown in Table 7.  Each 

attribute was defined, and assigned in Step D, using expert opinion without clear thresholds or 

finite boundaries between attribute ranges. 

Impact Probability 

Catastrophic Very High 

Critical High 

Marginal Low 

Negligible Very Low 

Table 7: Change Scenario Attributes defined in the Risk-Based Approach 

Step C was extended to utilize the previously constructed goal refinement graph to define 

quantitative measures for each obstacle’s impact attributes utilizing graph theory.  Two 

properties were defined to denote an obstacle’s impact on runtime goals: the obstacle’s shortest 

distance to a goal (OSDG) and the obstacle’s breadth (OB).  The OSDG attribute was defined as 

the number of graph edges from an identified obstacle to its nearest goal, or the obstacle’s 

closeness factor to any goal (Kang, Kumar, Harrison, & Yen, 2011). 

Let D  be the distance matrix of all pair-wise distances, ijd , between each obstacle, io , in 

the set of defined obstacles, O , and each goal, jg , in the set of defined goals, G .  The OSDG 

value for obstacle io , iOSDG , was defined as the minimal element,
minijd in the partially ordered 

set  ,D  , as shown in Equation 30. 
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  
min min

| , :  i ij ij ij ijOSDG d d D d d      

Equation 30: Obstacle's Shortest Distance to a Goal (OSDG) 

The OSDG attribute represented the relative impact an obstacle would have on the 

system if experienced at runtime, where a smaller OSDG value denoted a greater impact on that 

goal (and the overall system) and an increased likelihood of runtime disruptions (Kang et al., 

2011). 

The OB attribute represented the total number of goals affected by the activation of an 

obstacle io , and was defined as the sum of all reachable goal nodes jg from io , as defined in 

Equation 31. 

1 if  is reachable from  and 
,  where 

0 otherwise

j i j

i ij ij

g o g G
OB r r

 
   

 
  

Equation 31: Obstacle's Breadth of Impact 

The goal-oriented approach utilized the OSDG and OB attributes to define obstacle 

attribute ranges mathematically.  These definitions, as well as the mapping of the goal-oriented 

OSDG to the risk-based impact and the goal-oriented OB to risk-based probability, are shown in 

Table 8 and Table 9.  Note that the mapping of OB to probability did not imply equivalence and 

was included for comparative purposes only. 

  



 

79 

 

Risk-Based 

Impact Attribute 
Goal-Oriented OSDG Attribute 

Catastrophic  1,min OSDG    

Critical   1min( ), 2min( ) max( )
3

OSDG OSDG OSDG 
  

Marginal    1 12min( ) max( ) , min( ) 2max( )
3 3

OSDG OSDG OSDG OSDG  
  

Negligible    1 min( ) 2max( ) ,max
3

OSDG OSDG OSDG   

Table 8: Risk-Based Change Scenario Impact Attribute mapping to Goal-Oriented 

Obstacle OSDG Attribute 

Risk-Based 

Probability Attribute 

Goal-Oriented 

OB Attribute 

Very High 3,
4

G G
  

High 3 1,
4 2

G G
  

Low 1 1,
2 4

G G
  

Very Low 1 ,0
4

G
  

Table 9: Risk-Based Change Scenario Probability Attribute mapping to Goal-Oriented 

Obstacle OB Attribute 

The OSDG attribute’s value range was defined as  1,max OSDG    , where a value of 

one described the scenario where an obstacle is a child of a goal node.  The value of 

 max OSDG defined the maximum distance of any obstacle to any goal node for the goal-

refinement graph.  The OSDG attribute ranges were divided into four uniform ranges to ensure 

comparability with the risk-based approach’s four-value scale.  The OB attribute’s value range 

was defined as 0, G  , where zero was non-inclusive as an obstacle by definition (Equation 28) 

must obstruct the attainment of at least one goal.  The maximum value for OB was the total 

number of goals in G .  Again, the OB attribute was divided into four uniform ranges to ensure 

comparability with the risk-based approach.  Table 10 and Table 11 illustrate the defined and 
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effective attribute ranges for the example Self-System A.  The effective ranges were included to 

correspond to the computed OSDG and OB integer values. 

Risk-Based 

Impact Attribute 

OSDG Attribute 

Range 

OSDG Attribute 

Effective Range 

Catastrophic [1.0, 2.0] 1 and 2 

Critical (2.0, 3.3] 3 

Marginal (3.3, 4.7] 4 

Negligible (4.7, 6.0] 5 and 6 

Table 10: OSDG Attribute for example Self-System A 

Risk-Based 

Probability Attribute 

OB Attribute 

Range 

OB Attribute 

Effective Range 

Very High [4, 3) 4 

High [3, 2) 3 

Low [2, 1) 2 

Very Low [1, 0) 1 

Table 11: OB Attribute for example Self-System A 

This approach reduced the dependence on expert opinion and the use of subjective 

attribute thresholds by leveraging graph theory to calculate the obstacle attributes.  This provided 

a basis for defining objective attributes that could be standardized between systems and 

experiments (Cailliau & Lamsweerde, 2013) to avoid their misinterpretation and improve result 

comparison (Almeida & Vieira, 2012a).  This step could also be automated to further reduce the 

labor and cost of resilience benchmarking as the attribute definitions were calculated based on 

graph characteristics and not by subjective or manual means. 

Step D: Assignment of Obstacle Attributes 

The evaluation of change scenario attributes, Step D of the risk-based approach, was 

extended to leverage the attributes defined in Step C by calculating the OSDG and OB attributes 

for each obstacle and assigning its corresponding impact attributes.  This step also lent itself to 

automation as the evaluation of obstacle attributes and attribute assignments were based on their 
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computed values derived from the goal-refinement graph, without the need for manual analysis, 

which could further reduce overall benchmarking costs. 

The obstacle attributes assignment provided insight into the overall impact of each 

obstacle, where the directness of an obstacle’s impact was defined as its closeness to goal nodes, 

its OSDG attribute, and the severity of its impact by the number of goals affected, its OB 

attribute (Jorgensen, 2002).  For instance, the “resource exhaustion” obstacle, with an OSDG 

value of two (Catastrophic) and OB value of four (Very High), had catastrophic effects on the 

attainment of runtime goals by directly affecting 100% of all runtime goals (bolded outline), as 

shown in Figure 14.  In contrast, the obstacle “locked configuration file”, with an OSDG value of 

3 (Critical) and OB value of 3 (High), had less of an impact on the attainment of runtime goals 

than the previous example as it affected fewer goals and in a less direct manner, as shown in 

Figure 15. 
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Figure 14: Goal Refinement Graph of Self-System A – Resource Exhaustion (CPU) 
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Figure 15: Goal Refinement Graph of Self-System A – Locked Configuration File Obstacle 

Impact 
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Step E: Definition of the Changeload 

Defining the changeload, Step E,  was conducted in the same manner as proposed by 

Almeida and Vieira (2012a) in which the most relevant obstacles were selected to include in the 

changeload by defining an exposure matrix and relevancy cut-off level.  The goal of the exposure 

matrix was to prioritize obstacle relevance based on the previously defined obstacle attributes.  

The combination (i.e. their intersection) of the OB and OSDG attributes corresponded to the 

obstacle’s relevance level in the same way the combination of impact and probability denoted 

relevance in the risk-based approach.  The goal-oriented approach utilized the same relevance 

defined in the risk-based approach and described in Chapter 1.  

Let Rel  be the relevance scale for the current evaluation of the SUB, where a 

“negligible” relevance denoted an obstacle that can be overlooked and “mandatory” relevance 

denoted an obstacle of obligatory inclusion into the changeload, as defined in Equation 32 

(Almeida & Vieira, 2012a). 

 Rel negligible, very low, low, high, very high, mandatory  

Equation 32: Definition of the Relevance Scale 

Mapping the relevance levels to numeric values provided a method for further automation 

of the approach by making mathematical comparisons straightforward, as shown in Table 12.  

The relevance levels were mapped to ascending integers, such as from one (less relevant) to six 

(most relevant). 
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Relevance Level Value 

Negligible 1 

Very Low 2 

Low 3 

High 4 

Very High 5 

Mandatory 6 

Table 12: Relevance Level Numeric Mapping 

Finally, the exposure matrix was populated as recommended in the risk-based approach, 

with the OB and OSDG attributes on the axes and relevance levels as their intersection, as shown 

in Table 13.  Table 14 shows the exposure matrix for example Self-System A.  The obstacles 

were only included within the exposure matrix’s relevance levels to illustrate their assignment 

and would not be done in practice.  

 
  OB 

    Very High High Low Very Low 

O
S

D
G

 Catastrophic Mandatory Very High High Medium 

Critical Very High High Medium Low 

Marginal High Medium Low Very Low 

Negligible Medium Low Very Low Negligible 

Table 13: Exposure Matrix for the Goal-Oriented Approach 

Table 14: Exposure Matrix for example Self-System A 

  OB 

  Very High (4) High (3) Low (2) Very Low (1) 

O
S

D
G

 

Catastrophic 

(1 and 2) 

Mandatory 

Resource exhaustion (CPU) 

Resource exhaustion (Memory) 

Very High High Medium 

Critical (3) Very High 

High 

Configuration file locked 

No sensor reading 

Invalid sensor reading 

Medium Low 

Marginal (4) 

High 

Sensor failure 

Sensor not available 

Medium 
Effector failure 

Effector not available 

Communication error 

Low Very Low 

Negligible 

(5 and 6) 
Medium Low Very Low Negligible 
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A relevance cut-off level was then defined in an effort to include only those obstacles 

deemed relevant to the current evaluation (Almeida & Vieira, 2012a). 

Let the defined relevance cut-off level, RCL , be an element in the set of possible 

relevance levels, Rel  , where RCL defines the minimum level of relevance of included 

obstacles within the changeload, as defined in Equation 33. 

 | RelRCL x x   

Equation 33: Definition of the Relevance Cut-Off 

The risk-based approach recommended an RCL of at least “mandatory”, however, this 

study utilized an RCL of “high” to ensure test coverage.   

Table 15 shows the previously defined exposure matrix with the relevance cut-off level 

applied, while Table 16 demonstrates the exposure matrix with the cut-off level applied for the 

example Self-System A.  The obstacles were only included within the exposure matrix’s 

relevance levels to illustrate their assignment and would not be done in practice. 

 
  OB 

    Very High High Low Very Low 

O
S

D
G

 

Catastrophic Mandatory Very High High Medium 

Critical Very High High Medium Low 

Marginal High Medium Low Very Low 

Negligible Medium Low Very Low Negligible 

Table 15: Exposure Matrix with Cut-Off Level Applied 
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Table 16: Exposure Matrix with Cut-Off Level Applied for example Self-System A 

The changeload was then defined as the set of enumerated changes, goal orientedEC  , 

which contained obstacles whose relevance met or exceeded the defined relevance cut-off level,

RCL , as depicted in Equation 34.  The changeload definition for example Self-System A is 

shown in Equation 35 with a cut-off level of “high”. 

  { | ,  }goal oriented relevanceEC RCL o o O o RCL     

Equation 34: Changeload Definition 

 

 

: high { | , high}

| , {high, very high, mandatory}

goal oriented relevance

relevance

EC RCL o o O o

o o O o

    

  
 

Equation 35: Changeload Definition for example Self-System A 

The changeload corresponded to a minimized subset of the system’s entire change space, 

whereby only those obstacles of high or greater relevance were included (bold outline), as 

illustrated in Figure 16.  The excluded obstacles are indicated with a dotted outline. 

  OB 

  Very High (4) High (3) Low (2) Very Low (1) 

O
S

D
G

 

Catastrophic 

(1 and 2) 

Mandatory 

Resource exhaustion (CPU) 

Resource exhaustion (Memory) 

Very High High Medium 

Critical (3) Very High 

High 

Configuration file locked 

No sensor reading 

Invalid sensor reading 

Medium Low 

Marginal (4) 

High 

Sensor failure 

Sensor not available 

Medium 
Effector failure 

Effector not available 

Communication error 

Low Very Low 

Negligible 

(5 and 6) 
Medium Low Very Low Negligible 
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Figure 16: Considered Obstacles for example Self-System A 

The obstacles were translated into concrete changes only after the definition of the 

changeload, as depicted in Table 17.  This is in contrast to the risk-based approach, where 

concrete changes were created for each identified change scenario prior to the cut-off being 

applied, which resulted in wasted effort and increased costs.  Table 18 shows an example of the 

concrete obstacles within the defined changeload for example Self-System A. 

Obstacle Target 
Target 

Type 

Trigger 

Instant 
Duration Amount OSDG OB Relevance 

   ms ms %    

   ms ms %    

Table 17: Concrete Obstacles in the final Changeload generated by the Goal-Oriented 

Approach 
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Obstacle Target 
Target 

Type 

Trigger 

Instant 
Duration Amount OSDG OB Relevance 

Configuration 

File Locked 

Increase / 

Decrease 

Content 

Fidelity  

Action 15s 120s 100% Critical High High 

No Sensor 

Reading 

Measure 

Increase / 

Decrease in 

Response  

Action 60s, 

120s, 

180s 

30s 100% Critical High High 

Invalid 

Sensor 

Reading 

Measure 

Increase / 

Decrease in 

Response 

Time 

Action 100s, 

200s, 

300s 

5s 100% Critical High High 

Sensor failure Response 

Time Sensor 

Agent 500s 60s 100% Marginal Very 

High 

High 

Sensor not 

available 

Response 

Time Sensor 

Agent 475s 15s 100% Marginal Very 

High 

High 

Resource 

Exhaustion 

(CPU) 

Maximize 

Performance, 

Self-Adaptive 

Control Loop, 

Response 

Time Sensor, 

Fidelity 

Effector  

Goal, 

Agent, 

Agent, 

Agent 

600s, 

700s, 

800s 

10s, 30s, 

90s 

75%, 

90%, 

100% 

Catastrophic Very 

High 

Mandatory 

Resource 

Exhaustion 

(Memory) 

Maximize 

Performance, 

Self-Adaptive 

Control Loop, 

Response 

Time Sensor, 

Fidelity 

Effector 

Goal, 

Agent, 

Agent, 

Agent 

700s, 

800s, 

900s 

10s, 30s, 

90s 

75%, 

90%, 

100% 

Catastrophic Very 

High 

Mandatory 

Table 18: Final Changeload with Concrete Obstacles for example Self-System A 

Case Study 

A case study was conducted to determine the cost-effectiveness of the goal-oriented 

approach over the risk-based approach.  In Almeida and Vieira (2012a), the authors conducted a 

case study of a fictitious ADBMS to demonstrate the effectiveness of the risk-based approach to 

define a suitable changeload.  However, they did not provide comprehensive documentation for 

each step, including those related to discovery, identification, and analysis.  To the best of the 
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author’s knowledge, no comprehensive case study utilizing the risk-based approach and focusing 

on overall costs existed within literature.   

Therefore, this research conducted a case study applying the risk-based and goal-oriented 

approaches against the same subject system.  The data from each approach was recorded and 

compared as described in the following section 

Subject System 

The ZNN.com system is an N-tier web-based information system designed to reproduce 

the real-world systems utilized in large-scale online news providers, such as CNN.com.  It was 

built on RAINBOW, an architecture-based platform for self-adaptation, and focused on meeting 

QoS goals while minimizing server costs (Cámara, Lemos, Vieira, et al., 2013; S. W. Cheng et 

al., 2009).  The RAINBOW framework provided reusable, generic, and cost-effective 

mechanisms to implement the self-adaptive control loop, the MAPE loop, which monitored the 

target system, detected changes, planned how to adapt, and executed the adaptation in response 

to the changes (S. W. Cheng et al., 2009).  The RAINBOW framework is depicted below in 

Figure 17. 

 

Figure 17: RAINBOW Framework 



 

90 

 

The ZNN.com system’s N-tier architecture consisted of a set of application servers that 

served web content, such as images, videos, and text, from back-end database servers to clients 

(c0 – c2) via front-end presentation logic, as shown in Figure 18.  It utilized a load balancer 

(lbproxy) to distribute incoming requests across servers (s0 – s3) based on their utilization. 

 

Figure 18: ZNN.com System Architecture 

The system’s runtime goals were to prevent the loss of customers due to poor 

performance by reducing content fidelity during peak times.  Thus, its high-level goals consisted 

of performance, cost, and content fidelity, similar to the example utilized throughout this 

document.  The case study analyzed documentation presented in S. W. Cheng, Huang, Garlan, 

Schmarl, and Steenkiste (2004), S. W. Cheng et al. (2009), and Cámara, Lemos, Vieira, et al. 

(2013), to determine the characteristics of the ZNN.com system to avoid the need for a physical 

implementation. 

Analysis of Results 

The study’s results were analyzed to determine the cost-savings provided by the goal-

oriented approach over the risk-based approach and to compare the characteristics of the 

resulting changeloads.  Cost savings was determined by utilizing the Simplified Test Suite Cost 
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Comparison Inequality (rewritten) in Equation 15.  However, further reductions to the inequality 

were possible based on the values obtained through the case studies. 

The cost of a test selection strategy,  s  and  's  , which included the costs of personnel, 

equipment, and resources, the cost of executing a single unattended test against the SUB, e  , and 

the cost of comparing a test’s output against the system’s specification to analyze its result, c  , 

were the same for both approaches and are constant.  Therefore, the inequality was further 

reduced with the removal of all constants as shown in Equation 37. 

' '
1

s

s

T T

T T





 

Equation 36: Reduced Test Suite Cost Inequality 

The total number of tests considered throughout the risk-based approach,  represented by 

sT , the total number of tests included in the final risk-based approach changeload, T ,, the total 

number of tests considered throughout the goal-oriented approach,  '

sT , and the total number of 

tests included in the final risk-based approach changeload, 'T , correspond to the cost of each 

approach.  The goal-oriented approach provided a cost-savings over the risk-based approach if 

the inequality held true.  The value of the ratio (the left side of the inequality) indicated the 

relative cost savings experienced from the utilization of the goal-oriented approach. 

The resulting changeloads were compared to determine the effectiveness of the goal-

oriented approach.  The number of identified changes for each included relevance level was used 

to determine the goal-oriented approach’s comprehensiveness.  A greater distribution of highly 

relevant changes denoted greater changeload relevance. 
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The degree to which the changeloads were reduced by the application of the relevance 

cut-off level was used to determine the wastefulness of the approach by identifying the number 

of irrelevant changes identified.   

The overall effectiveness of the approach was determined by calculating the return on 

investment for each selection strategy, sROI , defined as the quotient of the total number of 

changes with relevance level of at least “high” identified by the strategy, ( : )T RCL high ,  and 

the total number of tests identified by the test selection strategy, sT  , as shown in Equation 37.  

A larger sROI value implied a greater return and effectiveness of the selection strategy. 

( : )
s

s

T RCL high
ROI

T


  

Equation 37: Test Selection Strategy's Return on Investment 

Summary 

This research extended the risk-based approach proposed by Almeida and Vieira (2012a) 

by incorporating goal-oriented requirements engineering techniques developed by Dardenne et 

al. (1993).  A case study approach was be used to demonstrate the validity and effectiveness of 

the goal-oriented approach over the risk-based approach, where a target system was analyzed 

using both approaches and their results compared.  This allowed direct comparison of the 

approaches and enabled future studies to utilize the methodology and results.  The results of the 

case study are be presented in tabular and graphical format to allow direct comparison of their 

data, discussed in the next section.  The hypothesized outcome was the integration and utilization 

of goal-oriented requirements engineering techniques to analyze the system would result in fewer 



 

93 

 

test cases being defined and executed for a given target system resulting in lower resilience 

benchmarking costs of self-adaptive systems. 

The following section presents the data produced by the case study, the case study’s 

results, and their analysis. 
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Chapter 4 

Results 

The results of the case study demonstrated that the goal-oriented approach minimized the 

test suite and resulting changeload for the subject system, successfully reducing the cost of 

resilience benchmarking of self-adaptive systems by over 80%.  The case study’s produced data 

is presented in the next section, followed by the presentation of the study’s results and their 

analysis. 

Presentation of Data 

The following section presents the data produced by the risk-based approach, followed by 

the data produced by the goal-oriented approach. 

Risk-Based Approach Data 

The base scenario defined in Step A of the risk-based approach is presented below in 

Table 19.  The high-level goals, operating conditions, and base line workload are taken from the 

ZNN.com specification (V.-W. Cheng, 2008). 

Step A: Identification of the Base Scenario 

Goals Operating Conditions Workload 

Serve news content (content quality) 

Reasonable response time range 

(performance) 

Within operating budget (cost) 

Adequate resources 

  

Normal request traffic 

Table 19: Risk-Based Approach Base Scenario Definition Data 

Step B: Identification of Change Scenarios 

The data produced in Step B of the risk-based approach is shown in Table 20 and Table 

21  Table 21 only contains a sample of the data produced, and the concrete change details (i.e. 
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trigger instant, duration, and amount) were omitted, as there were a large number of identified 

changes.  The full list of identified changes can be found in Appendix B. 

   Base Scenario Elements 

    Goals Operating Conditions Workload 

S
o

u
rc

e
s 

o
f 

C
h

a
n

g
e
 

Target System  

(ZNN.com N-tier 

system) 

 

 

 

 

 

Internal node connection faults 

Gauge Issues 

Adaptive Overhead 

Effector Issues 

Configuration 

 

 

 

 

 

Resources 

(Hardware) 

 

 

 

 

 

 

Fluctuations in server resources 

Fluctuations in network performance 

New HW 

Fluctuations in Load Balancer Performance 

and Availability 

Backup Issues 

Faulty HW 

 

 

 

 

 

 

Resources 

(Software) 

 

 

 

 

 

OS Faults 

File System Faults 

Fluctuations in service availability 

OS Updates 

 

 

 

 

 

Environment 

 

 

 

 

 

Operator Errors 

Power availability 

Attack 

Fluctuations in request 

type 

Fluctuation in number of 

requests 

Fluctuation in number of 

users 

Content stealing 

Table 20: Risk-Based Approach Change Class and High-Level Change Mapping to Base 

Scenario Elements Data 

Specific Change Class Impact Probability Relevance 

Unable to communicate with Server (1… n) Internal node 

connection 

faults 

Catastrophic High Very High 

Unable to communicate x n  Catastrophic High Very High 

Communication Failure: Server to Load Balancer  Marginal Low Medium 

Communication Timeout: Server to Load Balancer  Negligible High Low 

Communication Corruption  Negligible Very Low Negligible 

Network link saturation  Marginal High Medium 

Link congestion: Load Balancer to Servers  Marginal Very High High 

Communication Delay: Load Balancer to Servers  Marginal Very High High 

Unable to turn server on (stuck off) Effector Catastrophic Very High Mandatory 

Unable to turn server off (stuck on)  Critical Low Medium 

Unable to reduce content fidelity (stuck high)  Catastrophic Very Low Medium 

Unable to increase content fidelity (stuck low)  Critical Very Low Medium 

Unable to increase content fidelity (stuck medium)  Marginal Very Low Low 

Unable to decrease content fidelity (stuck medium)  Marginal Very Low Low 

… … … … … 

Table 21: Risk-Based Approach Change Scenario Definitions Sample Data 
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Goal-Oriented Approach Data 

The following section presents the data generated by the goal-oriented approach. 

Step A: Identification of System Goals 

The initial goal refinement graph produced in Step A of the goal-oriented approach is 

shown in Figure 19.  It is composed of six refined goals and their relationships. 

 

Figure 19: Goal-Oriented Approach Goal Refinement Graph Data 

Step B: Identification of Obstacles 

The expanded goal refinement graph produced in Step B of the goal-oriented approach is 

depicted in Figure 20.  It contains all identified goals, actions, agents, assumptions, and 

obstacles.  Table 22 contains a summary of the expanded goal refinement graph illustrated in 

Figure 20, allowing for a straightforward analysis of its composition. 
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Figure 20: Goal-Oriented Approach Expanded Goal Refinement Graph with Obstacles, 

Assumptions, Agents, and Actions Data 
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Expanded Goal Refinement Graph Composition 

Total Number of Goal Nodes 6 

Total Number of Actions Nodes 10 

Total Number of Assumptions Nodes 24 

Total Number of Obstacles Nodes 41 

Max Distance (Obstacle to Goal) 8 

Min Distance (Obstacle to Goal) 4 

Table 22: Expanded Goal Refinement Graph Composition Summary Data 

Step C: Definition of Obstacle Attributes 

Step C of the goal-oriented approach produced the definition of the OSDG and OB 

obstacle attributes, as well as their associated and effective ranges, as shown in Table 23 and 

Table 24.   

Risk-Based 

Impact Attribute 

Goal-Oriented 

OSDG Attribute 
Effective Range 

Catastrophic [1, 4] 1, 2, 3, and 4 

Critical (4, 5.3] 5 

Marginal (5.3, 6.7] 6 

Negligible (6.7, 8] 7 and 8 

Table 23: Goal-Oriented Approach OSDG Attribute Data 

Risk-Based 

Impact Attribute 

Goal-Oriented 

OB Attribute Range 
Effective Range 

Very High [6, 4.5) 5 and 6 

High [4.5, 3) 4 

Low [3, 1.5) 2 and 3 

Very Low [1.5, 0) 1 

Table 24: Goal-Oriented Approach OB Attribute Data 
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Step D: Evaluation of Obstacle Attributes and Step E: Definition of the Changeload 

Table 25 shows the test suite produced by the goal-oriented approach with their 

associated obstacle attributes.  Note that the trigger instant, duration, and amount of each 

obstacle were omitted for ease of review. 

Obstacle Target Target Type OSDG OB Relevance 

Response Time Sensor 

Unavailable 

Response 

Time Sensor 

Agent, 

Assumption 
Catastrophic (4) Low (2) High 

Response Time Sensor 

Failure 
  Catastrophic (4) Low (2) High 

Response Time Sensor 

Readings Inaccurate (-1) 
  Catastrophic (4) Low (2) High 

Response Time Sensor 

Readings Delayed (high 

latency) 

  Catastrophic (4) Low (2) High 

Server Load Sensor 

Unavailable 

Server Load 

Sensor 

Agent, 

Assumption 
Catastrophic (4) Low (3) High 

Server Load Sensor 

Failure 
  Catastrophic (4) Low (3) High 

Server Load Sensor 

Readings Inaccurate (-1) 
  Catastrophic (4) Low (3) High 

Server Load Sensor 

Readings Delayed (high 

latency) 

  Catastrophic (4) Low (3) High 

Self-Adaptive Control 

Loop Failure 

Self-Adaptive 

Control 

Agent, 

Assumption 
Critical (5) Very High (6) Very High 

Insufficient Resources 

Available (CPU) 

Load 

Balancer 

Agent, 

Assumption 
Marginal (6) Very High (6) High 

Insufficient Resources 

Available (Memory) 
  Marginal (6) Very High (6) High 

Insufficient Resources 

Available (Disk) 
  Marginal (6) Very High (6) High 

Load Balancer 

Unavailable 
  Marginal (6) Very High (6) High 

Load Balancer Failure   Marginal (6) Very High (6) High 

Network Bandwidth 

Sensor Unavailable 

Network 

Bandwidth 

Sensor 

Agent, 

Assumption 
Catastrophic (4) Low (3) High 

Network Bandwidth 

Sensor Failure 
  Catastrophic (4) Low (3) High 

Network Bandwidth 

Sensor Readings 

Inaccurate (-1) 

  Catastrophic (4) Low (3) High 

Network Bandwidth 

Sensor Readings Delayed 

(high latency) 

  Catastrophic (4) Low (3) High 

Server Pool Effector’s 

Effects are Incorrect 

Server Pool 

Effector 

Agent, 

Assumption 
Catastrophic (4) High (4) Very High 
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Server Pool Effector’s 

Effects are Delayed (high 

latency) 

  Catastrophic (4) High (4) Very High 

Server Pool Effector 

Unavailable 
  Catastrophic (4) High (4) Very High 

Server Pool Effector 

Failure 
  Catastrophic (4) High (4) Very High 

Unable to Decrease Server 

Pool Size 
  Catastrophic (4) High (4) Very High 

Unable to Increase Server 

Pool Size 
  Catastrophic (4) High (4) Very High 

Content Fidelity Effector 

Unavailable 

Content 

Fidelity 

Effector 

Agent, 

Assumption 
Catastrophic (4) High (4) Very High 

Content Fidelity Effector 

Failure 
  Catastrophic (4) High (4) Very High 

Unable to Increase 

Content Fidelity 
  Catastrophic (4) High (4) Very High 

Unable to Decrease 

Content Fidelity 
  Catastrophic (4) High (4) Very High 

Insufficient Resources 

Available (CPU) 
Server Pool 

Agent, 

Assumption 
Catastrophic (4) Very Low (1) Medium 

Insufficient Resources 

Available (Memory) 
  Catastrophic (4) Very Low (1) Medium 

Insufficient Resources 

Available (Disk) 
  Catastrophic (4) Very Low (1) Medium 

Sever Pool Unavailable   Catastrophic (4) Very Low (1) Medium 

Single Server Failure   Catastrophic (4) Very Low (1) Medium 

Multiple Server Failure 

(n-1 servers fail) 
  Catastrophic (4) Very Low (1) Medium 

Server Pool Failure (n 

server fail) 
  Catastrophic (4) Very Low (1) Medium 

WWW Service Failure   Catastrophic (4) Very Low (1) Medium 

WWW Server Unavailable   Catastrophic (4) Very Low (1) Medium 

Network Link Failure 

(Server) 
  Catastrophic (4) Very Low (1) Medium 

Network Link Failure – 

Multiple (n-1 Servers) 
  Catastrophic (4) Very Low (1) Medium 

Network Link Failure – 

All (n Servers) 
  Catastrophic (4) Very Low (1) Medium 

Slashdot Request Pattern   Catastrophic (4) Very Low (1) Medium 

Table 25: Goal-Oriented Approach Final Changeload with Concrete Obstacles Results 
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Presentation of Results 

The following section presents the case study results.  Table 26 shows the number of 

identified changes utilizing the risk-based and goal-oriented approaches and includes the 

numeric and percent difference for each relevance level.  Table 27 shows the number of included 

changes for each relevance level and the final changeload size produced by each approach. 

 

    
Risk-Based 

Approach 

Goal-Oriented 

Approach 
Difference 

Percent 

Difference 

1 Negligible 4 0 -4 -100% 

2 Very Low 9 0 -9 -100% 

3 Low 14 0 -14 -100% 

4 Medium 138 13 -125 -91% 

5 High 43 17 -26 -60% 

6 Very High 35 11 -24 -69% 

7 Mandatory 9 0 -35 -100% 

8 Total Test Suite Size 252 41 -211 -84% 

Table 26: Test Suite Construction and Total Size Comparison Results 

 

    
Risk-Based 

Approach 

Goal-Oriented 

Approach 
Difference 

Percent 

Difference 

1 Negligible 0 0 - - 

2 Very Low 0 0 - - 

3 Low 0 0 - - 

4 Medium 0 0 - - 

5 High 43 17 -26 -60% 

6 Very High 35 11 -24 -69% 

7 Mandatory 9 0 -9 -100% 

8 Final Changeload Size 87 28 -59 -68% 

Table 27: Included Change Scenarios and Final Changeload Size Comparison after Cut-

Off Results 
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Results Analysis 

The following section analyzes the results of the case study presented in the previous 

section based on the qualities outlined in the Analysis of Results section to determine the relative 

cost savings, effectiveness, wastefulness, and return on investment of the goal-oriented approach. 

Cost Savings 

Equation 36 was utilized to determine overall cost-savings of the goal-oriented approach 

and utilized the results presented in Table 26 and Table 27. 

41 28
1 0.2035 1

252 87


  


 

Equation 38: Cost Savings Inequality Results 

The resulting inequality, shown in Equation 38, held true and indicated that the goal-

oriented approach provided cost savings over the risk-based approach.  The calculated value 

quantified the extent of the cost savings, where the ratio signified the overall cost of the goal-

oriented approach being 20.35% of the overall cost of the risk-based approach.  Said differently, 

the goal-oriented approach reduced the cost of resilience benchmarking by 79.65%.  Even if the 

full goal-oriented test suite were utilized in an effort to ensure maximum test coverage and 

comprehensiveness of evaluation, the approach would still provide a cost savings of 75.81% over 

the risk-based approach. 

The cost savings was achieved by reducing the number of identified and enumerated 

changes against the subject system.  For example, the risk-based approach’s use of a high-level 

base scenario definition resulted in a large number of workload pattern variations that needed to 

be defined for the workload, disk utilization, network congestion, and resource utilization to fully 

evaluate the system on any changes to these aspects.  They included steady state, sinusoidal, 
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stepwise, ramp, exponential, and random request / utilization patterns for the subject system’s 

major components: web server pool CPU, memory, and disk utilization; load balancer CPU, 

memory, and disk utilization; the internal network’s bandwidth and latency patterns; and the web 

client workload’s request type variation and request timing patterns.  They totaled seventy 

distinct changes and constituted 27.78% of the risk-based approach’s test suite.  However, all of 

the request changes were found to be irrelevant to the SUB’s evaluation, and omitted from the 

final changeload, since none of them met the high relevancy requirement.   

Another example is changes affecting traditional agents, such as faulty hardware and 

operator error, were not considered in the goal-oriented approach since a self-adaptive agent was 

not responsible for ensuring their resilience to runtime changes.  This contrasts the risk-based 

approach, which considered runtime changes to all aspects of the system, such as eight faulty 

hardware changes, six general security changes, eleven common administrative user errors, eight 

operating system faults, and four electrical system changes.  These changes accounted for 

14.68% of the risk-based test suite while 62.16% of those defined were omitted from the final 

risk-based changeload due to low relevance. 

Effectiveness 

The relevance distribution for each test suite was derived from Table 26 and is presented 

graphically in Figure 21.  Table 28 provides a summary of the test suite distribution relative to 

the RCL.  
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Figure 21: Test Suite Relevance Distribution of Identified Changes in the Resulting Test 

Suites 

Relevance Distribution Risk-Based Approach Goal-Oriented Approach 

< High 65.48% 31.71% 

≥ High 34.52% 68.29% 

Table 28: Test Suite Relevance Distribution Summary 

The majority of changes identified by the risk-based approach had a relevance level of 

medium, which comprised 54.76% of the test suite.  The test suite also contained 5.56% low, 

3.57% very low, and 1.59% negligibly relevant changes.  The majority of changes identified by 

the goal-oriented approach had a relevance level of high, which comprised 41.46% of the test 

suite.  The test suite also contained 31.71% changes of medium relevance and zero low, very 

low, and negligibly relevant changes. 

The results showed that the goal-oriented approach was effective at producing a relevant 

test suite for the subject system as its resulting test suite was composed of only 31.71% irrelevant 
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changes and 68.29% relevant changes.  This was in contrast to the risk-based test suite was 

composed of 65.48% irrelevant changes and 34.52% relevant changes.   

Examples of irrelevant changes identified by the risk-based approach were power supply 

failure, operating system updates, and malicious attacks.  While the possibility of these changes 

occurring and ultimately diminishing the system’s ability to achieve its goals exists, they did not 

meet the relevance requirement of the resilience evaluation and therefore provided little value in 

their consideration.  These types of changes are more appropriately evaluated using 

dependability and security benchmarking as they do not typically consider self-adaptive 

mechanisms (Almeida & Vieira, 2012a; A. B. Brown et al., 2004; Meyer, 2009). 

Wastefulness 

The wastefulness of the approach was defined as the ratio of discarded changes to the 

total number of defined changes.  The data was extracted from Table 28, where the risk-based 

and goal-oriented approaches discarded approximately 65.48% and 37.71% of their defined test 

suite after the RCL was applied, respectively. 

The results indicated that the goal-oriented approach was less wasteful than the risk-

based approach since a greater percentage of the identified changes met or exceeded the 

relevance requirement and were included in the final changeload.  Avoiding the wasted effort 

from the identification, definition, and enumeration of irrelevant changes is a straightforward 

method of reducing benchmarking costs (Barbosa et al., 2005).  In this instance, the goal-

oriented approach significantly reduced wasted effort by reducing the amount of irrelevant 

changes that would ultimately be discarded by the RCL. 
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Return on Investment 

The return on investment of each approach was calculated utilizing Equation 37 and 

populated with the results presented in Table 26 and Table 27.  

The return on investment of the risk-based approach, risk basedROI  , was calculated to be 

0.3452.  This value signified a return of approximately one relevant change for every three 

changes identified by the risk-oriented approach and corresponded to the roughly 65% 

wastefulness factor calculated in the previous section.  The return on investment of the goal-

oriented approach, goal orientedROI  , was calculated to be 0.6829.  This value signified a return of 

approximately two relevant change for every three changes identified by the goal-oriented 

approach, and correlated to the approximate 32% wastefulness factor of the approach. 

The higher return on investment, combined with the lower wastefulness factors, provide a 

clear picture of goal-oriented approach’s value in reducing the cost of resilience benchmarking 

over the risk-based approach. 

Summary 

The goal-oriented approach was shown to effectively reduce the cost of defining a 

resilience changeload for self-adaptive systems.  The approach utilized system knowledge to 

identify the subject system’s self-adaptive agents, their operational assumptions, and the 

obstacles that would hinder the system’s ability to attain runtime goals.  The results of the case 

study showed the goal-oriented approach to provide a cost savings by being less wasteful and 

more effective at defining relevant changeload, thereby providing a greater return on invested 

effort when compared to the risk-based approach on the same subject system. 
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Chapter 5 

Conclusions 

This dissertation demonstrated that the goal-oriented approach for defining resilience 

changeloads is an effective method for reducing the overall cost of resilience benchmarking of 

self-adaptive systems over existing approaches.  A comparative case study showed that utilizing 

knowledge of the system’s goals and self-adaptive mechanisms is an effective method for 

identifying relevant runtime changes while simultaneously reducing the overall costs of 

resilience benchmarking.  The incorporation of goal-oriented requirements engineering 

techniques to extract the pertinent system information from the SUB provided sufficient 

guidance to avoid the issues associated with existing methods, specifically, the identification of 

irrelevant and redundant changes. 

Incorporating test suite minimization techniques at the onset of benchmarking activities 

greatly reduces the overall cost and effort required to carry out resilience evaluation, especially 

for large and complex systems.  The cost reduction increases the likelihood of comprehensive 

verification of runtime behavior and the validation of system capabilities and resilience 

expectations in dynamic environments.  This increases trust in the system and its services, which 

is especially important due to society’s growing reliance on self-adaptive systems for 

infrastructure and critical services. 

The goal-oriented approach entails analyzing, refining, and relating the self-adaptive 

system’s goals in a goal refinement graph to reveal its runtime goals and behavior.  The system is 

further analyzed to incorporate self-adaptive responses (i.e. runtime actions) and their 

responsible self-adaptive agents into the graph to identify the system components requiring direct 
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assessment due to their resilience responsibilities.  Runtime assumptions are then enumerated for 

each self-adaptive agent to capture their expected operational and environmental conditions.  The 

test suite is then produced by enumerating all unfavorable runtime conditions, or obstacles, that 

would contradict an assumption, directly affect a self-adaptive response, or mechanism, and 

obstruct the attainment of runtime goals.  The goal-oriented requirements engineering techniques 

utilized within the approach were able to extract significant system knowledge that provides 

guidance for runtime change identification, providing cost savings over existing approaches. 

The primary goal of designing an approach that reduces overall benchmarking costs 

while ensuring test coverage over past work was displayed through the results presented in 

Chapter 4. 

The goal-oriented approach demonstrated greater cost effectiveness than the risk-based 

approach (Almeida & Vieira, 2012a) by producing a minimized test suite for the subject system 

and reducing the cost of resilience benchmarking by 79.65%.  The goal-oriented approach also 

achieved a greater degree of return on investment by producing a more favorable relevant to 

irrelevant change ratio by a factor of two.  Additionally, the goal-oriented approach reduced 

wasted effort and shown to be more effective at identifying highly relevant changes, both by a 

factor of two.  The results demonstrated that the goal-oriented approach is effective in defining a 

relevant resilience changeload while reducing overall costs by minimizing the total number of 

identified test cases in the test suite and the number of enumerated changes in the changeload. 

Implications 

The problem of defining a changeload for the resilience benchmarking of self-adaptive 

systems has been addressed by previous work (Almeida & Vieira, 2012a) but resulted in 

extremely large test suites and high costs (Barbosa et al., 2005; Pressman, 2005; Vieira & 
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Madeira, 2004).  The high cost of benchmarking often forced practitioners to omit 

comprehensive resilience evaluation as a cost-savings strategy since testing and maintenance 

costs often accounted for up to 80% of total system cost (Jorgensen, 2002).  Previous benchmark 

cost saving techniques focus on minimizing the test suite by removing redundant and irrelevant 

test cases but they require exhaustive test suites be defined first.  This study used system 

knowledge to guide the definition of test cases and avoided the definition and enumeration of 

irrelevant test cases by incorporating goal-oriented requirements engineering analysis techniques.  

The case study showed that the approach was effective at reducing the overall cost of resilience 

benchmarking while ensuring a high degree of changeload relevance.  Refinements to this 

approach presents the potential for further cost savings while ensuring the relevance of the 

resulting changeload by further reducing the number of identified irrelevant changes. 

Recommendations 

The goal-oriented approach was developed in order to demonstrate the ability of system 

knowledge to reduce resilience benchmarking costs.  While the approach was effective in this 

regard, it has several opportunities for improvement.   

First, the definition of the relevance cut-off level (RCL) mirrored the risk-based approach 

to facilitate result comparison.  Refinement of the RCL definition process may result in a cut-off 

level that is more appropriate to the SUB and its expected operational constraints (Almeida & 

Vieira, 2012a).  For instance, an RCL of high may be too constraining for a military system that 

may require evaluation that is more comprehensive. 

Additionally, refinement to the obstacle attributes, and their associated thresholds, may 

result in change relevance assignments that are more suitable to a SUB than those used within 

this study.  The total number of attribute values, four for both the OSDG and OB, and the six 
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change relevance levels, mirrored those utilized in the risk-based approach.  Refinement to the 

attributes and relevance levels may increase their applicability, appropriateness, and 

expressiveness for other SUBs. 

Finally, extension of the goal refinement graph to include additional dimensions of 

system knowledge may provide additional insight into the system’s runtime behavior and should 

be investigated.  For example, additional graph theory analysis techniques, such as node failure 

modeling (Heegaard & Trivedi, 2009), may provide further insight into an obstacle impact and 

provide a more appropriate quantification method.  Further, goal priorities or weights may 

provide a more effective method of evaluating obstacle relevance, failure propagation, and 

perceived failure qualities (Quadri & Farooq, 2010).  The incorporation of runtime simulations, 

documentation review, or adaptive modeling may provide guidance into the evaluation of 

adaptive strategy and runtime behavior since a system may respond differently to the same 

changes in a different sequence (Almeida & Vieira, 2011; Andersson et al., 2009; Madan, 

Goševa-Popstojanova, Vaidyanathan, & Trivedi, 2004).  Further, source code analysis may also 

be useful to determine specific adaptive mechanisms and capabilities, providing greater insight 

into functionality requiring evaluation and component-specific runtime obstacles that would 

otherwise go unidentified (Barbosa et al., 2005). 

Summary 

Society’s reliance on software systems to provide mission critical and infrastructure 

services continues to increase (IBM, 2003).  The systems must continue to operate as expected 

especially when unfavorable or unexpected situations arise, such as attack, power outage, and 

failure (Almeida & Vieira, 2012a; Huebscher & McCann, 2004; IBM, 2003).  This has resulted 

in a continued increase in system complexity and scale to cope with society’s growing 
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performance, redundancy, robustness, and data demands (IBM, 2003).  The management and 

maintenance of these systems has grown increasingly costly and error prone due to the explosion 

in their growth and complexity (Ganek & Corbi, 2003), especially when coupled with the 

unpredictable workloads produced by society (IBM, 2003).  The resulting service outages and 

disruptions negatively affected those reliant on their services with financial and societal 

consequences (Ganek & Corbi, 2003). 

System designers incorporated self-adaptive mechanisms into systems in order to address 

the problem of ensuring the system’s resilience to runtime changes and reducing the reliance on 

human operators to conduct complex management, configuration, and tuning tasks (Bondavalli 

et al., 2009; Group, 2002; IBM, 2003; Moorsel et al., 2009).  These mechanisms increased a 

system’s resilience to runtime changes and instilled it with dynamic runtime behavior which was 

able to respond to changes within its operational context with little or no human intervention 

(Almeida & Vieira, 2011; B. Cheng et al., 2009; IBM, 2003).  Consequently, the self-adaptive 

systems required verification and validation of their runtime behavior in order to elicit a 

sufficient level of trust for their use in infrastructure and critical systems (A. Avizienis, J.-C. 

Laprie, B. Randell, & C. Landwehr, 2004; Kanoun et al., 2004).  However, resilience evaluation 

of these systems was often overlooked or avoided (Quadri & Farooq, 2010) because the 

additional dimension of runtime variability caused the evaluation and verification of runtime 

requirements and goal attainment to be complex, labor intensive, and costly (Almeida & Vieira, 

2012a; Bondavalli et al., 2009; A. B. Brown et al., 2004). 

Existing techniques, such as the risk-based approach for defining resilience changeloads 

of self-adaptive systems, focused on identifying relevant risks that would result in failure to 

attain runtime goals (Almeida & Vieira, 2012a).  The risk-based approach utilized extended of 
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Software Risk Evaluation (SRE) techniques and deductive reasoning to define a resilience 

changeload in a five-step process: 

 Step A – Identification of the Base Scenario: The typical high-level goals, operating 

conditions, and workload were identified for the system-class. 

 Step B – Identification of Change Scenarios: The potential sources of risks to the base 

scenario’s high-level goals were identified, mapped to classes of changes, and then 

specific changes were defined that may directly affect the identified high-level goals. 

 Step C – Definition of Change Scenario Attributes: Attributes were then defined to 

qualify the importance and priority of each defined change scenario. 

 Step D – Evaluation of the Change Scenario Attributes: The defined change scenarios 

were then evaluated and assigned attributes using expert knowledge and multi-voting 

schemes.  The combination of change scenario attributes corresponded to the change 

scenario’s relevance to the system evaluation. 

 Step E – Definition of the Changeload: The final changeload was then defined by 

defining the relevancy cut-off level, or RCL, to omit irrelevant change scenarios from the 

changeload. 

Issues existed, however, as the approach directed the evaluator to consider a very large 

change space for the system under benchmark by treating the system goals and operating 

conditions in an abstract manner, resulting in high costs.  The authors included a cost 

minimization technique, the RCL, to reduce the number of enumerated changes by removing 

irrelevant changes from the changeload.  However, the approach resulted in a very large test 

suite that was labor intensive and costly to define and enumerate on complex self-adaptive 

systems (Almeida & Vieira, 2012a).  The removal of irrelevant, repetitive, and redundant 
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changes from the test suite has been shown to successfully minimize the test suite and reduce 

benchmarking costs (Barbosa et al., 2005; Galeebathullah & C.P.Indumathi, 2010; Xavier et al., 

2008), however, these techniques require an exhaustive test suite be defined first and then 

filtered, which resulted in additional labor and costs. 

This dissertation was developed to incorporate the use of system knowledge to guide the 

identification of runtime changes to reduce the number of irrelevant, repetitive, and redundant 

changes.  Its primary goal was to extend past work and develop an approach that reduced the 

overall costs of resilience benchmarking while maintaining changeload relevance.  This 

dissertation developed a goal-oriented approach, which produced a minimized changeload that 

indicated it achieved this goal.  The goal-oriented approach was developed by leveraging goal-

oriented requirements engineering techniques (van Lamsweerde, 2000) to guide the analysis of 

self-adaptive systems to identify relevant runtime changes. 

The basis of the goal-oriented approach is to extract detailed information of the system to 

identify its runtime goals, their underlying assumptions, and obstructing conditions for goal 

attainment.  The approach consists of a five-step process: 

 Step A – Identification of System Goals: HOW and WHY goal refinement techniques 

are used to iteratively refine the system’s high-level goals to determine how high-level 

goals are attained (sub-goals) and why they exist (parent goals) to determine goal 

relationships and dependencies.  A goal refinement graph is created to visualize their 

relationships using the KAOS specification. 

 Step B – Identification of Obstacles:  

o Part 1 consists of analyzing the system to determine the actions conducted to 

achieve each identified goal, the agent responsible for carrying out the actions, 
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and underlying assumptions that need to be true at runtime.  These nodes are 

added to the goal refinement graph to provide further insight into the system and 

its behavior. 

o Part 2 consists of analyzing the system and the goal refinement graph to identify 

the obstructing conditions under which goal attainment is unachievable.  The 

obstacles are then incorporated into the goal refinement graph. 

 Step C – Definition of Obstacle Attributes: Attributes are then defined using graph 

theory and characteristics of the goal refinement graph to quantify the importance of each 

obstacle. 

 Step D – Evaluation of Obstacle Attributes: The defined obstacles are then assigned 

attributes based on their node characteristics in the graph to determine their relevance to 

the system evaluation. 

 Step E – Definition of the Changeload: The final changeload is then defined by using 

an RCL to further minimize the test suite. 

A comparative case study using the risk-based and goal-oriented approaches on the same 

subject system, ZNN.com (V.-W. Cheng, 2008), was conducted to gauge the approach’s 

effectiveness to define a minimized changeload.  The data produced by the approaches, as well 

as the final resilience changeload, were compared to determine the goal-oriented approach’s 

relative cost savings, wastefulness, effectiveness, and return on investment over the risk-based 

approach.  The results demonstrated that the goal-oriented approach successfully reduced the 

size of the test suite and final changeload providing an overall cost savings of 79.65% over the 

risk-based approach while effectively producing a test suite of higher relevance.  Additionally, 
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the goal-oriented approach was shown to be less wasteful and provide a greater return on 

invested effort, both by a factor of two, over previous work. 

This dissertation demonstrated that the utilization of system knowledge to guide the 

definition of a resilience changeload could result in significant cost savings while producing a 

highly relevant changeload.  It provides a method of defining a cost effective resilience 

changeload that is widely applicable to address the resilience benchmarking needs of large and 

complex self-adaptive systems. 
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Appendix A 

Leung and White (1991) proposed a testing cost model for the comparison of selective 

retesting versus retest-all strategies in regression testing, which was useful when comparing two 

testing strategies against the same system.  The cost model defined the total cost of a software 

testing strategy, ( )C Strategy , against a set of test cases, T , which was comprised of the costs 

of system analysis, Ca , test selection, Cs , test execution, Ce , result analysis and understanding, 

Cu , and result checking, Cc  , as shown in Equation 1 in the Changeload Challenges section. 

Thus, the costs of the risk-based and proposed goal-oriented approach are expressed as 

shown in Equation 39. 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ') ( ') ( ') ( ') ( ')

C risk based Ca T Cs T Ce T Cu T Cc T

C goal oriented Ca T Cs T Ce T Cu T Cc T

     

     
 

Equation 39: Cost of Testing Strategies 

The following depicted in Equation 40 must hold true to validate a cost reduction using 

the goal-oriented approach. 

( ) ( )C goal oriented C risk based    

Equation 40: Cost Savings Inequality as proposed by Leung and White (1991) 

More specifically, Equation 41 shows the cost of selection for each approach as being 

dependent on the number of tests defined in the test suite, sT , prior to the relevance cut-off being 

applied. 

'( ') '( ) ( ') ( ') ( ') ( ) ( ) ( ) ( ) ( )s sCa T Cs T Ce T Cu T Cc T Ca T Cs T Ce T Cu T Cc T          

Equation 41: Cost Savings Inequality with specific costs and different Selection Costs 
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Leung and White (1991) mentioned that a thorough analysis of a system has a greater 

cost, Ca , than a less thorough analysis, however, this cost was offset by the reduction in the cost 

of results understanding,Cu  , due to the additional effort required to understand the system’s 

behavior and its outputs (Leung & White, 1991).  Thus, the increased cost of analysis, ( ')Ca T , 

and reduced cost of result understanding, ( ')Cu T  , of the goal-oriented approach was equivalent 

to the cost of analysis, ( )Ca T , and results understanding ( )Cu T  of the risk-based approach, as 

shown in Equation 42. 

   ( ') ( ) ( ') ( ) ( ') ( ') ( ) ( )Ca T Ca T Cu T Cu T Ca T Cu T Ca T Cu T        

Equation 42: Analysis and Understanding Costs Equivalence 

The cost savings inequality was combined with the cost equivalence and rewritten as 

shown in Equation 43. 

'( ) ( ') ( ') ( ) ( ) ( )s sCs T Ce T Cc T Cs T Ce T Cc T      

Equation 43: Simplified Savings Inequality with different Selection Costs 

The values of Cs  , Ce , and Cc  were dependent on the number of test cases in T  , 

represented by the cardinal T  , therefore, the cost of each step was rewritten as shown in 

Equation 44, where, s , e  and c  were constants and represented the selection cost, execution cost, 

and result checking cost, respectively. 

Risk-Based

( )

( )

( )

s sCs T s T

Ce T e T

Cc T c T







   

' '

Goal-Oriented

'( ) '

( ') '

( ') '

s sCs T s T

Ce T e T

Cc T c T







 

Equation 44: Reduction of Cost Terms 
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The constant 's  represented a different selection cost to capture the cost associated with 

utilizing the goal-oriented approach due to the extension of the test selection process.  The cost 

of execution of each test case and the cost of resulting checking was fixed for both approaches.  

The inequality was then simplified as shown in Equation 45. 

'' ' 's ss T e T c T s T e T c T      

Equation 45: Simplified Test Suite Cost Comparison Inequality 
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Appendix B 

Specific Change Target Impact Probability Relevance 

Unable to communicate with Server (1… n) 
Internal node 

connection faults 
Catastrophic High Very High 

Unable to communicate x n  Catastrophic High Very High 

Communication Failure: Server to Load 

Balancer 
 Marginal Low Medium 

Communication Timeout: Server to Load 

Balancer 
 Negligible High Low 

Communication Corruption  Negligible Very Low Negligible 

Network link saturation  Marginal High Medium 

Link congestion: Load Balancer to Servers  Marginal Very High High 

Communication Delay: Load Balancer to 

Servers 
 Marginal Very High High 

Unable to turn server on (stuck off) Effector Catastrophic Very High Mandatory 

Unable to turn server off (stuck on)  Critical Low Medium 

Unable to reduce content fidelity (stuck high)  Catastrophic Very Low Medium 

Unable to increase content fidelity (stuck low)  Critical Very Low Medium 

Unable to increase content fidelity (stuck 

medium) 
 Marginal Very Low Low 

Unable to decrease content fidelity (stuck 

medium) 
 Marginal Very Low Low 

Unable to measure bandwidth on server Gauge Critical Low Medium 

Unable to measure response time from server  Critical Low Medium 

Unable to measure server load  Marginal High Medium 

Reported server load is invalid (-1)  Negligible Very Low Negligible 

Reported server load is incorrect  Negligible Very Low Negligible 

Reported server load is delayed  Negligible Very High Medium 

Gauge not updating reading  Negligible Low Very Low 

Operating Budget set too low Configuration Critical Very High Very High 

Operating Budget set too high  Critical High High 

Response time range too aggressive (too 

narrow) 
 Critical Very High Very High 

Response time range too conservative (too 

broad) 
 Critical Very High Very High 

Operating budget exhaustion (limit reached)  Catastrophic Very High Mandatory 

Adaptive strategy changed (thresholds have 

changed during operation) 
 Marginal High Medium 

Adapts too slow to fluctuations in server load + 

response time + bandwidth 
Adaptive 

Overhead 
Catastrophic Very High Mandatory 

Adapts too quickly to fluctuations in server 

load + response time + bandwidth 
 Marginal Very High High 

Adaptive functionality causes resource 

exhaustion 
 Catastrophic Low High 

Adaptive thrashing (variables changed 

repeatedly within a short period of time) 
 Catastrophic High Very High 

CPU Utilization Fluctuations: Servers 
Resource 

Fluctuations 
Marginal Very High High 

Disk Latency Fluctuations: Servers  Marginal Very High High 

Low Disk Space  Critical Very Low Medium 

No disk space  Catastrophic Very Low Medium 

High disk latency  Critical High High 
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Disk failure  Catastrophic Very High Mandatory 

RAID Array Failure  Catastrophic High Very High 

RAID Controller Failure  Catastrophic High Very High 

Disk thrashing  Critical Very High Very High 

RAM Utilization Fluctuations: Servers  Marginal Very High High 

Server CPU Latency Utilization Patterns     

Steady Request Pattern (Start: n)  Marginal High Medium 

Sinusoid Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Stepwise Request Pattern (Start: n, Increment: 

m, End: p) 
 Marginal High Medium 

Ramp Request Pattern (Start: n, End: p)  Marginal High Medium 

Step Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Exponential Request Pattern (Power: 2^p)  Marginal High Medium 

Random Request Pattern (Min: n, Max: m)  Marginal High Medium 

Server RAM Latency Utilization Patterns     

Steady Request Pattern (Start: n)  Marginal High Medium 

Sinusoid Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Stepwise Request Pattern (Start: n, Increment: 

m, End: p) 
 Marginal High Medium 

Ramp Request Pattern (Start: n, End: p)  Marginal High Medium 

Step Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Exponential Request Pattern (Power: 2^p)  Marginal High Medium 

Random Request Pattern (Min: n, Max: m)  Marginal High Medium 

Server Disk Latency Utilization Patterns  Marginal High Medium 

Steady Request Pattern (Start: n)  Marginal High Medium 

Sinusoid Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Stepwise Request Pattern (Start: n, Increment: 

m, End: p) 
 Marginal High Medium 

Ramp Request Pattern (Start: n, End: p)  Marginal High Medium 

Step Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Exponential Request Pattern (Power: 2^p)  Marginal High Medium 

Random Request Pattern (Min: n, Max: m)  Marginal High Medium 

CPU Utilization Fluctuations: Load Balancer  Marginal High Medium 

Disk Latency Fluctuations: Load Balancer  Marginal High Medium 

RAM Utilization Fluctuations: Load Balancer  Marginal High Medium 

Load Balancer CPU Latency Utilization 

Patterns 
    

Steady Request Pattern (Start: n)  Marginal High Medium 

Sinusoid Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Stepwise Request Pattern (Start: n, Increment: 

m, End: p) 
 Marginal High Medium 

Ramp Request Pattern (Start: n, End: p)  Marginal High Medium 

Step Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Exponential Request Pattern (Power: 2^p)  Marginal High Medium 

Random Request Pattern (Min: n, Max: m)  Marginal High Medium 

Load Balancer RAM Latency Utilization 

Patterns 
    

Steady Request Pattern (Start: n)  Marginal High Medium 

Sinusoid Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Stepwise Request Pattern (Start: n, Increment: 

m, End: p) 
 Marginal High Medium 

Ramp Request Pattern (Start: n, End: p)  Marginal High Medium 

Step Request Pattern (Trough: n, Peak: m)  Marginal High Medium 
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Exponential Request Pattern (Power: 2^p)  Marginal High Medium 

Random Request Pattern (Min: n, Max: m)  Marginal High Medium 

Load Balancer Disk Latency Utilization 

Patterns 
    

Steady Request Pattern (Start: n)  Marginal High Medium 

Sinusoid Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Stepwise Request Pattern (Start: n, Increment: 

m, End: p) 
 Marginal High Medium 

Ramp Request Pattern (Start: n, End: p)  Marginal High Medium 

Step Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Exponential Request Pattern (Power: 2^p)  Marginal High Medium 

Random Request Pattern (Min: n, Max: m)  Marginal High Medium 

Load Balancer at maximum load  Catastrophic High Very High 

All Servers at maximum load  Catastrophic High Very High 

High network congestion 
Fluctuations in 

network 

performance 

Critical High High 

Low bandwidth connection for Servers  Critical Low Medium 

High latency  Critical High High 

High response time  Critical High High 

Request Timeout  Critical High High 

Low bandwidth connection for Clients  Negligible High Low 

100% utilization  Catastrophic Low High 

Network not found  Catastrophic Very Low Medium 

No Connection  Catastrophic Low High 

Network Utilization Pattern x 7     

Steady Request Pattern (Start: n)  Marginal High Medium 

Sinusoid Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Stepwise Request Pattern (Start: n, Increment: 

m, End: p) 
 Marginal High Medium 

Ramp Request Pattern (Start: n, End: p)  Marginal High Medium 

Step Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Exponential Request Pattern (Power: 2^p)  Marginal High Medium 

Random Request Pattern (Min: n, Max: m)  Marginal High Medium 

Network Latency Pattern x 7     

Steady Request Pattern (Start: n)  Marginal High Medium 

Sinusoid Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Stepwise Request Pattern (Start: n, Increment: 

m, End: p) 
 Marginal High Medium 

Ramp Request Pattern (Start: n, End: p)  Marginal High Medium 

Step Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Exponential Request Pattern (Power: 2^p)  Marginal High Medium 

Random Request Pattern (Min: n, Max: m)  Marginal High Medium 

Disk drive added New HW Negligible Low Very Low 

RAM added  Negligible Low Very Low 

NIC added  Negligible Low Very Low 

RAID controller added  Negligible Low Very Low 

RAID controller replaced  Marginal Low Medium 

New network available  Negligible Low Very Low 

New storage device added (NAS / SAN)  Negligible Low Very Low 

Server added  Negligible High Low 

Server removed  Critical Low Medium 

Content File corruption File System Faults Catastrophic Low High 
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Content File unavailable  Catastrophic High Very High 

Access Denied to Content File  Catastrophic High Very High 

Content File not found (404)  Catastrophic Low High 

Content File In use / locked  Critical High High 

File System Corruption (general)  Critical Very Low Medium 

Configuration File corruption  Catastrophic Low High 

Configuration File unavailable  Catastrophic Low High 

Access Denied to Configuration File  Catastrophic Low High 

Configuration File not found  Catastrophic Low High 

Configuration File In use / locked  Catastrophic Low High 

WWW log unavailable  Catastrophic Low High 

WWW log not found  Catastrophic Low High 

WWW log corruption  Catastrophic High Very High 

WWW log full  Catastrophic Very High Mandatory 

Load Balancer not available 

Fluctuations in 

Load Balancer 

Performance and 

Availability 

Catastrophic High Very High 

Load Balancer Failure  Catastrophic High Very High 

Load Balancer misconfigured  Critical Very High Very High 

Load Balancer high latency to Servers  Critical Very High Very High 

Load Balancer high latency to Clients  Negligible High Low 

Load Balancer congestion (internal)  Critical Very High Very High 

Load Balancer timeout  Catastrophic High Very High 

RAM bit errors Faulty HW Marginal Very Low Low 

CPU bit errors  Marginal Very Low Low 

NIC fails  Catastrophic Very Low Medium 

NIC drops packets  Critical High High 

Disk fails  Catastrophic Very High Mandatory 

Network Cable faulty  Critical Very Low Medium 

Power supply failure  Marginal Low Medium 

Backup battery failure  Critical Very Low Medium 

Update failed to apply OS Faults Marginal Very High High 

Service terminate  Catastrophic High Very High 

Buffer Overflow  Critical Very High Very High 

Unexpected Reboot  Catastrophic Low High 

System unresponsive  Catastrophic High Very High 

Network Port locked  Catastrophic Very Low Medium 

OS Corruption  Critical Low Medium 

Device Driver failure  Critical High High 

WWW service timeout 
Fluctuations in 

service 

availability 

Catastrophic High Very High 

WWW service stopped  Critical Low Medium 

WWW service fails  Catastrophic Very Low Medium 

WWW service restarts unexpectedly  Critical Low Medium 

WWW service unavailable  Catastrophic Low High 

New Patch installed on Server 
New SW / OS 

Updates 
Negligible Very High Medium 

New patch unsuccessfully installed on Server  Marginal Very High High 

New patch locks OS files on Server  Critical High High 

New patch corrupts files on Server  Critical Low Medium 

New patch resets configuration on Server  Catastrophic Very High Mandatory 
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New patch closes ports on Server  Marginal High Medium 

New patch affects WWW unexpectedly on 

Server 
 Marginal High Medium 

New patch auto-reboots Server  Marginal High Medium 

New patch hangs services on Server  Marginal High Medium 

New Patch installed on Load Balancer  Negligible Very High Medium 

New patch unsuccessfully installed on Load 

Balancer 
 Marginal Very High High 

New patch locks OS files on Load Balancer  Critical High High 

New patch corrupts files on Load Balancer  Critical Low Medium 

New patch resets configuration on Load 

Balancer 
 Catastrophic Very High Mandatory 

New patch closes ports on Load Balancer  Catastrophic High Very High 

New patch affects WWW unexpectedly on 

Load Balancer 
 Catastrophic High Very High 

New patch auto-reboots Load Balancer  Catastrophic High Very High 

Additional software added to Server  Negligible High Low 

WWW Services / Application Updated 

Successfully 
 Negligible High Low 

WWW Services / Application Updated 

Unsuccessfully 
 Critical Low Medium 

WWW Service failure due to failed upgrade on 

Server 
 Critical Low Medium 

WWW Server configuration reset due to patch 

on Server 
 Catastrophic High Very High 

WWW Server configuration reset due to 

upgrade on Server 
 Catastrophic High Very High 

WWW Service fails to start after upgrade on 

Server 
 Critical Low Medium 

New patch hangs services on Load Balancer  Catastrophic High Very High 

DDoS Attack Attack Catastrophic Low High 

Server hacked - content changed  Marginal High Medium 

Server hacked - page redirects  Marginal High Medium 

Server hacked - malicious program installed  Critical Low Medium 

Man in the Middle Attack  Marginal Low Medium 

0-Day Attack (unknown attack)  Critical Very Low Medium 

Cross-linking Attack of Text Content Stealing Critical Very High Very High 

Cross-linking Attack of Images  Critical Very High Very High 

Server rebooted Operator Errors Critical Very High Very High 

Server turned off  Catastrophic Very High Mandatory 

Network cable unplugged  Catastrophic Low High 

Load balancer turned off  Catastrophic Low High 

Load balancer rebooted  Critical High High 

Services restarted  Critical High High 

Services stopped  Catastrophic Low High 

Permissions changed incorrectly  Critical Low Medium 

Backup during peak hours  Critical High High 

Content file deleted  Catastrophic High Very High 

Configuration file deleted  Catastrophic High Very High 

Power Loss Power availability Critical High High 

Power Overload  Marginal Low Medium 

Cooling system malfunction  Catastrophic Low High 

Physical access unavailable  Marginal Very Low Low 
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Unable to backup Backup Issues Marginal Low Medium 

Backup medium unavailable  Negligible Low Very Low 

Backup medium full  Negligible Very Low Negligible 

Backup medium locked  Negligible High Low 

Backup medium corrupt  Negligible High Low 

Backup corrupt  Marginal High Medium 

Regular requests 
Fluctuations in 

request type 
Negligible Very High Medium 

Image only requests  Marginal Very Low Low 

Text only requests  Negligible Low Very Low 

Steady Request Pattern (Start: n)  Marginal High Medium 

Sinusoid Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Stepwise Request Pattern (Start: n, Increment: 

m, End: p) 
 Marginal High Medium 

Ramp Request Pattern (Start: n, End: p)  Marginal High Medium 

Step Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Exponential Request Pattern (Power: 2^p)  Marginal High Medium 

Random Request Pattern (Min: n, Max: m)  Marginal High Medium 

1 req / min 
Fluctuation in 

number of 

requests 

Negligible Very High Medium 

10 req / min  Negligible Very High Medium 

50 req / min  Marginal High Medium 

250 req / min  Marginal High Medium 

1000 req / min  Critical Low Medium 

2500 req / min  Critical Low Medium 

10,000 req / min  Catastrophic Very Low Medium 

1 users 
Fluctuation in 

number of users 
Negligible Very High Medium 

10 users  Negligible Very High Medium 

50 users  Marginal High Medium 

250 users  Marginal High Medium 

1000 users  Critical Low Medium 

2500 users  Critical Low Medium 

10,000 users  Catastrophic Very Low Medium 

Combination of # of users and # of requests  Marginal High Medium 

Steady Request Pattern (Start: n) Workloads Marginal High Medium 

Sinusoid Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Stepwise Request Pattern (Start: n, Increment: 

m, End: p) 
 Marginal High Medium 

Ramp Request Pattern (Start: n, End: p)  Marginal High Medium 

Step Request Pattern (Trough: n, Peak: m)  Marginal High Medium 

Exponential Request Pattern (Power: 2^p)  Marginal High Medium 

Random Request Pattern (Min: n, Max: m)  Marginal High Medium 

392 Workload Variations  Marginal High Medium 

Table 29: Risk-Based Approach Change Scenario Definitions Full Results 

  



 

125 

 

References 

Agrawal, N., Arpaci-Dusseau, A. C., & Arpaci-Dusseau, R. H. (2008). Towards realistic file-

system benchmarks with CodeMRI. SIGMETRICS Perform. Eval. Rev., 36(2), 52-57. 

doi: 10.1145/1453175.1453184 

Almeida, R., Madeira, H., & Vieira, M. (2010, June 21-25 2010). From Performance to 

Resilience Benchmarking. Paper presented at the Conference on Distributed Computing 

Systems Workshops (ICDCSW), 2010 IEEE 30th International  

Almeida, R., & Vieira, M. (2011). Benchmarking the resilience of self-adaptive software 

systems: perspectives and challenges. Paper presented at the Proceedings of the 6th 

International Symposium on Software Engineering for Adaptive and Self-Managing 

Systems, Waikiki, Honolulu, HI, USA.  

Almeida, R., & Vieira, M. (2012a). Changeloads for Resilience Benchmarking of Self-Adaptive 

Systems: A Risk-Based Approach. Paper presented at the 2012 Ninth European 

Dependable Computing Conference. 

Almeida, R., & Vieira, M. (2012b, Sept 10-14 2012). Changeloads: A Fundamental Piece on the 

SASO Systems Benchmarking Puzzle. Paper presented at the Self-Adaptive and Self-

Organizing Systems Workshops (SASOW), 2012 IEEE Sixth International Conference 

on. 

Andersson, J., Lemos, R., Malek, S., & Weyns, D. (2009). Modeling Dimensions of Self-

Adaptive Software Systems. In H. C. Betty, Rog, L. rio, G. Holger, I. Paola & M. Jeff 

(Eds.), Software Engineering for Self-Adaptive Systems (pp. 27-47): Springer-Verlag. 

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic Concepts and Taxonomy 

of Dependable and Secure Computing. IEEE Trans. Dependable Secur. Comput., 1(1), 

11-33. doi: 10.1109/tdsc.2004.2 

Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy 

of dependable and secure computing. Dependable and Secure Computing, IEEE 

Transactions on, 1(1), 11-33. doi: 10.1109/TDSC.2004.2 

Barbosa, R., Vinter, J., Folkesson, P., & Karlsson, J. (2005). An approach to reducing the cost of 

fault injection. Paper presented at the in Proceedings of Real-Time in Sweden 2005 

(RTiS 2005), Skövde, Sweden. 

Bondavalli, A., Lollini, P., Barbosa, R., Ceccarelli, A., L. Falai, Karlsson, J., . . . Vieira, M. 

(2009). Research Roadmap, Deliverable D3.2, AMBER - Assessing Measuring and 

Benchmarking Resilience: funded by the European Union. 

Bra, P. D., Aerts, A., Berden, B., Lange, B. d., Rousseau, B., Santic, T., . . . Stash, N. (2003). 

AHA! The adaptive hypermedia architecture. Paper presented at the Proceedings of the 

fourteenth ACM conference on Hypertext and hypermedia, Nottingham, UK.  



 

126 

 

Brown, A. B., Hellerstein, J., Hogstrom, M., Lau, T., Lightstone, S., Shum, P., & Yost, M. P. 

(2004). Benchmarking autonomic capabilities - Promises and Pitfalls. Paper presented at 

the Proceedings of the International Conference on Autonomic Computing (ICAC’04). 

Brown, G., Cheng, B. H. C., Goldsby, H., & Zhang, J. (2006). Goal-oriented specification of 

adaptation requirements engineering in adaptive systems. Paper presented at the 

Proceedings of the 2006 international workshop on Self-adaptation and self-managing 

systems, Shanghai, China.  

Brun, Y., Serugendo, G. M., Gacek, C., Giese, H., Kienle, H., Litoiu, M., . . . Shaw, M. (2009). 

Engineering Self-Adaptive Systems through Feedback Loops. In H. C. Betty, Rog, L. rio, 

G. Holger, I. Paola & M. Jeff (Eds.), Software Engineering for Self-Adaptive Systems (pp. 

48-70): Springer-Verlag. 

Burgman, M., Fidler, F., Mcbride, M., Walshe, T., & Wintle, B. (2006). Eliciting Expert 

Judgments: Literature Review: Australian Centre for Excellence in Risk Analysis 

(ACERA) - University of Melbourne. 

Cailliau, A., & Lamsweerde, A. (2013). Assessing requirements-related risks through 

probabilistic goals and obstacles. Requirements Engineering, 18(2), 129-146. doi: 

10.1007/s00766-013-0168-5 

Cámara, J., Lemos, R., Vieira, M., Almeida, R., & Ventura, R. (2013). Architecture-based 

resilience evaluation for self-adaptive systems. Computing, 1-34. doi: 10.1007/s00607-

013-0311-7 

Cámara, J., Lemos, R. d., Laranjeiro, N., Ventura, R., & Vieira, M. (2013). Robustness 

Evaluation of Controllers in Self-Adaptive Software Systems. Paper presented at the 

Proceedings of the 6th Latin American Symposium on Dependable Computing (LADC 

2013). 

Cheng, B., & Atlee, J. M. (2007). Research directions in requirements engineering. Paper 

presented at the Future of Software Engineering (FOSE'07). 

Cheng, B., Lemos, R. d., Giese, H., Inverardi, P., Magee, J., Andersson, J., . . . Whittle, J. (2009). 

Software Engineering For Self-Adaptive Systems. 

Cheng, S. W., Garlan, D., & Schmerl, B. (2009, 18-19 May 2009). Evaluating the effectiveness 

of the Rainbow self-adaptive system. Paper presented at the Software Engineering for 

Adaptive and Self-Managing Systems, 2009. SEAMS '09. ICSE Workshop on. 

Cheng, S. W., Huang, A.-C., Garlan, D., Schmarl, B., & Steenkiste, P. (2004). Rainbow: 

Architecture-based Self-Adaptation with Reusable Infrastructure. Paper presented at the 

Proceedings of the International Conference on Autonomic Computing (ICAC’04). 

Cheng, V.-W. (2008). Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation. 

(Doctor of Philosophy), Carnegie Mellon University.   (CMU-ISR-08-113) 



 

127 

 

Chvatal, V. (1979). A Greedy Heuristic for the Set-Covering Problem. Mathematics of 

Operations Research, 4(3), 233-235. doi: 10.2307/3689577 

Cin, M. D., Kanoun, K., Buchacker, K., Zuinga, L. L., Lindstrom, R., Johanson, A., . . . Suri, N. 

(2002). DBench Dependability Benchmark - Workload and Faultload Selection (ETIE3). 

http://webhost.laas.fr/TSF/DBench/: The European Commission of Community Research 

in Information Society Technologies (IST). 

Council, T. P. P. (2010). TPC Benchmark C, Standard Specification, Version 5.11.   Retrieved 

June 1, 2013, from http://www.tpc.org/tpcc 

Dardenne, A., Lamsweerde, A. v., & Fickas, S. (1993). Goal-directed requirements acquisition. 

Sci. Comput. Program., 20(1-2), 3-50. doi: 10.1016/0167-6423(93)90021-g 

Feather, M. S., Fickas, S., Lamsweerde, A. V., & Ponsard, C. (1998). Reconciling System 

Requirements and Runtime Behavior. Paper presented at the Proceedings of the 9th 

international workshop on Software specification and design.  

Fernandez, J., & Garcia, J. M. (1999). Representative Benchmarks for Commercial Workloads. X 

Jornadas de Paralelismo(September 1999).  

Friginal, J., de Andres, D., Ruiz, J.-C., & Gil, P. (2011). On Selecting Representative Faultloads 

to Guide the Evaluation of Ad Hoc Networks. Paper presented at the 5th Latin-American 

Symposium on Dependable Computing (LADC), 2011 Sao Jose dos Campos. 

Galeebathullah, B., & C.P.Indumathi. (2010). A Novel Approach for Controlling a Size of a Test 

Suite with Simple Technique. International Journal on Computer Science and 

Engineering (IJCSE), Vol 2(Issue 3), 614-618.  

Ganek, A. G., & Corbi, T. A. (2003). The dawning of the autonomic computing era. IBM Syst. J., 

42(1), 5-18. doi: 10.1147/sj.421.0005 

Garlan, D. (2010). Software engineering in an uncertain world. Paper presented at the 

Proceedings of the FSE/SDP workshop on Future of software engineering research, Santa 

Fe, New Mexico, USA.  

Gil, P., Arlat, J., Madeira, H., Crouzet, Y., Jarboui, T., Kanoun, K., . . . Gracia, J. (2002). 

DBench Dependability Benchmark - Fault Representativeness (ETIE2) DBench 

Dependability Benchmark: The European Commission of Community Research in 

Information Society Technologies (IST). 

Graefe, G., Idreos, S., Kuno, H., & Manegold, S. (2010). Benchmarking Adaptive Indexing. 

Paper presented at the Proceeding TPCTC'10 Proceedings of the Second TPC technology 

conference on Performance evaluation, measurement and characterization of complex 

systems  

Group, Y. (2002). How much is an hour of downtime worth to you? (pp. 178 - 187). Must-Know 

Business Continuity Strategies. 

http://webhost.laas.fr/TSF/DBench/:
http://www.tpc.org/tpcc


 

128 

 

Harrold, M. J., Gupta, R., & Soffa, M. L. (1993). A methodology for controlling the size of a test 

suite. ACM Trans. Softw. Eng. Methodol., 2(3), 270-285. doi: 10.1145/152388.152391 

Heegaard, P. E., & Trivedi, K. S. (2009). Network survivability modeling. Computer Networks, 

53(8), 1215-1234. doi: 10.1016/j.comnet.2009.02.014 

Hellerstein, J. L., Diao, Y., Parekh, S., & Tilbury, D. M. (2004). Feedback Control of Computing 

Systems: John Wiley \\& Sons. 

Hemmati, H., Briand, L., Arcuri, A., & Ali, S. (2010). An enhanced test case selection approach 

for model-based testing: an industrial case study. Paper presented at the Proceedings of 

the eighteenth ACM SIGSOFT international symposium on Foundations of software 

engineering, Santa Fe, New Mexico, USA.  

Huebscher, M. C., & McCann, J. A. (2004). Evaluation Issues in Autonomic Computing. Paper 

presented at the Grid and Cooperative Computing – GCC 2004 Workshops (2004). 

Hurtado, S., Sen, S., & Casallas, R. (2011). Reusing legacy software in a self-adaptive 

middleware framework. Paper presented at the Adaptive and Reflective Middleware on 

Proceedings of the International Workshop, Lisbon, Portugal.  

IBM. (2003). An architectural blueprint for autonomic computing. Tech. rep., from 

http://users.encs.concordia.ca/~ac/ac-resources/AC_Blueprint_White_Paper_4th.pdf 

Jorgensen, P. C. (2002). Software Testing: A Craftsman's Approach: CRC Press. 

Kaddoum, E., Raibulet, C., Georg, J.-P., Picard, G., & Gleizes, M.-P. (2010). Criteria for the 

evaluation of self-* systems. Paper presented at the Proceedings of the 2010 ICSE 

Workshop on Software Engineering for Adaptive and Self-Managing Systems, Cape 

Town, South Africa.  

Kang, Z., Kumar, A., Harrison, T. P., & Yen, J. (2011). Analyzing the Resilience of Complex 

Supply Network Topologies Against Random and Targeted Disruptions. Systems 

Journal, IEEE, 5(1), 28-39. doi: 10.1109/JSYST.2010.2100192 

Kanoun, K., Madeira, H., & Arlat, J. (2002). A Framework for Dependability Benchmarking in 

Supplement of the 2002 Int. Conf. on Dependable Systems and Networks (DSN-2002) (pp. 

12-15). 

Kanoun, K., Madeira, H., Crouzet, Y., Cin, M. D., Moreira, F., García, J.-C. R., . . . Yuste, P. 

(2004). DBench Dependability Benchmarks. In B. a. C. Deliverables BDEV3 (Ed.): 

European Community under the “Information Society Technology” Programme (1998-

2002). 

Khalil, Y. H., Elmaghraby, A., & Kumar, A. (2008, 6-9 July 2008). Evaluation of resilience for 

Data Center systems. Paper presented at the Computers and Communications, 2008. 

ISCC 2008. IEEE Symposium on. 

http://users.encs.concordia.ca/~ac/ac-resources/AC_Blueprint_White_Paper_4th.pdf


 

129 

 

Laddaga, R. (2006, 24-24 Sept. 2006). Self Adaptive Software Problems and Projects. Paper 

presented at the Software Evolvability, 2006. SE '06. Second International IEEE 

Workshop on. 

Laddaga, R., & Robertson, P. (2000). Self Adaptive Software: A Position Paper.   Retrieved 

March 1, 2013 

Laprie, J.-C. (2008). From Dependability to Resilience. Paper presented at the Proceedings of the 

IEEE International Conference on Dependable Systems and Networks (DSN-2008). 

Lemos, R. d., Giese, H., Müller, H. A., Shaw, M., Andersson, J., Baresi, L., . . . Wuttke, J. (2010, 

October 2010). Software Engineering for Self-Adaptive Systems: A Second Research 

Roadmap. Paper presented at the Dagstuhl Seminar Proceedings 10431 on Software 

Engineering for Self-Adaptive Systems. 

Leung, H. K. N., & White, L. (1991, 15-17 Oct 1991). A cost model to compare regression test 

strategies. Paper presented at the Software Maintenance, 1991., Proceedings. Conference 

on. 

Lorenzoli, D., Tosi, D., Venticinque, S., & Micillo, R. A. (2007). Designing multi-layers self-

adaptive complex applications. Paper presented at the Fourth international workshop on 

Software quality assurance: in conjunction with the 6th ESEC/FSE joint meeting, 

Dubrovnik, Croatia.  

Madan, B. B., Goševa-Popstojanova, K., Vaidyanathan, K., & Trivedi, K. S. (2004). A method 

for modeling and quantifying the security attributes of intrusion tolerant systems. 

Performance Evaluation, 56(1-4), 167-186. doi: 10.1016/j.peva.2003.07.008 

Madeira, H., Kanoun, K., Arlat, J., Costa, D., Crouzet, Y., Cin, M. D., . . . Madeira, H. (2002, 

October 23-25, 2002). Towards a Framework for Dependability Benchmarking. Paper 

presented at the 4th European Dependable Computing Conference (EDCC4),, Toulouse, 

France. 

Madeira, H., & Koopman, P. (2001). Dependability Benchmarking: making choices in an n-

dimensional problem space. Paper presented at the Proceedings of the first workshop on 

Evaluating and Architecting System Dependability. 

Meyer, J. F. (2009). Defining and Evaluating Resilience : A Performability Perspective. Paper 

presented at the in Proceedings of the International Workshop on Performability 

Modeling of Computer and Communication Systems (PMCCS-9). 

Moorsel, A. v., Alberdi, E., Bondavalli, A., Durães, J., Esposito, R., Falai, L., . . . Zhang, H. 

(2009). Final State of the Art, Deliverable D2.2, AMBER - Assessing, Measuring and 

Benchmarking Resilience. 

Morandini, M., Penserini, L., & Perini, A. (2008). Towards goal-oriented development of self-

adaptive systems. Paper presented at the Proceedings of the 2008 international workshop 

on Software engineering for adaptive and self-managing systems, Leipzig, Germany.  



 

130 

 

Parekh, J., Kaiser, G., Gross, P., & Valetto, G. (2006). Retrofitting Autonomic Capabilities onto 

Legacy Systems. Cluster Computing, 9(2), 141-159. doi: 10.1007/s10586-006-7560-6 

Potts, C. (1995). Using schematic scenarios to understand user needs. Paper presented at the 

Proceedings of the 1st conference on Designing interactive systems: processes, practices, 

methods, & techniques, Ann Arbor, Michigan, United States.  

Pressman, R. S. (2005). Software Engineering: A Practioner's Approach (6e ed.). New York: 

McGraw-Hill Education. 

Quadri, S. M. K., & Farooq, S. U. (2010). Software Testing – Goals, Principles, and Limitations. 

Paper presented at the International Journal of Computer Applications (0975 – 8887). 

Roberto, N. (2013). On Fault Representativeness of Software Fault Injection. IEEE Transactions 

on Software Engineering, 39(1), 80-96.  

Salehie, M., & Tahvildari, L. (2009). Self-adaptive software: Landscape and Research 

Challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2), 1-42. doi: 

10.1145/1516533.1516538 

Tamura, G., Villegas, N. M., Muller, H. A., Sousa, J. P., Becker, B., Karsai, G., . . . Wong, K. 

(2012). Towards Practical Runtime Verification and Validation of Self-Adaptive Software 

Systems: Springer. 

Traeger, A., Zadok, E., Joukov, N., & Wright, C. P. (2008). A nine year study of file system and 

storage benchmarking. Trans. Storage, 4(2), 1-56. doi: 10.1145/1367829.1367831 

van Lamsweerde, A. (2000). Requirements engineering in the year 00: a research perspective. 

Paper presented at the Proceedings of the 22nd international conference on Software 

engineering, Limerick, Ireland.  

van Lamsweerde, A. (2001, 2001). Goal-oriented requirements engineering: a guided tour. 

Paper presented at the Proceedings of the Fifth IEEE International Symposium on 

Requirements Engineering. 

van Lamsweerde, A., & Letier, E. (1998). Integrating obstacles in goal-driven requirements 

engineering. Paper presented at the Proceedings of the 20th international conference on 

Software engineering, Kyoto, Japan.  

van Lamsweerde, A., & Letier, E. (2000). Handling Obstacles in Goal-Oriented Requirements 

Engineering. IEEE Trans. Softw. Eng., 26(10), 978-1005. doi: 10.1109/32.879820 

Vieira, M., & Madeira, H. (2003). A dependability benchmark for OLTP application 

environments. Paper presented at the Proceedings of the 29th international conference on 

Very large data bases - Volume 29, Berlin, Germany.  

Vieira, M., & Madeira, H. (2004, 28-30 Sept. 2004). Portable faultloads based on operator 

faults for DBMS dependability benchmarking. Paper presented at the Computer Software 



 

131 

 

and Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual 

International. 

Visser, W., Pasareanu, C. S., & Khurshid, S. (2004). Test input generation with java PathFinder. 

Paper presented at the Proceedings of the 2004 ACM SIGSOFT international symposium 

on Software testing and analysis, Boston, Massachusetts, USA.  

Weicker, R. P. (1990). An Overview of Common Benchmarks. Computer, 23(12), 65-75. doi: 

10.1109/2.62094 

Weyns, D., Iftikhar, M. U., Iglesia, D. G. d. l., & Ahmad, T. (2012). A survey of formal methods 

in self-adaptive systems. Paper presented at the Proceedings of the Fifth International C* 

Conference on Computer Science and Software Engineering, Montreal, Quebec, Canada.  

Williams, R., Behrens, S., & Pandelios, G. (1999). SRE Method Description (Version 2.0).    

Xavier, K. S., Hanazumi, S., & Melo, A. C. V. d. (2008). Using Formal Verification to Reduce 

Test Space of Fault-Tolerant Programs. Paper presented at the Proceedings of the 2008 

Sixth IEEE International Conference on Software Engineering and Formal Methods.  

Zhang, J., & Cheng, B. H. C. (2007). Towards Re-engineering Legacy Systems for Assured 

Dynamic Adaptation. Paper presented at the Proceedings of the International Workshop 

on Modeling in Software Engineering.  

 


	Nova Southeastern University
	NSUWorks
	2014

	A Method to Reduce the Cost of Resilience Benchmarking of SelfAdaptive Systems
	Steve Hernandez
	Share Feedback About This Item
	NSUWorks Citation


	Table of Contents
	List of Figures
	List of Equations
	List of Tables
	Introduction
	Introduction
	Changeloads
	Changeload Challenges

	Problem Statement
	Prior Work
	Software Risk Evaluation Steps
	Almeida and Vieira Proposed Extension
	Contribution Summary

	Issues
	Vague treatment of System Goals
	Vague treatment of Operating Conditions
	Cost


	Goal
	Relevance and Significance
	Barriers and Issues
	Assumptions, Limitations, and Delimitations
	Definition of Terms
	Summary

	Review of the Literature
	Introduction
	Benchmarking
	Dependability Benchmarking
	Faultloads
	Faultload Challenges

	Self-Adaptive Systems
	Resilience Benchmarking
	Cost Saving Techniques
	Summary

	Methodology
	Overview of Research Methodology
	Approach Overview
	Step A: Identification System Goals
	Step B: Identification of Obstacles
	Step B Part 1: Action, Agent, and Assumption Analysis
	Step B Part 2: Obstacle Analysis

	Step C: Definition of Obstacle Attributes
	Step D: Assignment of Obstacle Attributes
	Step E: Definition of the Changeload

	Case Study
	Subject System

	Analysis of Results
	Summary

	Results
	Presentation of Data
	Risk-Based Approach Data
	Step A: Identification of the Base Scenario
	Step B: Identification of Change Scenarios

	Goal-Oriented Approach Data
	Step A: Identification of System Goals
	Step B: Identification of Obstacles
	Step C: Definition of Obstacle Attributes
	Step D: Evaluation of Obstacle Attributes and Step E: Definition of the Changeload


	Presentation of Results
	Results Analysis
	Cost Savings
	Effectiveness
	Wastefulness
	Return on Investment

	Summary

	Conclusions
	Implications
	Recommendations
	Summary

	Appendix A
	Appendix B
	References

