
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2014

A Method to Reduce the Cost of Resilience
Benchmarking of SelfAdaptive Systems
Steve Hernandez
Nova Southeastern University, steveo.hernandez@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Steve Hernandez. 2014. A Method to Reduce the Cost of Resilience Benchmarking of SelfAdaptive Systems. Doctoral dissertation. Nova
Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (18)
https://nsuworks.nova.edu/gscis_etd/18.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A Method to Reduce the Cost of Resilience Benchmarking of Self-

Adaptive Systems

by

Steve O Hernandez

A document submitted in Partial Fulfillment of requirements for the

Degree of Doctor of Philosophy

In

Computer Science

Graduate School of Computer and Information Sciences

Nova Southeastern University

October 29, 2014

We hereby certify that this dissertation, submitted by Steve Hernandez, conforms to acceptable

standards and is fully adequate in scope and quality to fulfill the dissertation requirements

for the degree of Doctor of Philosophy.

___ ________________

Gregory E. Simco, Ph.D. Date

Chairperson of Dissertation Committee

___ ________________

Francisco J. Mitropoulos, Ph.D. Date

Dissertation Committee Member

___ ________________

Sumitra Mukherjee, Ph.D. Date

Dissertation Committee Member

Approved:

___ ________________

Eric S. Ackerman, Ph.D. Date

Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences

Nova Southeastern University

2014

ii

An Abstract of a Dissertation Idea Paper Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A Method to Reduce the Cost of Resilience Benchmarking of Self-Adaptive Systems

By

Steve O Hernandez

October 2014

Ensuring the resilience of self-adaptive systems used in critical infrastructure systems is a

concern as their failure has severe societal and financial consequences. The current trends in the

growth of the scale and complexity of society’s workload demands and the systems built to cope

with these demands increases the anxiety surrounding service disruptions. Self-adaptive

mechanisms instill dynamic behavior to systems in an effort to improve their resilience to

runtime changes that would otherwise result in service disruption or failure, such as faults,

errors, and attacks. Thus, the evaluation of a self-adaptive system’s resilience is critical to

ensure expected operational qualities and elicit trust in their services. However, resilience

benchmarking is often overlooked or avoided due to the high cost associated with evaluating the

runtime behavior of large and complex self-adaptive systems against an almost infinite number

of possible runtime changes.

Researchers have focused on techniques to reduce the overall costs of benchmarking

while ensuring the comprehensiveness of the evaluation as testing costs have been found to

account for 50 to 80% of total system costs. These test suite minimization techniques include the

removal of irrelevant, redundant, and repetitive test cases to ensure that only relevant tests that

adequately elicit the expected system responses are enumerated. However, these approaches

require an exhaustive test suite be defined first and then the irrelevant tests are filtered out,

potentially negating any cost savings.

This dissertation provides a new approach of defining a resilience changeload for self-

adaptive systems by incorporating goal-oriented requirements engineering techniques to extract

system information and guide the identification of relevant runtime changes. The approach

constructs a goal refinement graph consisting of the system’s refined goals, runtime actions, self-

adaptive agents, and underlying runtime assumptions that is used to identify obstructing

conditions to runtime goal attainment. Graph theory is then used to gauge the impact of

obstacles on runtime goal attainment and those that exceed the relevance requirement are

included in the resilience changeload for enumeration. The use of system knowledge to guide

the changeload definition process increased the relevance of the resilience changeload while

minimizing the test suite, resulting in a reduction of overall benchmarking costs. Analysis of

case study results confirmed that the new approach was more cost effective on the same subject

system over previous work. The new approach was shown to reduce the overall costs by

79.65%, increase the relevance of the defined test suite, reduce the amount of wasted effort, and

provide a greater return on investment over previous work by a factor of two.

Acknowledgements

This dissertation would not have been possible were it not for the unwavering support

and understanding of many individuals.

First and foremost, I must thank my wife Natalie, my other half, the most wonderful and

supportive person I could have ever been blessed with. You encouraged, tolerated, and loved me

without hesitation or issue. It is because of you that I was able to complete achieve this goal.

Thank you for standing by my side and for your guidance and support through the difficult times.

My father, Osvaldo Hernández, and my mother, Sara Rincon, who have supported me

throughout my life and made my quest for enlightenment possible, even when it meant theirs

were put on hold. A child’s achievement is a direct reflection of his parent’s love and

commitment. I thank you not only for the unwavering support you both have given me but also

for defining what a true parent is through your actions. Gracias por todo lo que me has

enseñando y por tu apoyo.

My daughters, Sofia, Noelia, and Olivia. I would not have finished this process without

having you in my life. Thank you for blessing me. May this small accomplishment pale in

comparison with your future achievements.

I was fortunate enough to be welcomed into a study group which became my extended

family. They made this process bearable and provided invaluable advice and support

throughout. I must personally recognize Dr. Ronald M. Krawitz, my dear friend and colleague,

who provided both personal and professional guidance to me. Thank you for everything.

Finally, I must thank the members of my dissertation committee, Dr. Mukherjee and Dr.

Mitropoulos, for their valuable feedback throughout the dissertation process. I must especially

thank my dissertation committee chair, Dr. Simco, for his patience, guidance, and relentless

pursuit of academic and professional excellence without which this dissertation would not have

been possible.

iii

Table of Contents

Abstract ii

Table of Contents iii

List of Figures v

List of Equations vi

List of Tables viii

1. Introduction 1
Introduction 1

Changeloads 2

Changeload Challenges 2

Problem Statement 5

Prior Work 5

Software Risk Evaluation Steps 6

Almeida and Vieira Proposed Extension 7

Contribution Summary 12

Issues 12

Vague treatment of System Goals 13

Vague treatment of Operating Conditions 16

Cost 19

Goal 24

Relevance and Significance 26

Barriers and Issues 29

Assumptions, Limitations, and Delimitations 31

Definition of Terms 32

Summary 34

2. Review of the Literature 36
Introduction 36

Benchmarking 36

Dependability Benchmarking 40

Faultloads 41

Faultload Challenges 42

Self-Adaptive Systems 45

Resilience Benchmarking 47

Cost Saving Techniques 48

Summary 59

3. Methodology 61
Overview of Research Methodology 61

Approach Overview 62

Step A: Identification System Goals 63

Step B: Identification of Obstacles 67

iv

Step B Part 1: Action, Agent, and Assumption Analysis 68

Step B Part 2: Obstacle Analysis 74

Step C: Definition of Obstacle Attributes 77

Step D: Assignment of Obstacle Attributes 80

Step E: Definition of the Changeload 83

Case Study 88

Subject System 89

Analysis of Results 90

Summary 92

4. Results 94
Presentation of Data 94

Risk-Based Approach Data 94

Step A: Identification of the Base Scenario 94

Step B: Identification of Change Scenarios 94

Goal-Oriented Approach Data 96

Step A: Identification of System Goals 96

Step B: Identification of Obstacles 96

Step C: Definition of Obstacle Attributes 98

Step D: Evaluation of Obstacle Attributes and Step E: Definition of the

Changeload 99

Presentation of Results 101

Results Analysis 102

Cost Savings 102

Effectiveness 103

Wastefulness 105

Return on Investment 106

Summary 106

5. Conclusions 107
Implications 108

Recommendations 109

Summary 110

Appendix A 116

Appendix B 119

References 125

v

List of Figures

Figure 1: Mapping of the phases of the changeload definition with risk analysis phases 7

Figure 2: Algorithm ReduceTestSuite for finding a representative set from a group of sets 54

Figure 3: KAOS Glyph Specification 65

Figure 4: Initial Goal Refinement Graph Format 66

Figure 5: Initial Goal Graph of example Self-System A 66

Figure 6: HOW Goal Refinement Graph for example Self-System A 66

Figure 7: WHY Goal Refinement Graph for example Self-System A 67

Figure 8: Expanded Goal Refinement Graph with Actions and Agents Format 70

Figure 9: Expanded Goal Refinement Graph with Actions and Agents example Self-System A 70

Figure 10: Expanded Refinement Goal Graph with Actions, Agents, and Assumptions Format 73

Figure 11: Expanded Goal Refinement Graph with Actions, Agents, and Assumptions for

example Self-System A 73

Figure 12: Expanded Goal Refinement Graph with Actions, Agents, Assumptions, and Obstacles

Format 76

Figure 13: Expanded Goal Refinement Graph with Obstacles, Assumptions, Agents, and Actions

for example Self-System A 76

Figure 14: Goal Refinement Graph of Self-System A – Resource Exhaustion (CPU) Obstacle

Impact 82

Figure 15: Goal Refinement Graph of Self-System A – Locked Configuration File Obstacle

Impact 82

Figure 16: Considered Obstacles for example Self-System A 87

Figure 17: RAINBOW Framework 89

Figure 18: ZNN.com System Architecture 90

Figure 19: Goal-Oriented Approach Goal Refinement Graph Data 96

Figure 20: Goal-Oriented Approach Expanded Goal Refinement Graph with Obstacles,

Assumptions, Agents, and Actions Data 97

Figure 21: Test Suite Relevance Distribution of Identified Changes in the Resulting Test Suites

104

vi

List of Equations

Equation 1: Leung and White (1991) Cost Model 4

Equation 2: Base Scenario Specification 8

Equation 3: Change Specification 9

Equation 4: Change Scenario Specification 10

Equation 5: Modified Change Scenario Specification 10

Equation 6: Changeload Specification 11

Equation 7: Definition of Change 19

Equation 8: Definition of Environment Changes 19

Equation 9: Definition of the Change Space 20

Equation 10: Definition of High-Level System Capabilities 20

Equation 11: Definition of High-Level System Goals 20

Equation 12: Changes Considered by the Risk-Based Approach 20

Equation 13: Enumerated Changes in the Risk-Based Approach 22

Equation 14: Leung and White (1991) Cost Model Strategy Comparison Inequality 25

Equation 15: Simplified Test Suite Cost Comparison Inequality (rewritten) 26

Equation 16: SSR Metric 58

Equation 17: Definition of Low-Level System Goals 63

Equation 18: Low-Level System Goal Definition for example Self-System A 63

Equation 19: Goal Attainment Verification 64

Equation 20: Definition of Self-Adaptive Action 68

Equation 21: Self-Adaptive Action Definition for example Self-System A 68

Equation 22: Definition of Self-Adaptive Agents 69

Equation 23: Self-Adaptive Agent definition for example Self-System A 69

Equation 24: Definition of an Assumption 72

Equation 25: Assumption and Node Satisfaction Relationship 72

Equation 26: Assumption Definition for example Self-System A 72

Equation 27: Definition of an Obstacle 74

Equation 28: Obstacle Satisfaction Relationship 74

Equation 29: Assumption Definition for example Self-System A 75

Equation 30: Obstacle's Shortest Distance to a Goal (OSDG) 78

Equation 31: Obstacle's Breadth of Impact 78

Equation 32: Definition of the Relevance Scale 83

Equation 33: Definition of the Relevance Cut-Off 85

Equation 34: Changeload Definition 86

Equation 35: Changeload Definition for example Self-System A 86

Equation 36: Reduced Test Suite Cost Inequality 91

Equation 37: Test Selection Strategy's Return on Investment 92

Equation 38: Cost Savings Inequality Results 102

Equation 39: Cost of Testing Strategies 116

Equation 40: Cost Savings Inequality as proposed by Leung and White (1991) 116

Equation 41: Cost Savings Inequality with specific costs and different Selection Costs 116

Equation 42: Analysis and Understanding Costs Equivalence 117

vii

Equation 43: Simplified Savings Inequality with different Selection Costs 117

Equation 44: Reduction of Cost Terms 117

Equation 45: Simplified Test Suite Cost Comparison Inequality 118

viii

List of Tables

Table 1: Fault-Space Optimization Results 50

Table 2: Run-times for ReduceTestSuite for Actual and Constructed Associated Testing Sets 55

Table 3: Experiment 1 - Reduction during Program Development 56

Table 4: Experiment 2 - Reduction during program maintenance for performance improvement

56

Table 5: Reduction during program maintenance for program enhancements 57

Table 6: Test Case Coverage Matrix 58

Table 7: Change Scenario Attributes defined in the Risk-Based Approach 77

Table 8: Risk-Based Change Scenario Impact Attribute mapping to Goal-Oriented Obstacle

OSDG Attribute 79

Table 9: Risk-Based Change Scenario Probability Attribute mapping to Goal-Oriented Obstacle

OB Attribute 79

Table 10: OSDG Attribute for example Self-System A 80

Table 11: OB Attribute for example Self-System A 80

Table 12: Relevance Level Numeric Mapping 84

Table 13: Exposure Matrix for the Goal-Oriented Approach 84

Table 14: Exposure Matrix for example Self-System A 84

Table 15: Exposure Matrix with Cut-Off Level Applied 85

Table 16: Exposure Matrix with Cut-Off Level Applied for example Self-System A 86

Table 17: Concrete Obstacles in the final Changeload generated by the Goal-Oriented Approach

87

Table 18: Final Changeload with Concrete Obstacles for example Self-System A 88

Table 19: Risk-Based Approach Base Scenario Definition Data 94

Table 20: Risk-Based Approach Change Class and High-Level Change Mapping to Base

Scenario Elements Data 95

Table 21: Risk-Based Approach Change Scenario Definitions Sample Data 95

Table 22: Expanded Goal Refinement Graph Composition Summary Data 98

Table 23: Goal-Oriented Approach OSDG Attribute Data 98

Table 24: Goal-Oriented Approach OB Attribute Data 98

Table 25: Goal-Oriented Approach Final Changeload with Concrete Obstacles Results 100

Table 26: Test Suite Construction and Total Size Comparison Results 101

Table 27: Included Change Scenarios and Final Changeload Size Comparison after Cut-Off

Results 101

Table 28: Test Suite Relevance Distribution Summary 104

Table 29: Risk-Based Approach Change Scenario Definitions Full Results 124

1

Chapter 1

Introduction

Introduction

The growing heterogeneity, scale, and dynamism of modern systems has the research

community and industry turning to self-adaptive systems to deal with their resulting complexity

and unmanageability (Almeida & Vieira, 2012a; Ganek & Corbi, 2003). The autonomic

functionality of self-adaptive systems reduces the burden on human operators to manage,

configure, and troubleshoot them as they can self-configure, self-optimize, self-heal, or self-

protect to internal and external changes with greater speed and precision and with little or no

human intervention (Almeida & Vieira, 2011; Ganek & Corbi, 2003; IBM, 2003). The goal of

resilience benchmarking is to evaluate and validate a system’s persistence of service delivery in

the presence of changes (i.e. its resilience) in a reproducible and cost-effective manner (Almeida

& Vieira, 2012a). However, there are several open research challenges related to resilience

benchmarking, with the definition of a representative changeload being the most obscure.

Almeida and Vieira (2012a) proposed a risk-based approach that reduced the considered

change space and identified the relevant changes to include in a representative changeload.

However, not all included changes fulfilled the purpose of disturbing the system and evoked its

adaptive capabilities, resulting in a high cost of benchmarking. This study addressed this issue

by extending the risk-based approach to utilize system knowledge to further reduce the

considered change space and overall cost of resilience benchmarking.

The rest of this section introduces the changeload and discusses the open research

challenge of defining a balanced and cost-effective changeload.

2

Changeloads

Resilience benchmarking requires the inclusion of a well-defined and relevant set of

changes that include the runtime system dynamics that are not considered in traditional

dependability evaluation (Almeida & Vieira, 2012a; A. B. Brown et al., 2004; Madeira et al.,

2002; Meyer, 2009; Salehie & Tahvildari, 2009). The workload and operating environment

cannot be static and must include changes that employ the SUB’s self-adaptive capabilities as

real-world operating conditions would (Almeida & Vieira, 2011; A. B. Brown et al., 2004).

Changes include faults, attacks, failures, expected and unforeseen variations of internal (e.g.

resource exhaustion, availability of new features) and external (e.g. network congestion, sub-

system changes) contexts of a system, or its components, that may impact its ability to maintain

runtime goals (Almeida & Vieira, 2012a; Huebscher & McCann, 2004). Therefore, the

changeload must model the fluctuations and variations of the system’s overall stress to provide a

realistic use-case for evaluation purposes (Almeida & Vieira, 2012b).

Changeloads encompass faultloads, extend their modeling, and their application, to

characterize the dimension of change within dynamic systems. Thus, they share several open

research challenges, which are discussed below.

Changeload Challenges

Defining a relevant changeload for the evaluation of self-adaptive system resilience is a

daunting research challenge due to the complexity of self-adaptive systems and the large number

of potential changes that may impact their attainment of goals, which may also be dynamic at

runtime (Almeida & Vieira, 2011; Andersson, Lemos, Malek, & Weyns, 2009; Bondavalli et al.,

2009; Brun et al., 2009; B. Cheng et al., 2009; Salehie & Tahvildari, 2009). Defining a

resilience benchmark for all system-types is an unachievable goal (Almeida, Madeira, & Vieira,

3

2010), therefore, the benchmarking domain is divided to reduce the problem space into tractable

and tenable segments (Bondavalli et al., 2009). However, this is a difficult task as the domain

boundaries may not be obvious, such as components, systems (e.g. large, complex, or distributed

systems), runtime behavior, and application types (Bondavalli et al., 2009).

While defining changeloads utilizing field data is ideal, accessing such data may not be

possible for many systems as runtime changes may not be recorded or shared due to intellectual

property concerns (Almeida & Vieira, 2012a). Evaluators experience the same challenges

defining changeloads as they do with faultloads, specifically the lack of strict and systematic

approaches for their definition (Moorsel et al., 2009) and an absence of standardized metrics and

procedures for their utilization (Almeida & Vieira, 2011; Bondavalli et al., 2009). This leads to a

reliance on unstructured expert analysis, the utilization of inconsistent field data, the inclusion of

loosely related reports, and ad-hoc / system-specific evaluations that increase the overall cost of

resilience benchmarking (Almeida & Vieira, 2012a; Barbosa, Vinter, Folkesson, & Karlsson,

2005; Moorsel et al., 2009; Xavier, Hanazumi, & Melo, 2008) by incorporating test cases that are

repetitive, irrelevant, and unrepresentative (Barbosa et al., 2005; Jorgensen, 2002). For example,

Barbosa et al. (2005) demonstrated that ineffective faults can account for up to 85% of a defined

faultload for memory and CPU bit-flip faults.

Identifying the most realistic and relevant changes from the change space is particularly

challenging due to the consideration of the many dimensions of variability (such as those

affecting resources, interfaces, hardware, and so on) that directly and indirectly affect the SUB’s

runtime behavior (Almeida & Vieira, 2012a; B. Cheng et al., 2009) while ensuring they are

sufficiently representative, reproducible, scalable, portable, and cost-effective (Almeida &

Vieira, 2011; Bondavalli et al., 2009; Moorsel et al., 2009). A system’s change space extends

4

the fault space, which is typically extremely large (Barbosa et al.), by encompassing any and all

possible variations in the operating environment, internal conditions, inputs, workloads,

faultloads, attackloads, and user interactions, or sequences and combinations thereof, that may

subject the system to any type of stress which may or may not result in failure (Almeida et al.,

2010; Almeida & Vieira, 2012b). The high degree of complexity and runtime dynamics of self-

adaptive systems and their environments (Bondavalli et al., 2009; Ganek & Corbi, 2003) makes

the number of potential runtime changes virtually unbounded (Almeida & Vieira, 2012b).

The cost of benchmarking is directly related to the number of test cases (e.g. faults or

changes) that are considered, included, and ultimately enumerated in the benchmarking process

(Cin et al., 2002; Xavier et al., 2008). This relationship can be shown by using the cost model

defined in Equation 1, where the total cost of a software testing strategy, ()C Strategy , against a

set of test cases, T , is comprised of the costs of system analysis, Ca , test selection, Cs , test

execution, Ce , result analysis and understanding, Cu , and result checking, Cc .

() () () () () ()C strategy Ca T Cs T Ce T Cu T Cc T

Equation 1: Leung and White (1991) Cost Model

Thus, the cost of attaining full change space coverage by utilizing an exhaustive

changeload is impractical and unreasonably expensive due to the extremely large change space

(Almeida & Vieira, 2012b; Barbosa et al., 2005).

More practical approaches were required to enable the reproducible definition of

changeloads consisting of a minimal set of changes required for resilience benchmarking of self-

adaptive systems (Almeida & Vieira, 2012a) as it remained labor intensive and costly (Moorsel

et al., 2009). The lack of standarized methods resulted in the challenges described were

5

addressed by the Almeida and Vieira (2012a) and their risk-based approach. Their contribution

is described in the following section followed by a description of this study’s goal.

Problem Statement

Resilience benchmarking of self-adaptive systems is critical due to their use for mission

critical and infrastructure services. However, benchmarking and testing is often avoided due to

the high cost and labor required to identify all of a system’s potential runtime changes and test

the system against them (Quadri & Farooq, 2010). Almeida and Vieira (2012a) proposed a

method for identifying relevant changes and defining resilience changeloads for self-adaptive

systems. However, their technique suffered from high cost due to the consideration of the entire

change space caused by the use of vague constructs for the system’s goals and operating

conditions. This study extended prior work and addressed the problem of high evaluation costs

and labor associated with resilience benchmarking of self-adaptive systems by utilizing system

knowledge to reduce the considered change space. The following section presents the risk-based

approach followed by a discussion of the approach’s limitations.

Prior Work

Almeida and Vieira (2012a) proposed a risk-based approach for defining changeloads in

which Software Risk Evaluation (SRE) techniques were extended and adapted to identify and

analyze the potential risks to the self-adaptive system goals. The techniques were borrowed

from the identification and analysis phases of SRE, which focus on identifying and

characterizing the risks that may prevent a development team from accomplishing project goals.

The original SRE steps are outlined below followed by the Almeida and Vieira (2012a)

extension.

6

Software Risk Evaluation Steps

The first step in SRE is to define a general criterion against which the results of changes

can be measured prior to the project’s commencement, called the Threshold of Success (ToS),

which defines the boundary between success and failure of the project. Next, the risks to the

ToS are captured in risk statements, written in prose, that include the negative conditions under

which the project may be classified as unsuccessful. The risk statements are elicited in a

condition / consequence format that describes the potential conditions, or circumstances, which

cause anxiety to project participants and their negative consequences. Risk attributes are then

defined to provide greater understanding of risk conditions and their consequences and serve as a

useful method for their prioritization. Risk attributes typically include the impact of the risk to

the ToS (e.g. Catastrophic, critical, or marginal), timeframe of identification (e.g. Long, medium,

or short), and its probability of occurrence (e.g. High, medium, or low). Once general risk

attributes have been identified, they are associated with the risk statements (from the first step)

and assigned attribute levels (e.g. Catastrophic impact, Short identification interval, Low

probability of occurrence). Finally, the identified risks are prioritized based on their associated

attributes. The prioritization can be done using a multi-voting scheme, Pareto Top-N (risk

exposure cut-off such as impact vs. probability), or comparison ranking (using pair-wise

comparison of defined risk statements).

 Ultimately, the definition and prioritization of risks associated with a project rely almost

exclusively on the experience of the involved experts. These activities are typically conducted

using free-form brainstorming (i.e. informally) or utilizing a taxonomy of risks and determining

their applicability to the specific project as defined by the Software Engineering Institute (SEI)’s

Taxonomy of Software Development for risk identification (Almeida & Vieira, 2012a). The

project’s personnel use this information to create risk management and mitigation plans for the

7

identified risks in an effort to ensure the project’s successful completion (Williams, Behrens, &

Pandelios, 1999).

Almeida and Vieira Proposed Extension

Almeida and Vieira (2012a) extended and adapted the SRE steps to resilience

benchmarking by applying the identification and analysis techniques to a self-adaptive system’s

operation. Specifically, they adapted the threshold of success (ToS) definition, applied the SRE

risk categorization and prioritization to the SUB, and then mapped the SRE risk analysis phases

to the changeload definition process, as depicted below in Figure 1.

Definition of ToS

Identification of Risk
Statements

Definition of Risk Attributes

Evaluation of Risk Attributes

Prioritization of RIsks

Identification of Base
Scenario

Identification of Change
Scenarios

Definition of CS Attributes

Evaluation of CS Attributes

Evaluation of CS Attributes

Risk Analysis Changeload Definition

Figure 1: Mapping of the phases of the changeload definition with risk analysis phases

Of particular importance is the identification of the basic drivers of the SUB, or its high-

level goals, which is vital for the identification and characterization of the change scenarios,

described below (Almeida & Vieira, 2012a). Almeida and Vieira (2012a) argued that detailed

descriptions of the SUB’s goals, workload, and operational conditions are not necessary to define

the changeload. Instead, abstract characterizations of these elements are all that is needed,

though they did concede that having detailed descriptions of the goals might assist the

8

changeload definition process. Thus, the first step of the changeload definition process is to

identify and prioritize the generic goals of systems in the benchmark domain (i.e. the specific

system-type) in an effort to cope with the diversity of applications and guide system analysis, as

conducted in dependability and performance benchmarking (Madeira et al., 2002; Moorsel et al.,

2009). An example used within their study, and throughout this paper, is adaptive database

management systems (ADBMS) which are typically governed by the following prioritized goals:

throughput, availability, and response time (Almeida & Vieira, 2012a).

 The ToS was defined as the base scenario under which all identified goals are

maintained, a typical workload is executed, and the operational context of the SUB is static;

essentially its “golden run”. It is independent of the changeload and offers a baseline against

which the system evaluator can compare metric values obtained in the presence of the

changeload. The base scenario specification is defined below in Equation 2:

Equation 2: Base Scenario Specification

The specification defined the base scenario as a set of three elements: the typical

workload, , the typical operating conditions and resources (hardware and software)

within which the goals are obtained and the workload executed, , and

the fixed goals of the SUB, . The goals were predefined by a Service Level Agreement

(SLA), were fixed, or defined by some other specification that described the attributes or

requirements the SUB must fulfill during runtime (e.g. minimize response time, maximize

throughput).

 _ , _ ,typical typical fixedBase Scenario workload operating conditions goals

typicalworkload

_ typicaloperating conditions

fixedgoals

9

 The SRE procedure for identifying risk statements was utilized to define change

scenarios. The change scenarios are derived from the base scenario and defined a set of each

possible representative change, or sequence of changes, that may affect the SUB’s ability to

achieve and maintain the runtime goals specified in the base scenario. To identify the relevant

classes and types of changes Almeida and Vieira (2012a) proposed the following methodology:

1. Identify and select the potential sources of changes, which may include internal or

external hardware, software, and operational environment.

2. Identify the classes of changes that may originate from the previously identified

change sources. For example, an ADBMS whose potential source of change are its

human operators, may have a potential change class of “administrative mistakes” or

“variation in service requests.”

3. Identify the specific types of changes that may impact the base scenario’s defined

goals. For example, an ADBMS may have a specific change of “increase in the

number of requests per second” for the “variation in service requests” change class.

The change specification is shown in Equation 3:

Equation 3: Change Specification

The source of the change, source, and the change type previously defined, type, represent a

single change the SUB may experience. The evaluator then converts the defined changes into

concrete system changes once the relevant classes and change types have been defined for the

SUB. For example, “increase in the number of requests” can be converted into a more specific

change, such as “15% increase in requests per second.”

 ,Change source type

10

The specific changes are specified using the following format (added for clarity and not

included in the original specification), , where

the trigger instant, ti , determined the predefined instant the SUB would be subjected to the

change, duration , which specified the amount of time it was affected by the particular change,

and the relative quantity, amount , of the change to subject the SUB. Examples of change

amounts are “50% available throughput”, “100% connectivity loss”, and a “90% reduction of

available memory” (Almeida & Vieira, 2012a). These additional details are required to ensure

each change scenario is unique as the same change triggered at different moments may result in

different behaviors depending on the SUB’s context (Almeida & Vieira, 2011, 2012a; B. Cheng

et al., 2009; Huebscher & McCann, 2004).

The evaluator then used the set of specific changes in the change scenario specification,

outlined below in Equation 4, and more clearly in Equation 5, where the change scenario is a set

of specific changes that are experienced by the SUB from a base scenario context.

Equation 4: Change Scenario Specification

Equation 5: Modified Change Scenario Specification

Change scenario attributes were then defined in a similar fashion as risk attributes, where

expert analysis and voting schemes were utilized (in the absence of available field data) to assign

relative impact and probability to each change scenario. The association of change scenario

attributes provided a manner of characterizing each change scenario and a means of establishing

their relevance.

 _ , , ,specific change change ti duration amount

_ ,
_

(, , ,)

Base Scenario
Change Scenario

change ti duration amount

 _ _ , _Change Scenario Base Scenario specific change

11

The changeload was then defined by selecting the most relevant and representative

change scenarios defined in the previous steps. To facilitate this process the authors proposed

using expert judgment, a multi-voting scheme, or creating an exposure matrix and defining a cut-

off level. The later consisted of a matrix based on two or more dimensions of change scenario

attributes and their associated scales. Then the change scenario attributes were correlated and an

associated level of representativeness (e.g. “Mandatory” inclusion in the changeload, “Very

High” representativeness, etc.) was assigned to each potential combination of attributes. The

evaluator then defined the cut-off level as the minimum level of representativeness a change

scenario had to possess for inclusion in the changeload, which followed the initial definition of

the ToS.

For instance, all scenarios with a “Medium” or higher representativeness ranking were

included. In that case a scenarios with “Very High” probability of occurrence, a “Catastrophic”

impact, and a “Mandatory” ranking would be included in the changeload, while a change

scenario with a “Low” probability of occurrence, “Marginal” impact, and “Low”

representativeness ranking would be omitted as its attributes did not warrant the resource

investment in its evaluation. Finally, the changeload was defined as a set of the most relevant

and probable change scenarios, depicted below in Equation 6.

Equation 6: Changeload Specification

An important consideration is that the order of the change scenarios that comprised the

changeload was significant as each variation may result in significantly different adaptive

behavior (Almeida & Vieira, 2012; B. Cheng et al., 2009). The evaluator then took the

changeload specification and implemented the changes for the specific system. That is, the

 ChangeLoad ChangeScenarios

12

changeload and its corresponding change scenarios were converted into executable code that the

benchmarking system could execute against the SUB. Almeida and Vieira (2012a) presented a

simple case study of an adaptive database management system (ADBMS) to demonstrate the

applicability of their approach.

Contribution Summary

The Almeida and Vieira (2012a) approach provided a procedure for identifying the

potential risks associated with a system without utilizing any details of the target system or its

self-adaptive capabilities. The procedure utilized a step-wise refinement approach, starting with

high-level generic context and using deductive reasoning to develop more detailed descriptions

of risks to the SUB’s general goals. Their approach also provided a specification with which to

develop a standardized changeload definition. The specification provided a methodological

approach to defining change within dynamic systems.

Issues

As previously mentioned, defining a relevant changeload for benchmarking the resilience

of self-adaptive systems has several open research challenges. Almeida and Vieira (2012b)

identified the most pressing issues of changeload definitions, which included the selection of

specific changes that exercise the adaptive mechanisms of interest within a system, the reduction

of the considered change space due to the exponential growth in the number of changes that a

system may encounter, the identification of the relevant sequences of changes to mimic their

occurrence in the real-world, and the definition of the specific timing and scheduling of change

injection into the SUB (and workload) to represent real-world operating conditions. Their

approach addressed the identification of relevant changes and the reduction of the considered

13

change space issues by adapting established software engineering and project management

techniques to identify and analyze potential risks to include in a changeload.

The risk-based approach suffered from several shortcomings, including the utilization of

highly abstract goals and operating conditions to determine the drivers, and ultimately the

behavior, of the SUB. The use of vague and high-level constructs lead to several challenges in

the identification and analysis phases of the approach, the process of identifying the SUB’s

context, and the associated changes that may affect it (B. Cheng et al., 2009). These

shortcomings resulted in the consideration of an extremely large change space which

significantly increased the benchmark’s scope, overall time and labor required to conduct it, and

the total cost of the benchmarking procedure (Pressman, 2005). The following section provides

a discussion of each of the shortcomings listed above followed by a summary of the resulting

issue present in the risk-based approach.

Vague treatment of System Goals

Almeida and Vieira (2012a) stated that the identification of the SUB’s goals is the most

important aspect of defining its base scenario, and ultimately a relevant changeload, as the base

scenario is the baseline from which all changes are identified and against which all self-adaptive

values are compared. The authors affirmed that only a high-level understanding of the SUB’s

generic goals was sufficient and that detailed knowledge was not necessary, though it may aid

the process.

Further, Almeida and Vieira (2012a) postulated that only a high-level understanding of

typical goals of the class to which the SUB pertains was required, and that this provided

sufficient information to identify runtime changes that would effectively evaluate a self-adaptive

system’s resilience. However, the use of high-level goals to define changeloads did not provide

14

sufficient insight into the SUB to allow analysis of its runtime behavior, discovery of the specific

causes of system change, and the characteristics of the SUB’s response using engineering

principles (B. Cheng et al., 2009). This was caused by a lack of detail, and ultimately

understanding, between the specific goals of the SUB, its capabilities, and its behavior associated

with ensuring goal attainment in a dynamic environment (B. Cheng et al., 2009).

The use of high-level goals to drive the changeload definition process, coupled with the

complex nature of self-adaptive systems and their interactions with the operating environment

(B. Cheng et al., 2009), abstracted complex relationships which made their analysis difficult

(Lorenzoli, Tosi, Venticinque, & Micillo, 2007). This practice may have also introduced

inaccuracies into the changeload definition process (Moorsel et al., 2009) that can compound

with each subsequent step. Further, the evaluator had the daunting responsibility of defining the

benchmark domain (components, system, application domain) and key benchmark elements such

as measures, workload, faultload, attackload (all components of the changeload), while

considering the possible trade-offs between representativeness, portability, practicality, and cost

of the benchmark (Almeida & Vieira, 2012a; Bondavalli et al., 2009). Analysis of their

approach and issues that existed with the vague treatment of system goals are discussed below.

Abstraction is used to focus on a limited number of details at a time (Almeida & Vieira,

2011). The original study used this technique in an attempt to reduce the number of goals to

consider, and ultimately, the total number of risks to be enumerated by only using high-level

aspects of the SUB in Step A. However, vital details are lost when the level of abstraction is too

high, especially when there is a high degree of variability, complexity, and uncertainty present

within the SUB (B. Cheng & Atlee, 2007).

15

Almeida and Vieira (2012a) stated that goal definition and prioritization should occur

prior to defining the changeload. However, it was not clear how the evaluator should deal with

goals that may conflict at runtime or have complex relationships common to large self-adaptive

systems (B. Cheng et al., 2009) since the number of goals, functionality, features, relationships,

and interactions grew with the size of the SUB (Bondavalli et al., 2009). For instance, a web

server may be configured to maximize its performance by reducing its availability, such as its

maximum number of connections (Hellerstein, Diao, Parekh, & Tilbury, 2004). It’s unclear

how the base scenario would be defined without knowledge of the underlying conditions (B.

Cheng et al., 2009) that trigger its multiple adaptive trajectories (Almeida & Vieira, 2011).

Another example is that of the Znn.com, a self-optimizing web server built on the

RAINBOW framework, which optimizes its performance, cost, and content fidelity in response

to its workload (S. W. Cheng, Garlan, & Schmerl, 2009). Defining a base scenario based on a

simple list of these goals would be a daunting task without understanding their underlying

relationship (Bondavalli et al., 2009; B. Cheng et al., 2009). It is difficult to define changes to

the SUB’s generic operating conditions and goals (B. Cheng et al., 2009; Tamura et al., 2012) as

its relevant operations and interactions (Pressman, 2005) may not be apparent due to the

abstraction of fine-grained self-adaptive capabilities (B. Cheng et al., 2009).

Thus, the lack of detail regarding the goals and their relationships caused the evaluator to

consider a significantly larger change space (i.e. all combinations of goal relationships and their

underlying requirements) due to the inability of filtering out those that are not applicable to the

SUB (Pressman, 2005). This fact introduced additional issues when trying to define a ToS

relative to the SUB, and even more so when multiple goals must be attained concurrently (e.g.

minimum throughput, maximum response time, minimum latency), which is typically the case

16

with complex self-adaptive systems and further expands the number of changes considered (Brun

et al., 2009; Weyns, Iftikhar, Iglesia, & Ahmad, 2012).

Vague treatment of Operating Conditions

The risk-based approach also presented similar issues with the treatment of operating

conditions. Runtime goal achievement is dependent on the current operating conditions of the

SUB (e.g. internal and external context) (B. Cheng et al., 2009), and therefore, detailed

knowledge of its operating conditions is necessary to define the base scenario, evaluate goal

attainment, and correlate system context to runtime behavior (Pressman, 2005; Tamura et al.,

2012).

In the case of dependability benchmarking of static systems, the base scenario would be

defined as an absence of faults (Kanoun, Madeira, & Arlat, 2002). That is, the SUB is operating

within anticipated conditions (such as resources and workload) and services are being provided

at expected levels (Bondavalli et al., 2009). In the case of resilience benchmarking of self-

adaptive systems, these operating conditions are defined as those in which the SUB runs a typical

workload and does not need to adapt (i.e. self-configure, self-optimize, self-heal, or self-protect)

to attain and maintain runtime goals (Almeida & Vieira, 2012a).

The base scenario must include the specific conditions, such as operational context and

system-level properties, under which all runtime goals are obtained without employing self-

adaptive capabilities so that deviations from that state are identifiable (B. Cheng et al., 2009;

Tamura et al., 2012). The SUB’s determination of whether it should adapt is dependent on its

goals and its changing context, so they must be well understood by the evaluator to fully

characterize its response to a change (Bondavalli et al., 2009; B. Cheng et al., 2009). An

17

analysis of the issues resulting from the vague treatment of operating conditions is discussed

below.

The approach did not clarify how an evaluator would define the operating conditions for

a system whose self-adaptive capabilities include a self-optimization mechanism, such as

throughput awareness. It was unclear if the operating conditions would have to guarantee a static

context for all systems in the class (or for the specific system), if the operating conditions were

considered before or after optimization, what degree of granularity and detail was required for

the operating conditions and their relationship to the goals, how variations to the operating

conditions (i.e. change scenarios) that would elicit an adaptive response were defined, and

finally, how the SUB’s adaptive responses affected its operating conditions (B. Cheng et al.,

2009).

Further, the identification of change scenarios, Step B in the approach, considered the

possible sources of change to the SUB (e.g. hardware, environment), defined and classified

specific change classes (e.g. software and hardware changes, human interaction), and finally

extracted specific change types from the defined classes (e.g. database table drops, software

updates) (Almeida & Vieira, 2012a). The risk-based approach did not utilize constraining

properties to reduce the change space and benchmark’s scope (Robert Laddaga & Robertson,

2000; Pressman, 2005). Thus, the evaluator considered all possible sources of change that may

affect the system-type which unnecessarily considered the entire change space consisting of any

and all changes in its hardware, software, component, sub-system, interaction point, and

workload the system-type may encounter (Bondavalli et al., 2009; van Lamsweerde & Letier,

1998).

18

Detailed knowledge of the SUB's goals was necessary to be able to define changes that

deviate from the base scenario’s context and employ its self-adaptive capabilities (B. Cheng et

al., 2009; Tamura et al., 2012), instead of arbitrarily extending the considered change space by

defining any possible changes that may have caused it to do so (Barbosa et al., 2005; Jorgensen,

2002). Similarly, there was no way of determining when a sufficient number of changes were

identified (i.e. change coverage), if vital changes were ignored, or if the identified changes were

even possible or pertinent given the SUB’s capabilities (Moorsel et al., 2009).

The identification of relevant changes posed a significant challenge (Almeida & Vieira,

2012a), especially if insufficiently guided. A single change may have introduced unanticipated

side effects and indirectly affect other runtime goals (B. Cheng et al., 2009). There was no way

to systematically determine the extent of a change’s effects on the SUB without knowledge of its

operational context and their relationship to its goals (B. Cheng et al., 2009), leaving the

evaluator little option but to define and enumerate the large number of test cases (Robert

Laddaga & Robertson, 2000; Pressman, 2005). The evaluator then translated the identified

changes into concrete changes (i.e. executable code) and determined the appropriate trigger

instant, duration, and amount for each (Almeida & Vieira, 2012a). However it was not clear how

these details were being determined, or how the changes were being selected for translation

when field data was not available, leaving little option but to translate them all.

For instance, Almeida and Vieira (2012a) used the example of a “10% increase in the

number of requests per second commencing 5 minutes after starting execution of the workload

and ceasing 2 minutes thereafter” which may or may not have resulted in any self-adaptive

capabilities being employed to maintain goals. The assumption was that it would result in

activation of self-adaptive mechanisms and provide relevant feedback to the evaluator, however,

19

this may not have been the case, and instead it may result in additional costs (e.g. labor and

effort) of analyzing and enumerating a larger number of changes than was necessary.

The shortcomings of the risk-based approach outlined in the previous section resulted in

high benchmarking costs, discussed below.

Cost

The risk-based approach suffered from high cost due to the consideration of the entire

change space resulting from the use of imprecise constraints (vague goals and operating

conditions) throughout the procedure (Pressman, 2005). The risk-based approach’s identification

of changes and their correlation to the change space is illustrated in the following example.

Consider a self-adaptive HTTP Web Server, Self-System A, which possesses self-

optimizing mechanisms that adjust the number of allowed connections to ensure QoS

requirements of low response times. The risk-based approach considered the high-level goal of

"self-optimization" and any change that may affect the SUB in any way. These changes were

defined as those affecting hardware, H , software, S , or the SUB’s internal context, I , as defined

in Equation 7.

internalContext

changes

changes

changes

H hardware

S software

I

Equation 7: Definition of Change

Changes originating in the SUB’s environment (i.e. external to the system), E , are

defined as all possible hardware or software changes, as defined in Equation 8.

changesE environment H S

Equation 8: Definition of Environment Changes

20

Finally, the change space, CS , was defined as all possible internal and external changes

that may affect the SUB, as depicted in Equation 9.

CS E I

Equation 9: Definition of the Change Space

The risk-based approach considered only the SUB’s high-level capabilities, high levelSC ,

that relate to the self-optimizing mechanisms, as defined in Equation 10.

{ | is any capability relating to the SUB}

{ | is a self-optimizing capability of the SUB}

high levelSC x x

x x

Equation 10: Definition of High-Level System Capabilities

Further, the high-level goals, high levelG , were identified for the SUB, as shown in Equation

11.

{ | is any goal that genrally relates to the SUB}

 { | is any goal that relates to QoS}

high levelG x x

x x

Equation 11: Definition of High-Level System Goals

Finally, the considered changes,
risk basedCC

, was defined by the risk-based approach as

those changes that affect the SUB’s high-level capabilities, high levelSC , from attaining and

maintaining its high-level goals, high levelG , as depicted in Equation 12.

{ | , affects maintenance of }

{ | , affects the self-optimizing capabilities maintenance of the QoS goal}

risk based high level high levelCC x x CS x SC G

x x CS x

Equation 12: Changes Considered by the Risk-Based Approach

As illustrated, the risk-based approach considered any possible change that may have

affected Self-System A, or its goals, regardless of if the SUB could detect the change, if the

21

change would elicit an adaptive response, or if the goal was maintained by a self-adaptive

mechanism, which made
risk basedCC

very large. The issue became very prevalent for large

complex self-adaptive systems (Bondavalli et al., 2009; Salehie & Tahvildari, 2009) due to the

complex interaction between the SUB, its dynamic environment, and its emergent behavior

(Bondavalli et al., 2009; B. Cheng et al., 2009).

The use of an exhaustive changeload (a test everything approach) is impractical as it

introduces high cost, high labor, and increased difficulty into the resilience benchmark (Salehie

& Tahvildari, 2009; Vieira & Madeira, 2004), though it may exhibit a high degree of change

coverage (Moorsel et al., 2009). Similarly, the risk-based approach required the evaluator to

consider the risks in a general manner, organize them into categories, classes and types, and

analyze each individual change to determine its relevance to the SUB based on their expected

impact and probability of occurrence (Almeida & Vieira, 2012a).

If few changes were analyzed and deemed irrelevant in the selection phase, ()Cs T

mentioned in Equation 1, the evaluator would incur significant cost (Bondavalli et al., 2009) by

having to invest time, labor, and other resources to enumerate a larger number of changes against

the SUB (Vieira & Madeira, 2004). That is, ()Ce T , ()Cu T and ()Cc T , would be very large.

Conversely, if many changes were deemed irrelevant the evaluator would experience reduced

costs associated with the enumerating changes, ()Ce T , ()Cu T and ()Cc T , but incur a greater cost

by manually analyzing the entire risk space, ()Cs T . Ultimately, finding the best possible balance

between the representativeness of the changeload and the practicality of the benchmark

determines the usefulness of the benchmark procedure and is an open research challenge

(Almeida & Vieira, 2011, 2012b; A. B. Brown et al., 2004).

22

Regardless of the outcome of the change analysis, the consideration of the entire change

space, or defining an exhaustive changeload, for a large and complex self-adaptive system is

very costly and impractical (Kanoun et al., 2002; Salehie & Tahvildari, 2009; Vieira & Madeira,

2004). The authors attempted to reduce the change space by utilizing a cut-off level in Step E of

the risk-based approach, described below.

In Step E, the changeload was defined by including only those change scenarios whose

representativeness (the combination of the change scenario’s impact and probability) superseded

the evaluator’s cut-off level (defined for the exposure matrix - e.g. High) and directly affected

the size of the enumerated changes,
risk basedEC

, in final changeload, depicted in Equation 13.

{ | , cut-off }

{ | , high}

| , {high, very high, mandatory}

risk based risk based impact impact

risk based impact

risk based impact

EC x x CC x

x x CC x

x x CC x

Equation 13: Enumerated Changes in the Risk-Based Approach

The definition of the cut-off level was subjective, based solely on the evaluator’s

knowledge or via multi-voting when multiple experts were involved, which made it difficult to

verify and justify (Burgman, Fidler, Mcbride, Walshe, & Wintle, 2006). There was no way of

knowing if the resulting changeload adequately affected the SUB with complex goal

relationships (B. Cheng et al., 2009) or if it elicited an adaptive response (Almeida & Vieira,

2012b; Barbosa et al.; Friginal, de Andres, Ruiz, & Gil), save for experimentation (Robert

Laddaga & Robertson, 2000), which was not cost effective (Bondavalli et al., 2009).

Furthermore, change scenarios that were under the cut-off level (and excluded from the

final changeload) may have actually devastated the SUB even more than those included since

they may cause subsequent changes with greater impact resulting in failure (Almeida & Vieira,

23

2011). The cut-off level needed to be defined in a more objective manner in which the SUB’s

goals, and the change’s impact to those goals, were considered directly to ensure a high degree of

change coverage (B. Cheng et al., 2009; Moorsel et al., 2009). Ultimately the cut-off level

determined the thoroughness and change coverage of the evaluation (Moorsel et al., 2009;

Pressman, 2005) and implied a degree of system robustness (Lemos et al., 2010) but it could not

be verified or audited using a systematic approach (Moorsel et al., 2009).

In their follow-up paper, Almeida and Vieira (2012b) concluded that more work was

necessary to address these research challenges and adequately reduce the considered change

space, provide better insight, knowledge, and modeling of changes in highly dynamic systems

and environments (Almeida & Vieira, 2012b). This study extended the risk-based approach to

address these issues and reduce the cost of resilience benchmarking of self-adaptive systems,

described in the following section.

24

Goal

The goal of this dissertation consisted of the extension of risk-based approach to further

address the open research challenges identified in Almeida and Vieira (2012b), specifically the

identification of relevant changes and the reduction in the size of the considered change space, in

an effort to reduce the overall cost and labor associated with resilience benchmarking of self-

adaptive systems. The study utilized system knowledge, specifically detailed descriptions of the

SUB’s goals and its self-adaptive capabilities, to identify and analyze only the relevant changes

that result in adaptive responses of interest for resilience evaluation (Almeida & Vieira, 2012b).

This approach differed from the risk-based approach, which considered the entire change space

and gradually filtered out irrelevant changes. Further, this study applied both approaches to a

self-adaptive system to provide a basis for comparison and demonstrate the extended changeload

definition process.

Discrete mathematics has been used to describe and analyze software testing strategies

(Jorgensen, 2002). Its use achieves a high degree of rigor, precision, and efficiency over

informal analysis and comparative methods (Jorgensen, 2002). For instance, a set of tests, T ,

used to evaluate a system, S , can be represented as the test function ()S T (Jorgensen, 2002).

Both T and ()S T can be formally defined using declarative statements, logical operations, and

then manipulated using set operations (e.g. union, intersection, subset), in a similar manner

utilized in the Cost section above (Jorgensen, 2002; Leung & White). The use of set theory,

functions, and relationships provide a straightforward method for representing and comparing

different testing strategies (Jorgensen, 2002; Leung & White, 1991). In the case of this study,

comparison of the risk-based and goal-oriented approaches was straightforward and conducted

25

using set theory. The similarities between the two approaches allowed for direct comparison of

their outputs (Galeebathullah & C.P.Indumathi, 2010; Leung & White, 1991).

The measurement of success for this study was a reduction in overall resilience

benchmarking costs which was quantified using the Leung and White (1991) software testing

cost model presented in Equation 1. The cost model defined the total cost of a software testing

strategy, ()C Strategy , against a set of test cases, T , and is comprised of the costs of system

analysis, Ca , test selection, Cs , test execution, Ce , result analysis and understanding, Cu , and

result checking, Cc .

Cost savings were quantified using an adjusted version of the Leung and White (1991)

cost model shown in Equation 1 to compare the costs of the risk-based approach, ()C risk based

, and the goal-oriented approach, ()C goal oriented , to satisfy the cost inequality depicted in

Equation 14.

() ()C goal oriented C risk based

Equation 14: Leung and White (1991) Cost Model Strategy Comparison Inequality

Confirmation of success was attained if the goal-oriented approach reduced the overall

cost of resilience benchmarking by ensuring the inequality holds true, that is, it reduced the

number of test cases such that any additional selection costs were offset (Leung & White, 1991;

Xavier et al., 2008). Thus, the goal-oriented approach was more cost-effective if the cost savings

inequality shown in Equation 15 held true. Appendix A contains a detailed description of the

inequality and variable definitions.

26

'' '
1

s

s

s T T c e

s T T c e

Equation 15: Simplified Test Suite Cost Comparison Inequality (rewritten)

The goal-oriented approach would succeed in reducing the overall cost of resilience

benchmarking by decreasing the number of changes that required consideration throughout the

process and reducing the total number of changes in the resulting changeload requiring

enumeration (Xavier et al., 2008).

Relevance and Significance

This work was relevant due to the growing reliance on self-adaptive systems and the need

to ensure the resilience of their services. Businesses, institutions, and governments required their

systems to be resilient in dynamic environments with the capability to handle the unpredictable

workloads created by our modern information society (IBM, 2003). Development and

management of critical systems able to handle the explosion of information requiring storage and

computation, while keeping pace with constant demands for increased performance and reduced

costs, is an increasingly difficult and complex task (B. Cheng et al., 2009; Ganek & Corbi, 2003;

Vieira & Madeira, 2003).

Software developers met these needs by continually exploiting growing computational

power, producing more sophisticated software systems that were more versatile, flexible, robust,

dependable, energy-efficient, customizable, secure, and configurable (B. Cheng et al., 2009;

IBM, 2003; Madeira et al., 2002). The resulting exponential growth in the number, variety, and

size of systems, sub-systems, and components created highly distributed and heterogeneous

environments which were difficult to maintain and whose runtime behavior was difficult to

27

predict (IBM, 2003). For example, the value of the Internet has fueled significant growth in

storage subsystems (e.g. Database Management Systems) which are now capable of holding

petabytes of information and are only a component of an even larger system, or system of

systems, requiring its own management, configuration, and tuning (IBM, 2003).

Managing large infrastructure systems became too costly and error prone and resulted in

an increase in the frequency and impact of service outages (Ganek & Corbi, 2003). For instance,

management and maintenance of critical infrastructure systems grew to 70 – 90 percent of total

system cost and up to one-half of an organization’s IT budget (Ganek & Corbi, 2003; Group,

2002). Management tasks in these large-scale production systems were too labor-intensive and

stressful as they required the operators to decipher large amounts of data and make critical

decisions within seconds, resulting in the prevalence of errors, failures, and outages (Ganek &

Corbi, 2003). For instance, downtime due to security related service outages at brokerages

houses and banking firms were estimated to cost $4,500,000 and $2,600,000 per incident per

hour (Group, 2002), respectively, with about 40 percent of these outages resulting from operator

error (e.g. poor configuration, tuning, or management) (Ganek & Corbi, 2003). These errors

were not caused by poor training or lack of capability but by the inherent complexity of the

systems and the pressures of making split-second decisions with a high degree of uncertainty

(Ganek & Corbi, 2003).

Further, the economic impact was estimated at almost $3,000,000 per hour for the energy

sector and $2,000,000 per hour for the telecommunications industry (Group, 2002) and did not

include the societal impact (e.g. pain, suffering, and potential loss of life) experienced by those

relying on these critical infrastructure services. Some of the most frequent causes of reported

outages were management errors, user error and inadequate change control in systems,

28

performance overload and insufficient bandwidth in networks, and performance overload and

configuration errors in database systems (Ganek & Corbi, 2003). Thus, proactively handling

system management and maintenance issues in highly complex systems and environments was a

top priority (Ganek & Corbi, 2003).

Industry, governments, and the research community have turned to self-adaptive systems

to cope with the growing complexity and manageability of these systems in an effort to reduce

errors, failures, and overall downtime (Bondavalli et al., 2009; B. Cheng et al., 2009; Ganek &

Corbi, 2003; Group, 2002; IBM, 2003). They incorporated self-adaptive capabilities into their

systems as the autonomic responses and mechanisms were better equipped to deal with the

uncertainties of the system’s operating conditions (Almeida & Vieira, 2012a; Moorsel et al.,

2009; Salehie & Tahvildari, 2009). Automating complex management tasks reduced the need

for human intervention which liberated the highly skilled technical staff from having to install,

configure, operate, tune, and maintain critical systems, enabling them to focus on tasks with

higher organizational value (IBM, 2003). Self-adaptive capabilities are found in web and

database servers (Graefe, Idreos, Kuno, & Manegold, 2010), multimedia services (Bra et al.,

2003), unmanned vehicles (B. Cheng et al., 2009), and are incorporated into large-scale legacy

systems to extend their utility passed their end-of-life (Hurtado, Sen, & Casallas, 2011; Parekh,

Kaiser, Gross, & Valetto, 2006; Zhang & Cheng, 2007). The increased reliance on self-adaptive

systems made their resilience a top priority to those who may experience financial or social

impact by their failure (Almeida & Vieira, 2012a; B. Cheng et al., 2009). Evaluation and

benchmark methods are vital to instill confidence in the system’s safety, quality, and overall

resilience, provide methods for verifying claimed properties, reduce long-term system costs, and

29

reduce the frequency and impact of outages (Bondavalli et al., 2009; Garlan, 2010; Moorsel et

al., 2009).

Barriers and Issues

The problem of defining a cost-effective changeload for the resilience benchmarking of

self-adaptive systems was, and continues to be, inherently difficult to solve for several reasons.

First, if cost or time were not a concern it would be appropriate to define and enumerate

all possible changes in all possible contexts of the system (Vieira & Madeira, 2004). The

changeload would grow exponentially due to the scale and complexity of self-adaptive system’s

behavior, components, and interconnections (B. Cheng et al., 2009; Cin et al., 2002; Vieira &

Madeira, 2004), as described in the previous sections. However, defining and enumerating all

possible changes in an exhaustive changeload was impractical (Vieira & Madeira, 2004), and

potentially impossible in practice (Quadri & Farooq, 2010), due to the costs associated with

defining and enumerating a large number of change scenarios (Leung & White, 1991).

A second issue was defining a minimized changeload that provided maximum coverage.

This has been shown to be NP-Complete and can be re-expressed as an optimization problem

(Harrold, Gupta, & Soffa, 1993; Hemmati, Briand, Arcuri, & Ali, 2010). Therefore, a minimized

changeload can only be approximated utilizing heuristics, greedy algorithms, genetic algorithms,

and other selection techniques (Galeebathullah & C.P.Indumathi, 2010). These techniques

reduce the changeload size by removing redundant, obsolete, and ineffective change scenarios

(Barbosa et al., 2005; Galeebathullah & C.P.Indumathi, 2010; Harrold et al., 1993). However,

they require the changeload to be defined for the entire change space and are then reduced,

wasting resources on the identification of redundant and ineffective change scenarios (Barbosa et

al., 2005; Roberto, 2013). The goal-oriented approach utilized system knowledge to guide the

30

test selection strategy in order to overcome this issue, avoid the identification and definition of

irrelevant changes, and produce a minimized changeload.

Another approach, such as model based-testing (MBT), are systematic, generate change

scenarios based on models, and can be proven complete (B. Cheng et al., 2009; Hemmati et al.,

2010). However, MBT suffers from scalability issues when utilized against complex systems

(Hemmati et al., 2010). For instance, thousands of change scenarios can be generated for even

modest systems utilizing well-known coverage criteria, such as all transition-pairs or all-

roundtrip paths (Hemmati et al., 2010), which is not cost-effective.

A third issue was maximizing the error detection rate during system evaluation while

using a minimum number of test cases. Additionally, the changeload’s cost-effectiveness must

be maximized while ensuring it fully characterizes the system and evaluates goal attainment

(Almeida & Vieira, 2011; Hemmati et al., 2010; Quadri & Farooq, 2010; Roberto, 2013; Vieira

& Madeira, 2004). Unjustified or unguided test case omission reduced the changeload’s error

detection rate and can omit tests that are vital to the end-user (Hemmati et al., 2010).

Conversely, not removing all ineffective tests resulted in increased cost, which hindered

evaluation efforts (Barbosa et al., 2005; Quadri & Farooq, 2010; Vieira & Madeira, 2004).

Defining a changeload that balanced coverage, user expectations, real-world conditions, and cost

continues to be difficult and labor intensive (Quadri & Farooq, 2010). The goal-oriented

approach utilized system knowledge to identify the self-adaptive elements of interest and then

defined relevant changes for their direct evaluation in order to ensure test coverage of the

system’s resilience mechanisms.

A solution that addressed the above concerns would add to the body of knowledge and

potentially provide a basis for future research.

31

Assumptions, Limitations, and Delimitations

The goal of this dissertation was to reduce the overall cost of resilience benchmarking of

self-adaptive systems by reducing the considered change space when defining a resilience

changeload. The approach utilized system knowledge to limit the identification and definition of

changes to those that directly affected a system feature or service protected by a self-adaptive

mechanism.

An assumption of this study was that the self-adaptive mechanisms that introduce the

systematic or localized change would not introduce additional changes, such as a fault or failure,

which would then prompt a series or loop of self-adaptive responses. Furthermore, self-adaptive

responses and state transitions occurred within known operational states. These assumptions

ensured that all adaptation and system states were fixed and did not involve emergent behavior,

allowing behavioral verification and validation. Another assumption was that the defined

changes accurately reflected actual changes experienced by the SUB within its production

environment and its intended use. These assumptions were in-line with previous studies where

the runtime behavior of complex systems was evaluated in the presence faults, failure, and other

runtime changes (Almeida & Vieira, 2012a; Bondavalli et al., 2009; Cámara, Lemos, Vieira,

Almeida, & Ventura, 2013; Graefe et al., 2010; Khalil, Elmaghraby, & Kumar, 2008; Vieira &

Madeira, 2004).

A limitation of the study was the behavior, structure, and functionality of the target

system, particularly its self-adaptive mechanisms and capabilities. The analysis, conclusions,

and identified changes were only accurate and relevant for the particular implementation, which

may limit the applicability of the results. However, the process and approach was generalized

and not system-specific. Additionally, some adaptive trajectories or emergent behavior may not

32

be obvious without in-depth analysis of either documentation or source code, and may not be

identifiable without experimentation. For example, a multistep adaptive response (an adaptation

triggers another) to a change may be by design, where the system continuously over- and under-

compensates to environmental changes until it reaches equilibrium. However, these adaptations

were omitted, unless explicitly documented, since the focus of this study is to reduce the cost of

resilience benchmarking while ensuring coverage of known adaptive functionality.

A delimitation of this study was that all the self-adaptive capabilities and mechanisms of

the target system were fixed and known a priori. This delimitation limited the applicability of

the study’s results to those systems without evolving capabilities, updatable adaptive

mechanisms, or emergent behaviors. Due to the degree of diversity within self-adaptive systems,

other studies have also limited their focus to specific system-types or functional-families to

increase the feasibility of defining relevant resilience changeloads (Almeida & Vieira, 2012a;

Vieira & Madeira, 2004). This study took a similar approach by making the above stated

assumptions and delimitations which were reasonable and in line with the previous study.

Definition of Terms

Operating Environment The environment in which the system operates that cannot be

directly managed by the system, such as available system

memory, workload, or network connection (Madeira et al., 2002).

Self-Adaptive A computing environment or software system with the ability to

manage aspects of its operation and dynamically adapt to change

in accordance to business policies, objectives, and run-time goal

attainment. They can be either self-configuring, self-healing,

self-optimizing, or self-protecting (Ganek & Corbi, 2003)

Change Any significant event in the context of a system or environmental

resource, internal system state, interface, or component that may

affect the system’s ability to attain runtime goals. These can

33

include attacks, failures, faults, updates, or workload variations

(Ganek & Corbi, 2003).

Managed Resource A system component, module, or resource that can be managed

by the system at runtime (Ganek & Corbi, 2003).

Sensor An interface that provides information about the state and

operation of a managed resource (Ganek & Corbi, 2003).

Effector An interface that allows the system to modify the operational

state of a managed resource (Ganek & Corbi, 2003).

Fault Exceptional conditions that may occur internally, such as

hardware or software faults, or externally, such as those that

occur within the operating environment, which disrupts expected

system operation (Gil et al., 2002; Madeira et al., 2002).

Failure Is a state in which an error reaches a service interface and alters

the offered service in such a way that expected service qualities

are no longer met (Gil et al., 2002).

Change Trajectory The context / operational state of the system as it adapts to a

sequence or group of changes. Temporal order of changes often

determine specific change trajectories (Almeida & Vieira, 2011).

Functional Testing Testing in which the only information utilized is the software

specification in which inputs are mapped to expected outputs,

commonly referred to as black box testing (Jorgensen, 2002).

Black-box Testing Testing in which the implementation of a system is not known

and considered as a black box, where the function of the black

box is understood completely in terms of its inputs and outputs

(Jorgensen, 2002).

Test An act of exercising a software system in an effort to find failures

or to demonstrate its correct operation (Jorgensen, 2002).

Test Case A set of inputs and expected outputs used to test program

behavior (Jorgensen, 2002).

Fault Space The set of all possible faults that may affect a system, its

components, or its environment (Vieira & Madeira, 2004).

Change Space The set of all possible changes that may affect a system, its

components, or its environment (Almeida & Vieira, 2012a).

34

Resilience Encompasses all attributes of quality where a system works well

and can be trusted in a changing environment and in the presence

of faults, failures, errors, and attacks (Almeida et al., 2010).

Summary

Trends and projections depicted an increase in the need for performance, resilience, and

reduced costs of infrastructure systems to meet the growing demand of modern society.

However, the increased complexity of these systems in response to growing demand negatively

contributed to the management and maintenance of these systems, as they were more prone to

outages and errors, which resulted in loss of revenue or disruption in service.

Self-adaptive capabilities endowed a system with autonomic features of self-management

or self-healing, which reduced the reliance on human-operators to conduct routine maintenance

tasks or troubleshoot issues. Benchmarking and validation of resilience was of utmost

importance due the reliance on the critical infrastructure services maintained by self-adaptive

mechanisms. However, testing was often labor intensive and cost-prohibitive due to the scale

and complexity of these systems. This resulted in insufficient or incomplete testing of runtime

functionality, or in many cases, testing was omitted as a cost-saving strategy. Therefore, since

software testing can account for 50 to 80% of total system costs, a method for reducing the cost

of resilience benchmarking of self-adaptive systems while maintaining test coverage was

required.

Barriers existed in achieving this goal. Maximizing the cost-effectiveness of the test

suite, while simultaneously maintaining test coverage, was difficult. Additionally, the

determination of which tests could be omitted to reduce costs continues to be an open research

question. Special care must be observed in maintaining this balance as a solution that does not

35

sufficiently reduce the cost of benchmarking, or negatively impacted the test coverage of the

suite, was unacceptable.

The risk-based approach presented in this chapter is representative of the current research

that has attempted to address these problems. It consisted of utilizing Software Risk Evaluation

(SRE) techniques to identify the risks threatening the achievement of the system’s goals. As

such, this research proposed an extension to the risk-based approach to utilize goal-oriented

requirements engineering techniques to extract system knowledge and determine if cost-savings

and greater effectiveness can be realized over previous research.

The next chapter provides a review of the literature providing an overview of

performance benchmarking, dependability benchmarking, and resilience benchmarking as it

relates to self-adaptive systems, followed by a discussion of the benchmarking cost saving

techniques found within the literature.

36

Chapter 2

Review of the Literature

Introduction

A comprehensive review of the risk-based approach for defining resilience changeloads

has been conducted and its corresponding shortcomings were discussed in the Problem

Statement. The discussion has demonstrated the need to extend the risk-based approach to

reduce the cost of resilience benchmarking while ensuring the selection of relevant changes that

exercise the pertinent system functionality. This section discusses the concepts that were

pertinent to this study, such as performance benchmarking, dependability benchmarking, and

resilience benchmarking, and then culminating with a discussion of existing cost-savings

techniques for system benchmarking.

Benchmarking

Benchmarks are a generic way of characterizing a system's runtime behavior, called the

system under benchmark (SUB), by simulating real-world operating conditions (such as expected

workloads) and analyzing the quantitative output produced using metrics, which provided a

standardized method of evaluating and comparing alternative implementations (Almeida &

Vieira, 2012a; Bondavalli et al., 2009; A. B. Brown et al., 2004; Kaddoum, Raibulet, Georg,

Picard, & Gleizes, 2010). Their results were used to gauge a system’s effectiveness in its

intended operating environment, set realistic expectations for its Quality of Service (QoS),

provided assurance and verification of key property claims, and abstracted a system’s technical

details to allow non-technical end-users to compare alternative systems in a straightforward

37

manner (Almeida & Vieira, 2011; A. B. Brown et al., 2004; Kaddoum et al., 2010; Weicker,

1990).

Work on benchmarking focused primarily on performance aspects of systems, such as

CPU, operating system, and file system performance (Almeida & Vieira, 2012a; Traeger, Zadok,

Joukov, & Wright, 2008). Performance benchmarks were composed of three major components,

the workload, which was the computational load for the SUB (Cin et al., 2002), performance

metrics, and execution rules (Almeida & Vieira, 2012a). They were classified as real, ad-hoc,

synthetic, application, or trace benchmarks (Agrawal, Arpaci-Dusseau, & Arpaci-Dusseau,

2008).

A real application benchmark was the use of the application that the end-user intended to

run on the system as a benchmark for the system, with the obvious advantage that the benchmark

results corresponded directly to the actual scenario the end-user cared about, and was the most

representative of its real-world performance (Agrawal et al., 2008). However, this technique was

impractical as was impossible to determine the specific use of a system for each potential end-

user, especially in the case of general-purpose and commercial off-the-shelf (COTS) systems

(Traeger et al., 2008).

Ad-hoc benchmarks were created by a system’s author for in-house use, were not

available to outside parties, and were not reproducible. The code for in-house benchmarks were

not widely used or distributed, which resulted in differing implementations, increased errors, and

made their results difficult to compare (Traeger et al., 2008).

Synthetic benchmarks were solely written to simulate real-world workloads and

performed no useful computations, such as the TPC-C benchmark, by the Transaction Processing

Performance Council (TPC) which was used for online transaction processing (OLTP)

38

benchmarks for database management systems (DBMS) (Weicker, 1990). TPC-C mimicked the

activity of a wholesale supplier where multiple users executed data-intensive transactions against

a database (Council, 2010). Synthetic benchmarks were widely available, standardized, and

were highly reproducible, but their workloads did not always represent real-world conditions

accurately (Agrawal et al., 2008; Traeger et al., 2008; Weicker, 1990).

Application benchmarks were distilled from real and purposeful programs that were

representative of those used in a particular industry or within a system-type, such as LINPAC,

which was a package of libraries used in sophisticated Fortran programs and was originally a

major component of a scientific application (Fernandez & Garcia, 1999; Weicker, 1990). They

were also widely available and representative, but their results were highly dependent on the

language and libraries used in their implementation, which made them prone to gaming

(Weicker, 1990).

Finally, trace benchmarks recreated real workloads by logging operations and replaying

them under controlled conditions, and if done correctly, they were the most representative

benchmark type (Traeger et al., 2008). However, the lack of standardized methods for capturing

and replaying traces, coupled with variations in benchmark system setups, made their results

difficult to compare and interpret due to the complex interactions of their components (Agrawal

et al., 2008). Further, real-world traces were not readily available due to privacy concerns of

both the creator (e.g. proprietary technologies) and their users (e.g. capturing of personal

information) (Traeger et al., 2008).

Measurements were taken of the SUB while it computed the workload, such as those

mentioned above, using performance metrics. A performance metric is a standard method of

measuring and quantifying a property of interest, such as bytes per second (bps), millions of

39

instructions per second (MIPS), millions of floating point operations per second (Mflops), or

transactions per minute (tpmC), and allowed the direct comparison of systems (Agrawal et al.,

2008; Council, 2010).

There were several challenges with performance benchmarking, such as finding the

balance between the representativeness and practicality of the benchmark (A. B. Brown et al.,

2004). For instance, a benchmark with a high degree of representativeness (i.e. it represents a

production environment and system configuration very well) often resulted in complex and

costly benchmarking setups and procedures, which reduced its reproducibility and portability

over different systems (Fernandez & Garcia, 1999; Moorsel et al., 2009).

Another challenge was determining the appropriate workload to adequately characterize a

system so that the properties of interest were isolated in a realistic manner (Fernandez & Garcia,

1999). For example, CPU benchmark results were often influenced by a number of factors other

than the CPU, such as the programming language characteristics of the benchmark, compiler

optimizations used, runtime libraries utilized within the benchmark code, and the cache sizes of

the involved components (e.g. CPU and disk caches) (Weicker, 1990). Thus, benchmark results

must be considered with the context of tasks performed and measurement assumptions to ensure

proper interpretation and comparison (Weicker, 1990).

Benchmarks are useful tools that provide means of comparing systems on various

performance properties, identify performance problems and bottlenecks, and motivate system

design improvements (Fernandez & Garcia, 1999). Useful benchmarks are those that are

representative of the system domain, produce expressive results that adequately describe the

SUB, are repeatable, portable over different systems, and verifiable (Almeida & Vieira, 2011; A.

B. Brown et al., 2004; Fernandez & Garcia, 1999). Despite the large amount of research

40

focusing on performance benchmarks, researchers continued to address the challenges of

defining representative workloads due to the growth in complexity of both modern systems and

their usage characteristics (Almeida et al., 2010; IBM, 2003).

Dependability Benchmarking

Society’s use of networked devices for critical infrastructure services increased

awareness of the importance of failures that resulted in undesirable repercussions, such as loss of

revenue, prestige of a company, trust in a service, and even loss of life (Ganek & Corbi, 2003;

Madeira & Koopman, 2001). Performance and functionality were no longer the only motivation

for improvements in technology products as the technology industry was increasing its emphasis

on designing systems that could function in the presence of faults and failures, that is, systems

that were dependable (Kanoun et al., 2002; Madeira & Koopman, 2001).

Dependability is an integrating concept that combines the attributes of availability,

reliability, safety, integrity, and maintainability of systems that is attained by incorporating fault

prevention, fault tolerance, fault removal, and fault forecasting capabilities into a system (A.

Avizienis, J. C. Laprie, B. Randell, & C. Landwehr, 2004). Thus, a dependable system is one

with ability to delivery services, via fault prevention and tolerance mechanisms, that could be

justifiability trusted by avoiding service disruptions due to frequent and severe faults, using fault

removal and forecasting features (A. Avizienis et al., 2004; Kanoun et al., 2004). Faults are

defined as exceptional, abnormal, or stressful conditions that result in system failure, or more

precisely, a state in which a system no longer accomplishes its intended purpose or goals (Vieira

& Madeira, 2003).

Thus, the goal of dependability benchmarking was to provide a systematic means of

characterizing the behavior of computer systems in the presence of faults, typically evaluated

41

from the end-user’s perspective of their expected services, in a reproducible and cost-effective

manner (Cin et al., 2002; Kanoun et al., 2002; Kanoun et al., 2004). Dependability benchmarks

extended performance benchmarks by subjecting the SUB to representative faults while it

executed workloads typically utilized in performance benchmarks (Almeida & Vieira, 2011; A.

B. Brown et al., 2004; Cin et al., 2002; Kanoun et al., 2004). For example, the well-known

dependability benchmark DBench used TPC-C as its workload.

The injection of the faults was a critical experimental technique for assessing and

verifying dependability (Moorsel et al., 2009; Xavier et al., 2008) as it provided insight into the

SUB’s tolerance and recovery capabilities in the presence of simulated faults (Kanoun et al.,

2002; Salehie & Tahvildari, 2009; Vieira & Madeira, 2003). Faults included internal and

external faults affecting software, hardware, network, and human components (Cin et al., 2002).

Faultloads

The faultload captured the additional dimension of fault injection in dependability

benchmarking. It was a set of representative faults to be injected into the SUB and included their

intended location (e.g. in code, memory, or in hardware), insertion time (e.g. when they should

be injected), relative distribution within time and space, and fault type (Cin et al., 2002; Kanoun

et al., 2004). Some examples of faults include register bit-flips to simulate CPU hardware faults,

data corruption to simulate software faults, read / write timeouts to simulate disk faults, and

packet loss to simulate network interface faults (Cin et al., 2002). The SUB's reaction to the

faultload was measured utilizing dependability metrics, such as mean time to failure (MTTF) and

total uptime, which allowed the direct comparison of systems using quantitative results (A. B.

Brown et al., 2004; Madeira et al., 2002).

42

The faultload was critical to dependability benchmarking but was non-trivial to define.

The following section discusses several challenges associated with faultload definitions.

Faultload Challenges

Defining a representative faultload was the most difficult and obscure aspect of

dependability benchmarking (Kanoun et al., 2002; Madeira et al., 2002; Madeira & Koopman,

2001) and was more complex than defining workloads for performance benchmarks (Kanoun et

al., 2002). In particular, determining the essential elements of the evaluation domain, identifying

the features of interest, and defining the most applicable faults of the faultload in a practical and

reproducible manner were difficult and labor intensive tasks (Kanoun et al., 2002). This was a

result of a lack of available field data (Almeida & Vieira, 2011; Moorsel et al., 2009) and the

complex nature of computer faults (Vieira & Madeira, 2004).

Further, the faultload had to portray a high degree of representativeness, completeness,

implementability, portability, and repeatability, while being comprised of the minimal number of

faults to ensure its cost-effectiveness (Cin et al., 2002). Of particular importance were its

representativeness, which directly related to the accuracy of the benchmark results (Cin et al.,

2002), portability, which ensured its ability to directly compare different systems (Moorsel et al.,

2009; Vieira & Madeira, 2004), and cost-effectiveness, which determined its practicality and

reproducibility (Kanoun et al., 2004).

A system’s fault space was comprised of all possible sources of faults, affecting any

component or interface of the system, that may or may not result in failure (Vieira & Madeira,

2004). The fault space could be very large as it grew exponentially in relation to the number of

system components, features, and interfaces (Bondavalli et al., 2009). An exhaustive faultload,

which contained all possible faults in the fault space, was often recommended in literature (Cin

43

et al., 2002; Kanoun et al., 2004) because it ensured a high degree of fault coverage and a greater

possibility of uncovering unknown flaws and defects (Vieira & Madeira, 2004). However, this

practice became increasingly impractical as the complexity and size of the SUB increased,

especially with respect to cost (Cin et al., 2002; Xavier et al., 2008). Cost referred to the overall

cost of dependability benchmarking, which included: the time and effort involved in considering

and defining the fault space, the analysis and selection of faults to include in the faultload, and

the time and resources required to enumerate the faultload in the experimental phase of the

benchmark (Ganek & Corbi, 2003; Kanoun et al., 2004). Thus, the cost of a dependability

benchmark was directly related to the number of faults considered, included, and enumerated

(Xavier et al., 2008).

Several techniques were proposed to reduce the considered fault space and the cost of

dependability benchmarking. For example, many classes of low-level hardware faults exhibited

similar high-level characteristics, so simulating hardware faults at higher logical layers reduced

the number of hardware faults in the faultload (Cin et al., 2002). Similarly, software faults could

also be abstracted using established software defect classifications, such as the Orthogonal

Defect Classification (ODC), which classified software defects in a set of non-overlapping

classes (Cin et al., 2002). Thus, fewer faults needed to be considered and enumerated as the

results of a single fault was representative of the entire fault class (Xavier et al., 2008).

The considered fault space could also be filtered (i.e. reduced) using knowledge of the

SUB’s dependability features, services, and the visibility of a fault’s resulting failure (Barbosa et

al., 2005; Cin et al., 2002; Friginal et al., 2011). For instance, the fault space for simulating

hardware faults (i.e. memory and CPU register bit-flips) could be optimized by eliminating faults

with low representativeness (Barbosa et al., 2005). These faults were defined as faults that were

44

repetitive, such as those that occurred in the same location but at different times, and faults that

lacked relevance, such as those that never resulted in a failure (Barbosa et al., 2005; Friginal et

al., 2011). Examples of the latter were bit-flips that were injected into a register before a write

operation occurred and were subsequently overwritten, and bit-flips that were injected but were

never read for useful computations (i.e. activated) (Barbosa et al., 2005).

Evaluators also used system knowledge, its context of use, and properties of the SUB’s

environment to discern relevant faults from the fault space (Friginal et al., 2011). With this

knowledge, the evaluator could determine which faults would actually impact the SUB and the

elements of interest, such as those that exercised its dependability mechanisms (Barbosa et al.,

2005; Friginal et al., 2011). Selecting faults based on environmental properties significantly

reduced the number of considered faults due to its inherent complexities and direct effect on the

SUB (B. Cheng & Atlee, 2007; Kanoun et al., 2002; Pressman, 2005). For instance, ambient

noise and signal attenuation greatly impacted the availability and integrity of data transfers over

wireless networks (Friginal et al., 2011) but had little to no relevance for stationary infrastructure

systems. Another example was the risk of physical damage or attack (e.g. hitting or dropping the

system) which was very relevant for mobile systems but not for database systems.

The use of system knowledge significantly reduced the considered fault space, increased

the relevance of the faults incorporated into the faultload, and reduced the cost of dependability

benchmarking (Barbosa et al., 2005). Reducing the considered fault space and overall cost of

dependability benchmarking was critical as exhaustive faultload were expensive, labor intensive,

and wasted resources by evaluating the SUB against irrelevant faults (Barbosa et al., 2005;

Madeira & Koopman, 2001)

45

Dependability benchmarking focused on measuring and comparing the dependability and

performance of systems, with the goal of verifying system behavior and dependability features in

the presence of faults (Kanoun et al., 2002; Kanoun et al., 2004). Researchers continue to

address the challenges within the n-dimensional problem space of dependability benchmarking

that were caused by the huge complexities found within the application domain, operating

environment, the very nature of faults, and interaction of all these elements (Kanoun et al., 2004;

Madeira & Koopman, 2001). Defining a good workload, and even more so for a good faultload,

was a pragmatic process that required observation and analysis of the SUB’s functionality,

structure, and the constraints and assumptions imposed upon it by its environment (Cin et al.,

2002).

Self-Adaptive Systems

Modern systems have increased in complexity and have become unmanageable due to the

adoption of heterogeneous, dynamic, and interconnected systems of systems that addressed the

growing needs of society (Almeida & Vieira, 2012a; Ganek & Corbi, 2003). As a consequence,

industry and the research community focused on developing systems that were capable of

performing standard maintenance, optimization tasks, and recovery operations in response to

changes within themselves and their operating environment with little or no human intervention,

called self-adaptive systems (Almeida & Vieira, 2011; B. Cheng et al., 2009; IBM, 2003). They

were organized into four main categories: self-configuring, self-optimizing, self-healing, and

self-protecting systems (Almeida & Vieira, 2011; B. Cheng et al., 2009; IBM, 2003).

The autonomic operation of self-adaptive systems allowed them to quickly adapt to

highly variable workloads, respond to unpredictable operating conditions, and make performance

enhancing changes while reducing system maintenance costs, failures due to operator error, and

46

overall system downtime (Ganek & Corbi, 2003; IBM, 2003; Kaddoum et al., 2010). They were

not bound by predefined execution paths, or the static logic typical of traditional systems, which

endowed them with dynamic runtime behavior (Ganek & Corbi, 2003). They gathered and

utilized contextual information of their operation and environment to optimize their responses to

change and were typically implemented with a closed-loop mechanism (i.e. adaptation loop)

called the MAPE-K (Monitoring, Analyzing, Planning, Execution, and Knowledge) loop

(Almeida & Vieira, 2012a; Ganek & Corbi, 2003; IBM, 2003; Moorsel et al., 2009). The

MAPE-K loop consisted of system capabilities responsible for monitoring its context (internal

and external to the system), analyzing changes to its context, planning adaptive responses to

those changes using its newly gathered data and its previous knowledge, executing its adaptation

plans, and finally updating its knowledgebase with its newly acquired information (IBM, 2003;

Robert Laddaga & Robertson, 2000). These systems were expected to be resilient in achieving

and maintaining their predefined goals by adapting (proactively and reactively) their behavior

and structure in response to runtime changes (Almeida & Vieira, 2012a).

The property of resilience merged concepts of performance, dependability, and security

(Almeida et al., 2010). It pertained to a system’s persistence of trusted service delivery when

faced with circumstances that were beyond its normal (i.e. ideal) operating conditions (Almeida

& Vieira, 2011; Laprie, 2008) which inhibited its ability to satisfy runtime requirements and

goals (Almeida & Vieira, 2012a; Bondavalli et al., 2009; Ganek & Corbi, 2003; IBM, 2003).

Society’s reliance on self-adaptive systems for large-scale, mission critical, and infrastructure

systems (Bondavalli et al., 2009) increased the urgency of finding methods for the assessing their

resilience and other runtime attributes (Almeida & Vieira, 2012b).

47

Resilience Benchmarking

The need to evaluate a system’s ability to maintain expected service levels in the

presence of changes other than faults became critical due to the increased reliance of highly

complex infrastructure systems designed with self-adaptive capabilities (Almeida & Vieira,

2011; A. B. Brown et al., 2004; IBM, 2003). Benchmarking, which provided methods for

evaluating such characteristics, had focused primarily on evaluating the performance and

dependability of static systems whose runtime behavior was predictable and constrained to fixed

execution paths (Almeida & Vieira, 2012a; Bondavalli et al., 2009; IBM, 2003). However,

traditional benchmarking methodologies could not be applied to self-adaptive systems “as-is”

because they did not provide insight into their complex runtime behavior and potential variations

in system response (Bondavalli et al., 2009).

Further, traditional dependability benchmarks focused on identifying conditions that

caused the SUB to enter a failure state (such as an invalid input), while resilience benchmarks

focused on the transient behavior of the SUB in response to a change (such as a step variation in

workload) and its final operational state (e.g. transient, stable, or a failure state) (Hellerstein et

al., 2004). Therefore, dependability benchmarks were extended to include other facets of change

experienced by self-adaptive systems, such as internal and environmental variances, to fully

assess their capabilities (Almeida & Vieira, 2011; Bondavalli et al., 2009; Salehie & Tahvildari,

2009).

Resilience benchmarking extended dependability benchmarking by providing methods to

evaluate and compare the dynamic runtime behavior of self-adaptive systems when faced with

changes, which were typically overlooked by traditional dependability benchmarks (Almeida &

48

Vieira, 2011; Bondavalli et al., 2009). As in dependability benchmarking, resilience was

evaluated as the SUB executed a representative workload, such as those used in performance

benchmarking (Kanoun et al., 2004; Moorsel et al., 2009). Measurements were taken of specific

system attributes, such as behavior and performance characteristics, utilizing specialized

resilience metrics (Almeida & Vieira, 2011; Huebscher & McCann, 2004; Kaddoum et al., 2010;

Robert Laddaga & Robertson, 2000). Resilience metrics included CPU performance (CPUP),

Working vs. Adaptivity Time (WAT), and adaptation latency (Kaddoum et al., 2010). Thus, a

resilient system had to be able to adapt to changes in service demands (i.e. workloads), faults and

attacks (i.e. faultloads), and other types of perturbations that imposed changes onto the SUB, but

may not have necessarily resulted in failure (Almeida et al., 2010).

Just as adaptive capabilities endowed a system with an additional dimension of runtime

dynamism, the additional dimension of change was captured to assess a system’s effectiveness

while coping with change, called the changeload, described in the Chapter 1 (Almeida et al.,

2010 2011; Almeida & Vieira, 2012b; A. B. Brown et al., 2004).

Cost Saving Techniques

Testing is the most critical and expensive phase of the Software Development Lifecycle

(SDLC). Software maintenance costs, of which testing is a component, can range from 50 to

80% of total software cost over the life of the system (Leung & White, 1991) and can even

exceed this range when the system if repeatedly modified and tested (Harrold et al., 1993; Leung

& White, 1991). This phase was critical for self-adaptive systems as their complexity and scale

required repeated testing to validate their complex runtime characteristics (B. Cheng et al.,

2009). This section discusses techniques found in literature aimed at reducing the cost of

software testing.

49

In Barbosa et al. (2005) the authors proposed a fully automated technique of reducing the

cost of fault injection that reduced the considered fault-space using assembly-level knowledge of

the target system. The technique mapped each register and memory location within the compiled

code and determined those injection points that would not result in a system disturbance, that is,

the ineffective faults. Only those locations that had a corresponding READ operation

immediately after the fault injection point were considered. This was coupled with fault classes

being defined and the testing of a single class member in the optimized fault-space to further

increase the technique’s cost-savings by removing redundant and overlapping test cases.

The authors utilized a Motorola MPC565 microcontroller to facilitate the injection of the

bit-flip faults during the execution of two workloads – a quicksort algorithm and a jet engine

controller – that demonstrated the technique’s feasibility and effectiveness within general

computing and mission critical applications. The quicksort application executed within two

minutes, its fault-space optimization required only twenty seconds to complete, and each of its

fault injection experiments required less than thirty seconds. During the experiment’s “golden

run,” the processor executed 34 distinct assembly opcodes and 815 total instructions. The jet

engine controller workload required twelve hours for its golden run, ten minutes for its fault-

space optimization, and fault-injection experimentation required less than two minutes per

experiment. Its golden run executed an average of 88 unique opcodes and 231 instructions.

The experiments identified three primary outcomes: detected errors, which were those

that were signaled by the hardware error detection mechanisms of the processor; wrong outputs,

which were errors that were not detected by the processor and resulted in incorrect application

output; and non-effective errors, which were errors that did not affect the system’s execution

during the experiment.

50

The results of the experiments showed an increase in injected fault effectiveness, which

increased from 5% to 47.7% in the optimized fault-space using the quicksort workload and from

4.4% to 38.2% using the jet controller workload. Table 1 summarizes the study’s fault-space

optimization results.

Workload
Campaign

Type

Size of Fault-Space

(registers)

Size of Fault-Space

(memory)

Jet Engine

Controller

Non-optimized 5.0 x 108 1.9 x 1011

Optimized 7.7 x 106 3.3 x 106

Table 1: Fault-Space Optimization Results

The technique resulted in a fault-space ratio of only 1.5% and 0.0017% of the original

register and memory fault spaces, respectively. These results related to the jet engine controller

running on the 32-bit processor utilizing 100 KB of memory during its execution. The

optimization technique successfully reduced the fault-space by two orders of magnitude for the

registers and five orders of magnitude for memory. The fault-space optimization reduced the

total memory fault-space by 99.9983% and the register fault-space by 98.5% while the

effectiveness of the considered faults increased by 33.8%.

The optimized fault-space allowed for the consideration and selection of fewer faults but

did not reduce the error coverage of the faultload. For example, the optimized faultload included

only 1559 faults, a reduction of 72.69%, but increased the fault effectiveness from 2.0% to

19.1%. The reduction of the faultload equated to substantial cost-savings over the non-optimized

fault-space since cost is directly tied to the considered fault-space, size of the faultload, and

number of executed experiments (Leung & White, 1991).

The authors concluded that further optimization was possible by analyzing error

propagation as they observed that faults in some registers had a greater tendency to generate

wrong outputs that caused detected errors in other registers. This type of post-injection analysis,

51

coupled with the techniques pre-injection analysis, could further reduce the fault-space and

increase the selected faultload’s effectiveness. Finally, specific components could be targeted to

evaluate specific error detection or recovery mechanisms directly, speeding the evaluation and

further reducing the faultload’s size. The study showed that investments in the analysis and

selection phases of test suite definition process using pre-injection techniques provided

significant cost savings by reducing the considered fault-space, optimizing the test suite, and

reducing the total number of tested faults.

In Xavier et al. (2008) the authors proposed a technique that reduced the number of test

cases for a program by discarding redundant and repetitive tests from the test suite. This was

accomplished by combining automated model checking and program verification that ensured

the testing criteria (coverage requirements) were met. The technique first defined testing criteria

to guide the test case definition process. The study focused on testing exception handling

capabilities of a program, specifically, the detection of an error, the activation of an exception,

and finally, the handling of the exception via fault recovery mechanisms. They also defined du-

pairs between associated exception objects and their utilization, in addition to exception event

activations and deactivations (i.e. exception throw and catch logic). Thus, the test coverage

criteria included all throw commands, all catch commands, all exception definitions, all

definition-use pairs, all exception activations, and all exception activation and deactivation (i.e.

catches) pairs.

Since the testing criteria related to code coverage, specifically of structural testing, the

test cases focused on executing each program command associated with exception handling. The

authors constructed an automated tool, called OCongraX, to extract the points and objects of

interest. It was guided by the previously defined testing criteria and then generated the

52

respective test cases. Once the test suite was defined, the authors utilized Java PathFinder to

define bad practice properties and check them against the program model, where some bad

practices included non-specific exception catches, empty catch statements, and non-specific

exception throwing. By combining the tools, they avoided unexpected halts of testing activities

that needed manual recovery from unforeseen errors due to bad practices, they replaced the

poorly implemented exception handling statements to allow testing to focus on system

validation, and they avoided executing redundant test cases that would reevaluate tested code and

already satisfied testing criteria. Java PathFinder ensured that system properties were preserved

while OCongraX tested the program’s fault-tolerance capabilities.

The authors demonstrated their technique and tool in an experiment where the deadlock

freedom of a concurrent program was tested. The technique reduced the test-space by 25% and

ensured 100% test criteria coverage. The study showed that the combination of pre- and post-

injection analysis techniques successfully reduced the programs test-space. Additionally, their

tool automated the test case definition process for exception handling mechanisms, which

reduced the labor costs of manual transcription. However, the manual analysis required to define

the coverage and testing criteria utilized by the tool may add additional costs to the technique,

which could potentially negate the cost-savings from the test-space reduction, especially for

large-scale self-adaptive systems (B. Cheng et al., 2009; R. Laddaga, 2006). The model-

checking step was conducted using the Java PathFinder automated tool, which analyzed the Java

byte-code of the test program. However, the tool suffered from known scalability issues which

occurred when the test program’s size and complexity increased (Visser, Pasareanu, & Khurshid,

2004), which posed significant issues for large-scale self-adaptive systems (B. Cheng et al.,

53

2009). Finally, not all systems could be modeled, at all or easily, since their complexities may

negate any potential cost savings (Andersson et al., 2009; R. Laddaga, 2006).

In Harrold et al. (1993) the authors proposed a technique to reduce the number of test

cases within a test suite by removing redundant and obsolete test cases while maintaining test

coverage. Their technique could be utilized in several phases of the SDLC, including initial

program development, structural changes, and when both structural and functional changes were

made to the system. Their technique utilized a heuristic to reduce the number of total test cases

by only including those test sets with the greatest cardinality over the tested requirements,

described below.

Their algorithm first included all test sets,
iT , in the test suite,TS , associated with at least

one valid requirement,
ir , and with a cardinality of one (i.e. containing a single test case

it). It

then marked all test sets within TS containing any of the
it ’s within the selected

iT ’s. Then it

processed the higher order cardinalities within TS (e.g. 2, 3, and so on) and selected the
iT ’s that

had not been marked, repeatedly until the maximum cardinality, _MAX CARD , had been

evaluated, thus marking all
iT ’s containing duplicate test cases withinTS . Finally, the algorithm

returned a representative set, RS , of test sets that satisfactorily covered all valid requirements.

In this manner, the algorithm marked and excluded both redundant and obsolete test cases and

included only the highest order cardinal test sets that pertained to the requirements and coverage

criterion, defined as each definition-usage pair (i.e. du-pair) found within the program code. The

algorithm is shown below in Figure 2.

54

Figure 2: Algorithm ReduceTestSuite for finding a representative set from a group of sets

The authors demonstrated the technique’s efficiency by analyzing its worst-case run-

time. Let n denote the number of tests sets
iT , nt denote the number of test cases

it , and

_MAX CARD the maximum cardinality within the group of sets. ReduceTestSuite consisted of

two data-intensive steps: computing the occurrences of test cases within test sets of varying

cardinality and selecting the next test case to add to the optimized set. The first step took

55

(* _)O n MAX CARD because there are n sets that were examined once. The second step

required examining the occurrences of each test case, which required at most

(* _)O nt MAX CARD . This was repeated at most n times because the selected test case is

covered by at least one other test set. Thus, the overall runtime was _O n n nt MAX CARD .

The authors ran simulations of their algorithm against several test programs, which proved its

cost-effectiveness as it performed better in practice. Their results are shown in Table 2.

Procedure Test Cases
Actual Associated

Testing Sets

Constructed Associated

Testing Sets

trityp 16 1.50 9.28

atof 2 .07 .13

getop 4 .28 .80

calc 7 .23 .60

qsort 5 .10 .30

trityp2 19 .27 2.35

sqroot 6 .07 .35

sqroot2 6 .10 .41

sqroot3 6 .25 .62

sqroot4 5 .08 .20

sqroot5 6 .10 .25

Table 2: Run-times for ReduceTestSuite for Actual and Constructed Associated Testing

Sets

In each iteration, they executed the algorithm against a program (“procedure” column)

and recorded the actual associated testing sets runtime (i.e. the observed runtime) and the

constructed associated testing sets runtime (i.e. worst-case calculated runtime). The results

showed that the algorithm’s actual runtime was between 46% and 88% better than the estimated

worst-case runtime.

Finally, the authors conducted several experiments during the program development,

program maintenance for program improvement, and program enhancement phases. The

coverage criterion used is the definition-use pair, or du-pairs, which consisted of the definition

56

and use of a variable within its code. They defined full coverage as testing all du-pairs. The

program development phase consisted of typical functional testing after program development

was completed, Experiment 1, and is shown in Table 3. The technique was then used to reduce

the test suite and replaced the original test cases in the later experiments.

Procedure Source Lines du-pairs
Original

Test Cases

Redundant

Test Cases
Reduction (%)

trityp 21 39 16 3 18.7

atof 17 63 2 1 50.0

getop 19 33 5 3 60.0

calc 33 3 11 4 36.4

qsort 20 43 4 2 50.0

sqroot 19 13 5 2 40.0

Table 3: Experiment 1 - Reduction during Program Development

The results of Experiment 2, testing after program maintenance for performance

improvement, are shown in Table 4. The authors made implementation changes to the programs

without changing their functionality, such as making them more efficient or changing their

internal structure.

Procedure Source Lines du-pairs
Original

Test Cases

Redundant

Test Cases
Reduction (%)

trityp2 30 42 13 7 54.6

sqroot2 21 25 6 2 33.3

sqroot3 33 44 5 1 20.0

sqroot4 17 17 7 2 28.6

sqroot5 17 24 5 1 20.0

Table 4: Experiment 2 - Reduction during program maintenance for performance

improvement

Table 5 depicts the results of Experiment 3, where the technique was used during

program maintenance for program enhancements. Here the authors modified the programs, both

functionally and structurally, by adding new features and modifying existing ones.

57

Procedure Source Lines du-pairs
Original

Test Cases

Redundant

Test Cases
Reduction (%)

calc2 41 4 80 0 0.0

calc3 60 4 13 4 30.8

calc4 72 4 14 0 0.0

calc5 86 16 18 3 16.7

getop2 27 57 4 1 25.0

getop3 38 69 5 2 40.0

Table 5: Reduction during program maintenance for program enhancements

The results showed a decrease in the total number of test cases in almost all experiments,

with the test suites reduction ranging from 19% to 60% during program development, 20% to

55% when structural changes were introduced during maintenance, and 0% to 40% when

functional and structural enhancements were introduced during maintenance.

The study showed that the size of the test suite can be reduced using analysis techniques

and coverage criteria in a similar fashion as Xavier et al. (2008). The authors demonstrated that

the actual runtime of the algorithm was significantly better than the worst-case 2()O n time

complexity for the small test programs (less than 100 lines of code). However, the technique

may not be practical for large systems (e.g. 1 million lines of code) as the time complexity

became very large and increasingly significant. Finally, the definition of du-pairs, even if

automated, was impractical for a large-scale self-adaptive system due to their dynamic execution

paths that were difficult to predict at runtime (IBM, 2003).

In Galeebathullah and C.P.Indumathi (2010) the authors proposed a test suite reduction

approach by selecting a minimum set of effective test cases from the application’s test space in

an effort to reduce the overall cost of software testing, in a similar fashion as Harrold et al.

(1993). The technique also omitted redundant test cases and included only those that were the

most effective in providing the greatest degree of test coverage. In this instance, coverage was

defined as the degree to which a test plan satisfied the greatest number of requirements tested.

58

The authors utilized set theory to define the minimized test suite,
minT , as the intersection

between the set of test cases, Ti , satisfying requirements in the requirements set, R , with the set

of requirements satisfied, Ri , by the test cases in the original test suite, T . For example, the

table below depicts a test case coverage matrix, which contains the relationships identified

between requirements and test cases, where test case 1, t1, satisfies the test coverage of

requirements 1, 3, and 5, and so on. As shown, t1 and t4 satisfy all requirement testing which

results in the omission of t2 and t3 from
minT .

 Test Case

Requirement Cardinality t1 t2 t3 t4

1 2 X X

2 2 X X

3 3 X X X

4 2 X X

5 2 X X

Table 6: Test Case Coverage Matrix

The authors utilized the test suite size reduction (SSR) metric to calculate the percentage

of overall test suite reduction, defined below in Equation 16:

minT T
SSR

T

Equation 16: SSR Metric

Where T was the number of original test cases,
minT was the number of test cases in the

reduced set, and SSR was the reduction percentage, where a larger value denoted greater test

suite reduction. They demonstrated the technique’s effectiveness using a small case study which

produced similar results as traditional greedy and HGS heuristic methods (Chvatal, 1979).

The technique was relatively simple to implement given that all required information,

such as the requirement and test case sets, were captured in a machine-readable format so that

59

the algorithm could determine their relationships. Alternatively, the evaluator could manually

complete the preparation step if the number of test cases and relationships was small. Otherwise,

the labor required for the automation may not have justified the cost savings, especially if they

were large or complex (Cin et al., 2002; Galeebathullah & C.P.Indumathi, 2010). Further,

conversion to a machine-readable format may not be possible for all requirements, such as those

written in prose (Potts, 1995), or for test cases that required human interaction (A. B. Brown et

al., 2004) as they are both have associated challenges.

Finally, the technique presented in this study could be further refined to incorporate test

and requirement classes and dependencies, where only a single test case needs to be enumerated

to validate a class of tests. Ultimately, the cost savings was directly related to the SSR value,

which was dependent on the number of elements in the test set (i.e. the number of tests) and

relates to Equation 1. This supported this study’s direction to reduce the number of considered

and enumerated test cases in an effort to reduce resilience benchmarking costs for self-adaptive

systems.

Summary

This section discussed several studies that proposed techniques to address the high costs

associated with benchmarking, testing system behavior, and verifying requirements in the

presence of exceptional conditions. Studies have been discussed that consider the individual test

sets and omit the redundant test cases in an effort to minimize the test suite, while seeking to

maximize test set coverage of functional requirements (Galeebathullah & C.P.Indumathi, 2010).

Other studies have been presented that utilize test coverage criteria and system analysis to further

reduce the size of the test suite by omitting ineffective and redundant test cases from a test suite

(Barbosa et al., 2005; Harrold et al., 1993; Xavier et al., 2008). Each technique provided a

60

method for reducing the size of a test suite in an effort to reduce software-testing costs. A

reoccurring theme is to utilize system analysis to guide the selection of test cases, with source

code analysis being the most effective. The results showed test suite reductions ranging from

10% to 99%, which validated their effectiveness of test suite minimization. The presented

studies reinforced the premise of this study that utilizing system analysis and verification of

desired runtime behavior can reduce the cost of resilience benchmarking of self-adaptive

systems.

 The next chapter describes the methodology used for this study, the goal-oriented

approach, and the case study utilized to verify the approach’s effectiveness.

61

Chapter 3

Methodology

Overview of Research Methodology

This study detailed an approach that reduced the cost of resilience benchmarking of self-

adaptive systems. The approach built upon the risk-based approach proposed by Almeida and

Vieira (2012a) while incorporating goal-oriented requirements engineering techniques and

theories proposed by Dardenne, Lamsweerde, and Fickas (1993), Feather, Fickas, Lamsweerde,

and Ponsard (1998), and van Lamsweerde and Letier (1998).

 The guiding principle of the approach was to minimize the effort invested in the

definition and enumeration of ineffective changes during the changeload definition process as

they contributed negatively toward the overall cost of evaluation (Barbosa et al., 2005; Roberto,

2013). This differed from the minimization approaches discussed in the preceding sections as

they required the definition of an exhaustive changeload first and then discarded the ineffective

and redundant changes (Barbosa et al., 2005; Harrold et al., 1993; Quadri & Farooq, 2010). The

overhead incurred by defining a large number of changes could outweigh the cost-savings

achieved by the minimization technique (B. Cheng et al., 2009; Leung & White, 1991).

Therefore, this research proposed a goal-oriented approach that balanced the cost-effectiveness

and coverage of resilience evaluation of self-adaptive systems by utilizing system knowledge to

avoid the costs incurred by the definition and enumeration of ineffective changes. It is followed

by a case study that demonstrated its effectiveness.

This was a valid method as it has been performed in the previous changeload study, the

risk-based approach proposed by Almeida and Vieira (2012a), in dependability faultload studies

62

(Madeira et al., 2002; Vieira & Madeira, 2003, 2004), and in the test suite reduction studies

discussed in the Chapter 2 (Barbosa et al., 2005; Galeebathullah & C.P.Indumathi, 2010; Harrold

et al., 1993), where the respective techniques were proposed and validated via a case study on a

fictitious system, or by experimentation. A description of the goal-oriented approach is

presented in the next section followed by a description of the case study that demonstrated its

application and the application of the risk-based approach.

Approach Overview

The goal-oriented approach extended the risk-based approach by incorporating additional

analysis and identification techniques in each step of the process. The risk-based approach

consisted of five primary steps focused on the identification and definition of the system and its

relevant changes, as discussed in detail in the Problem Statement. They are:

 Step A: Identification of the Base Scenario

 Step B: Identification of Change Scenarios

 Step C: Definition of Change Scenario Attributes

 Step D: Evaluation of Change Scenario Attributes

 Step E: Definition of the Changeload

The goal-oriented approach mirrored the five-step process of the risk-based approach,

with the following steps listed below:

 Step A: Identification of System Goals

 Step B: Identification of Obstacles

 Step C: Definition of Obstacle Attributes

 Step D: Evaluation of Obstacle Attributes

 Step E: Definition of the Changeload

Extensions to each step are described below.

63

Step A: Identification System Goals

The identification of the system’s goals is the most critical milestone of the changeload

definition process as they are the driver for the identification and characterization of the change

scenarios that may affect the system at runtime (Almeida & Vieira, 2012a). The goal-oriented

approach extended the identification of the base scenario, Step A of the risk-based approach, to

include elaboration and refinement of the previously defined generic goals using WHY and

HOW goal refinement techniques.

The HOW goal refinement technique is a method for refining a goal until concrete sub-

goals are identified (van Lamsweerde & Letier, 2000). For example, the evaluator determines

HOW the system accomplishes the goal of “maintaining high performance” by analyzing its

components and associating the “minimization of response time” sub-goal to it. The low-level

goals are specified using a similar notation as proposed by Almeida and Vieira (2012a), shown

below in Equation 17 and an example is shown in Equation 18, where attainment of a high-level

goals implies attainment of its lower-level goals.

 g | g high levelG G

Equation 17: Definition of Low-Level System Goals

minimize response time,

g | g
maximize content fidelity

high levelG G

Equation 18: Low-Level System Goal Definition for example Self-System A

If the set of system requirements is represented by R , the set of environmental

assumptions, As , the set of domain properties, D , then the following relationship must hold true

for each goal, g , in G , as the relationship in Equation 19 shows. Assumptions are defined in

Step B.

64

 , , | with , , |R As D g R As D false

Equation 19: Goal Attainment Verification

The relationships state that each goal must be attainable by the system within the

constraints imposed by its operating environment and requirements (van Lamsweerde, 2000).

Domain properties are properties of an object or operation in the environment that holds

independent of the system and includes physical laws, regulations, and other constraints imposed

by environmental agents (van Lamsweerde & Letier, 2000).

The WHY goal refinement technique provided a method of discovering implicit higher-

level goals from stated goals (van Lamsweerde, 2000). Stated goals were analyzed and

continually asked WHY the goal is important, necessary, and relevant to the system in order to

discover the higher-level goals underpinned by it. This process continued until relationships

could be constructed between all stated and identified goals. For example, it was determined that

the goal of “maintaining high performance” existed to ensure that more visitors could be served

by the system. Therefore, the “serve more visitors” goal was the new root goal and “maximize

performance” became its sub-goal. The combination of goal refinement techniques guided the

system analysis to determine the underlying sub-goals of the system’s generic goals and establish

relationships between them. Then the underlying assumptions for attainment and their

responsible agents were identified in Step B. The agent is then directly exercised to leverage the

cost-reduction technique recommended by Barbosa et al. (2005).

Step A included a visual aid to graphically depict the goal hierarchy and highlight the

goal dependencies and relationships, described below. The inclusion of a goal graph provided

the basis for goal prioritization, documentation, and additional analysis conducted in the

following steps.

65

In Dardenne, Lamsweerde, and Fickas (1993) the authors proposed the KAOS

methodology of goal-oriented requirements engineering, which was later extended in van

Lamsweerde (2000) and G. Brown, Cheng, Goldsby, and Zhang (2006) to include obstacles.

The extension contained a graphical specification for the representation of goal refinement trees

and their relationships. Figure 3 depicts the specification for unrefined / soft goals, refined /

formalized goals, sub-goal to goal links, sub-goal to goal OR-refinement links, sub-goal to goal

AND-refinement links, goal conflicts, system assumptions, obstacles, agents, and actions.

Figure 3: KAOS Glyph Specification

A refined goal graph was created utilizing the KAOS specification and the information

derived from the analysis of the system, in the format depicted in Figure 4.

Unrefined / Soft Goal

Refined / Formalized Goal

Goal to Sub-Goal Link

Sub-Goal to Goal OR-refinement Link

Goal Conflict

Sub-Goal to Goal AND-refinement Link

Agent

Assumption

Obstacle

Action

66

Refined Sub-GoalRefined Sub-Goal

Unrefined High-Level Goal

Refined Sub-Goal Refined Sub-Goal

...

...Refined Sub-Goal Refined Sub-Goal

...

...

...

...

Figure 4: Initial Goal Refinement Graph Format

The initial goal graph for example Self-System A was simply the unrefined goal to

“maximize performance,” as depicted in Figure 5.

Figure 5: Initial Goal Graph of example Self-System A

The goal-refinement graph illustrated the relationships between the soft goals and their

refined sub-goals. Figure 6 and Figure 7 depict the previously refined goals utilizing the HOW

and WHY refinement techniques, respectively.

Minimize response timeMaximize content fidelity

Maximize Performance

Figure 6: HOW Goal Refinement Graph for example Self-System A

Maximize Performance

67

Minimize response timeMaximize content fidelity

Maximize Performance

Serve more visitors

Figure 7: WHY Goal Refinement Graph for example Self-System A

The HOW goal-refinement graph was created in a top-down approach, where the

unrefined goal was refined and specified into formalized sub-goals. The WHY goal-refinement

graph was created in a bottom-up approach, where the refined and unrefined goals were

elaborated and correlated with others to develop higher-level relationships.

The inclusion of a visualization technique improved upon the original approach as it

allowed for a more intuitive analysis of the interactions and relationships of the system’s goals

(Almeida & Vieira, 2012a; Morandini, Penserini, & Perini, 2008; van Lamsweerde, 2001).

Further, visualization techniques have been shown to be an essential feature for communicability

and understanding of complex systems as they simplify the depiction of complex relationships,

dependencies, and logic (G. Brown et al., 2006; B. Cheng et al., 2009; van Lamsweerde, 2000,

2001).

Step B: Identification of Obstacles

Step B, the identification of obstacles, consisted of two sub-steps. The first was the

identification of system actions, responsible agents, and assumptions of the system and their

incorporation into the initial goal graph created in Step A. The second consisted of expanding

the goal refinement graph by identifying and incorporating the obstacles that affected the

previously identified actions, agents, assumptions, and goals.

68

Step B Part 1: Action, Agent, and Assumption Analysis

An action is something the system performs, such as an act or operation, to achieve or

maintain a runtime goal in response to a change (Dardenne et al., 1993). The SUB’s runtime

behavior was revealed by identifying the system’s self-adaptive actions. This was accomplished

by applying additional HOW refinement to the goal refinement graph defined in Step A and

asking HOW the SUB ensures the attainment of each runtime goals. The actions are defined as

depicted in Equation 20.

 | A a a g

Equation 20: Definition of Self-Adaptive Action

For example, the evaluator reviews example Self-System A’s associated documentation,

or source code, and identified that it is capable of increasing and decreasing the fidelity of served

content in response to measured response time in an effort to ensure the goal of maximum

performance (S. W. Cheng et al., 2009). Its self-adaptive actions were captured as shown in

Equation 21.

increase content fidelity,

 | decrease content fidelity,

measure response time

A a a g

Equation 21: Self-Adaptive Action Definition for example Self-System A

Agent analysis is conducted, followed by assumption analysis, on the SUB’s goal

refinement graph. An agent is a part of the SUB’s operation, including human beings, physical

devices, components, and code blocks, that had the ability to make runtime decisions of their

behavior based on their operational context (Dardenne et al., 1993). Agent analysis pertained to

the review of system actions and the identification of the system’s agent responsible for

performing each of the identified actions defined in A (Dardenne et al., 1993).

69

Let Ag be the set of all system agents, ag , which perform an action, a , in the set of

identified actions, A , in response to a change, c , in the set of all possible changes, CS , as

defined in Equation 22.

 , ,Ag ag ag a a A c CS

Equation 22: Definition of Self-Adaptive Agents

For example, the documentation, or source code, was again reviewed for example Self-

System A and asked WHO is responsible for the identified actions in A . Three primary agents

were discovered, including a sensor to measure response time, an effector to increase and

decrease content fidelity served to users, and a self-adaptive control loop responsible for the

coordination of both agents, as shown in Equation 23.

response time sensor,

, , fidelity effector,

self-adaptive control loop

Ag ag ag a a A c CS

Equation 23: Self-Adaptive Agent definition for example Self-System A

The goal refinement graph was then expanded with the identified actions and agents

(bold outline) in the format defined in Figure 8. Figure 9 depicts the expanded goal refinement

graph for example Self-System A.

70

Action

Agent

Action

Refined High-Level Goal

Refined Sub-GoalRefined Sub-Goal

Refined Sub-Goal Refined Sub-Goal

...

...

...

...

...

...

Action

Agent

Action

Refined Sub-Goal Refined Sub-Goal...

...

...

...

Figure 8: Expanded Goal Refinement Graph with Actions and Agents Format

Minimize response timeMaximize content fidelity

Measure Increase in response time

Response Time Sensor

Decrease content fidelity

Increase content fidelity

Fidelity Effector

Communicate Sensor
reading to Effector

Self-Adaptive Control
Loop

Measure Decrease in response time

Maximize Performance

Serve more visitos

Figure 9: Expanded Goal Refinement Graph with Actions and Agents example Self-System

A

71

Finally, assumption analysis is conducted on the goal refinement graph. Self-adaptive

systems are designed to ensure the system’s ability to operate as expected while experiencing

runtime changes, especially changes in runtime assumptions that are assumed constant

throughout its execution (Cámara, Lemos, Laranjeiro, Ventura, & Vieira, 2013). Thus, the

inclusion of assumption analysis was vital for the resilience benchmarking of self-adaptive

systems as unpredictable and changing assumptions were a source of major problems (van

Lamsweerde, 2000).

An assumption is a fact pertaining to the SUB’s goals, agents, actions, or their

relationships, that is expected to be true at runtime (Feather, Fickas, Lamsweerde, & Ponsard,

1998). While the classic definition of assumptions only included environmental assumptions

(van Lamsweerde, 2000), assumptions related to any aspect of the system were considered to

ensure coverage of all runtime constraints and possible sources of change.

Assumption analysis is the process of analyzing the goal refinement graph to identify

hidden assumptions and operational constraints that are often taken for granted (Feather et al.,

1998). Changes in runtime assumptions introduce unforeseen operational conditions, which may

lead to unexpected runtime behavior with undesirable results, such as loss of goal attainment or

failure (B. Cheng et al., 2009; van Lamsweerde, 2000). Each goal, action, and agent identified in

the goal refinement graph was analyzed and asked the question of WHAT conditions needed to

exist for a goal to be achieved and maintained, for an action to be performed with the expected

outcomes, and an agent to operate as desired.

Let As be the set of all assumption sub-sets, iAs , which contain the set of assumptions,

ias , affecting an action, agent, or goal node, i , in the goal refinement graph, as shown in

Equation 24, that satisfies the relationship depicted in Equation 25. Equation 25 states that

72

agents are able to perform their actions, and those actions are achieve the system’s goals, when

all assumptions meet expectations.

 is an assumption on ,i

i

As as as i i A Ag G

As As

Equation 24: Definition of an Assumption

, |

, |

, |

Ag

A

G

Ag As A

A As G

G As false

Equation 25: Assumption and Node Satisfaction Relationship

For example, the increase and decrease content fidelity actions are analyzed and it is

reasoned that access to the configuration file was necessary for this action to occur. Similarly,

the fidelity effector was assumed to be functioning properly to perform those actions. Finally,

the fidelity effector is assumed to have sufficient resources available to function properly, such

as CPU and memory. This process continued for each node until all were analyzed and their

assumptions identified, as shown in Equation 26.

Configuration file is accessible,
 is an assumption on ,

Valid Sensor Reading

Effector Operational,

 is an assumption on , Sensor Operational,

Sufficient Resources Availa

A

Ag

As as as a a A

As as as ag ag Ag

ble

 is an assumption on , Sufficient Resources Available

, ,

G

A Ag G

As as as g g G

As As As As

Equation 26: Assumption Definition for example Self-System A

The identified assumptions were incorporated into the goal refinement graph (bold

outline) in the format specified in Figure 10 and depicted in Figure 11.

73

Action

Agent

Action

Assumption

Refined High-Level Goal

Refined Sub-GoalRefined Sub-Goal

Refined Sub-Goal Refined Sub-Goal

...
...

...

...

...

Assumption...

...

Action

Agent

Action

Assumption

Refined Sub-Goal Refined Sub-Goal...

...

Assumption...

...

...

Figure 10: Expanded Refinement Goal Graph with Actions, Agents, and Assumptions

Format

Minimize response timeMaximize content fidelity

Measure Increase in response time

Response Time Sensor

Decrease content fidelity

Increase content fidelity

Fidelity Effector

Communicate Sensor
reading to Effector

Self-Adaptive Control
Loop

Measure Decrease in response time

Maximize Performance

Sufficient Resources Available

Effector Operational

Configuration File is Accessible

Valid Sensor Reading

Sensor Operational

Serve more visitos

Figure 11: Expanded Goal Refinement Graph with Actions, Agents, and Assumptions for

example Self-System A

74

Step B Part 2: Obstacle Analysis

Obstacle analysis and identification techniques were then employed to identify

obstructing conditions under which a goal is unachievable (i.e. Equation 19 was violated).

Obstacles may directly obstruct a goal, or indirectly obstruct it, by affecting an assumption,

action, or agent required for its attainment (van Lamsweerde & Letier, 2000). Obstacles

provided a straightforward method of identifying relevant changes within the system and its

environment as they were directly related to the system’s runtime goals and changes to runtime

assumptions (van Lamsweerde & Letier, 2000). Each assumption, agent, action, and goal

identified in the goal refinement graph was analyzed and asked the question of WHAT

obstructing conditions may the system face with at runtime that would cause a goal to be

unattainable, cause an action to be performed with undesired outcomes or not at all, or cause an

agent to operate inconsistently or fail.

Let O be the set of all obstacle sub-sets, iO , which contain the set of obstacles, io ,

obstructing an assumption, action, agent, and / or a goal node, i , in the goal refinement graph as

shown in Equation 27, satisfying the relationship depicted in Equation 28.

 obstructs ,i i

i

O o o i i As A Ag G

O O

Equation 27: Definition of an Obstacle

, , , | (obstruction)

, | (domain-consistency)

as ag a g o

O D false

Equation 28: Obstacle Satisfaction Relationship

The relationship states that the obstacle must be consistent with what is known of the

domain (domain-consistency) and that its negation, that is, the absence of obstructing conditions

or runtime changes yields the necessary conditions for goal achievement (van Lamsweerde &

75

Letier, 2000). For instance, an obstacle could not state that the system is simultaneously on- and

off-line as such behavior is infeasible.

Example Self-System A’s assumption of sufficient resources being available was

analyzed and it was reasoned that a lack of available resources, such as CPU or memory

exhaustion, would obstruct the agent’s ability to function and it’s attainment of the goal to

maximize performance. This analysis continued until all nodes had been evaluated, as depicted

in Equation 29.

Configuration file locked / Inaccessible,

Resource Exhaustion (CPU),

 obstructs , Resource Exhaustion (Memory),

No Sensor Reading,

Invalid Sensor Reading

 obstructs ,

As

Ag

O o o as as As

O o o ag

Effector Failure,

Effector Not Available,

Sensor Failure,

Sensor Not Available

 obstructs , Communication Error

Resource Exhaustion (CPU),
 obstructs ,

Resource Exhaust

A

G

ag Ag

O o o a a A

O o o g g G

ion (Memory)

, , ,As Ag A GO O O O O

Equation 29: Assumption Definition for example Self-System A

The identified obstacles were well suited to describe relevant changes to the SUB as they

were based on the system’s capabilities, goals, assumptions, domain knowledge, and captured its

undesirable runtime conditions.

Finally, the identified obstacles were incorporated into the goal refinement graph (bold

outline) to provide detail of their interaction and effects on the overall system in the format

depicted in

Figure 12. Figure 13 depicts the expanded goal graph for the example Self-System A.

76

Action

Agent

Action

Assumption

Refined High-Level Goal

Refined Sub-GoalRefined Sub-Goal

Refined Sub-Goal Refined Sub-Goal

...

...

...

...

...

Assumption...
...

Action

Agent

Action

Assumption

Refined Sub-Goal Refined Sub-Goal...

...

Assumption...

...

...

Obstacle

Obstacle

...

Obstacle

Obstacle

...

Obstacle

Obstacle

...

Obstacle

Obstacle

...

Figure 12: Expanded Goal Refinement Graph with Actions, Agents, Assumptions, and

Obstacles Format

Minimize response timeMaximize content fidelity

Measure Increase in response time

Response Time Sensor

Decrease content fidelity

Increase content fidelity

Fidelity Effector

Configuration File Locked

Resource Exhaustion
(CPU)

Sensor Failure

Invalid Sensor Reading

Sensor Not Available

Effector Failure

Effector Not Available

No Sensor Reading

Communicate Sensor
reading to Effector

Self-Adaptive Control
Loop

Resource Exhaustion
(Memory)

Communication Error

Measure Decrease in response time

Maximize Performance

Sufficient Resources Available

Effector Operational

Configuration File is Accessible

Valid Sensor Reading

Sensor Operational

Serve more visitors

Figure 13: Expanded Goal Refinement Graph with Obstacles, Assumptions, Agents, and

Actions for example Self-System A

77

Step C: Definition of Obstacle Attributes

The definition of change scenario attributes in the risk-based approach, Step C, defined

the change scenario attributes of impact and probability utilizing a combination of expert opinion

and multi-voting when field data was not available (Almeida & Vieira, 2012a). The risk-based

approach also used a qualitative scale for change scenario impacts, such as “medium” and

“minimal”, without finite thresholds, as presented in Chapter 1 and shown in Table 7. Each

attribute was defined, and assigned in Step D, using expert opinion without clear thresholds or

finite boundaries between attribute ranges.

Impact Probability

Catastrophic Very High

Critical High

Marginal Low

Negligible Very Low

Table 7: Change Scenario Attributes defined in the Risk-Based Approach

Step C was extended to utilize the previously constructed goal refinement graph to define

quantitative measures for each obstacle’s impact attributes utilizing graph theory. Two

properties were defined to denote an obstacle’s impact on runtime goals: the obstacle’s shortest

distance to a goal (OSDG) and the obstacle’s breadth (OB). The OSDG attribute was defined as

the number of graph edges from an identified obstacle to its nearest goal, or the obstacle’s

closeness factor to any goal (Kang, Kumar, Harrison, & Yen, 2011).

Let D be the distance matrix of all pair-wise distances, ijd , between each obstacle, io , in

the set of defined obstacles, O , and each goal, jg , in the set of defined goals, G . The OSDG

value for obstacle io , iOSDG , was defined as the minimal element,
minijd in the partially ordered

set ,D , as shown in Equation 30.

78

min min

| , : i ij ij ij ijOSDG d d D d d

Equation 30: Obstacle's Shortest Distance to a Goal (OSDG)

The OSDG attribute represented the relative impact an obstacle would have on the

system if experienced at runtime, where a smaller OSDG value denoted a greater impact on that

goal (and the overall system) and an increased likelihood of runtime disruptions (Kang et al.,

2011).

The OB attribute represented the total number of goals affected by the activation of an

obstacle io , and was defined as the sum of all reachable goal nodes jg from io , as defined in

Equation 31.

1 if is reachable from and
, where

0 otherwise

j i j

i ij ij

g o g G
OB r r

Equation 31: Obstacle's Breadth of Impact

The goal-oriented approach utilized the OSDG and OB attributes to define obstacle

attribute ranges mathematically. These definitions, as well as the mapping of the goal-oriented

OSDG to the risk-based impact and the goal-oriented OB to risk-based probability, are shown in

Table 8 and Table 9. Note that the mapping of OB to probability did not imply equivalence and

was included for comparative purposes only.

79

Risk-Based

Impact Attribute
Goal-Oriented OSDG Attribute

Catastrophic 1,min OSDG

Critical 1min(), 2min() max()
3

OSDG OSDG OSDG

Marginal 1 12min() max() , min() 2max()
3 3

OSDG OSDG OSDG OSDG

Negligible 1 min() 2max() ,max
3

OSDG OSDG OSDG

Table 8: Risk-Based Change Scenario Impact Attribute mapping to Goal-Oriented

Obstacle OSDG Attribute

Risk-Based

Probability Attribute

Goal-Oriented

OB Attribute

Very High 3,
4

G G

High 3 1,
4 2

G G

Low 1 1,
2 4

G G

Very Low 1 ,0
4

G

Table 9: Risk-Based Change Scenario Probability Attribute mapping to Goal-Oriented

Obstacle OB Attribute

The OSDG attribute’s value range was defined as 1,max OSDG , where a value of

one described the scenario where an obstacle is a child of a goal node. The value of

 max OSDG defined the maximum distance of any obstacle to any goal node for the goal-

refinement graph. The OSDG attribute ranges were divided into four uniform ranges to ensure

comparability with the risk-based approach’s four-value scale. The OB attribute’s value range

was defined as 0, G , where zero was non-inclusive as an obstacle by definition (Equation 28)

must obstruct the attainment of at least one goal. The maximum value for OB was the total

number of goals in G . Again, the OB attribute was divided into four uniform ranges to ensure

comparability with the risk-based approach. Table 10 and Table 11 illustrate the defined and

80

effective attribute ranges for the example Self-System A. The effective ranges were included to

correspond to the computed OSDG and OB integer values.

Risk-Based

Impact Attribute

OSDG Attribute

Range

OSDG Attribute

Effective Range

Catastrophic [1.0, 2.0] 1 and 2

Critical (2.0, 3.3] 3

Marginal (3.3, 4.7] 4

Negligible (4.7, 6.0] 5 and 6

Table 10: OSDG Attribute for example Self-System A

Risk-Based

Probability Attribute

OB Attribute

Range

OB Attribute

Effective Range

Very High [4, 3) 4

High [3, 2) 3

Low [2, 1) 2

Very Low [1, 0) 1

Table 11: OB Attribute for example Self-System A

This approach reduced the dependence on expert opinion and the use of subjective

attribute thresholds by leveraging graph theory to calculate the obstacle attributes. This provided

a basis for defining objective attributes that could be standardized between systems and

experiments (Cailliau & Lamsweerde, 2013) to avoid their misinterpretation and improve result

comparison (Almeida & Vieira, 2012a). This step could also be automated to further reduce the

labor and cost of resilience benchmarking as the attribute definitions were calculated based on

graph characteristics and not by subjective or manual means.

Step D: Assignment of Obstacle Attributes

The evaluation of change scenario attributes, Step D of the risk-based approach, was

extended to leverage the attributes defined in Step C by calculating the OSDG and OB attributes

for each obstacle and assigning its corresponding impact attributes. This step also lent itself to

automation as the evaluation of obstacle attributes and attribute assignments were based on their

81

computed values derived from the goal-refinement graph, without the need for manual analysis,

which could further reduce overall benchmarking costs.

The obstacle attributes assignment provided insight into the overall impact of each

obstacle, where the directness of an obstacle’s impact was defined as its closeness to goal nodes,

its OSDG attribute, and the severity of its impact by the number of goals affected, its OB

attribute (Jorgensen, 2002). For instance, the “resource exhaustion” obstacle, with an OSDG

value of two (Catastrophic) and OB value of four (Very High), had catastrophic effects on the

attainment of runtime goals by directly affecting 100% of all runtime goals (bolded outline), as

shown in Figure 14. In contrast, the obstacle “locked configuration file”, with an OSDG value of

3 (Critical) and OB value of 3 (High), had less of an impact on the attainment of runtime goals

than the previous example as it affected fewer goals and in a less direct manner, as shown in

Figure 15.

82

Minimize response timeMaximize content fidelity

Measure Increase in response time

Response Time Sensor

Decrease content fidelity

Increase content fidelity

Fidelity Effector

Configuration File Locked

Resource Exhaustion
(CPU)

Sensor Failure

Invalid Sensor Reading

Sensor Not Available

Effector Failure

Effector Not Available

No Sensor Reading

Communicate Sensor
reading to Effector

Self-Adaptive Control
Loop

Resource Exhaustion
(Memory)

Communication Error

Measure Decrease in response time

Maximize Performance

Sufficient Resources Available

Effector Operational

Configuration File is Accessible

Valid Sensor Reading

Sensor Operational

Serve more visitors

Figure 14: Goal Refinement Graph of Self-System A – Resource Exhaustion (CPU)

Obstacle Impact

Minimize response timeMaximize content fidelity

Measure Increase in response time

Response Time Sensor

Decrease content fidelity

Increase content fidelity

Fidelity Effector

Configuration File Locked

Resource Exhaustion
(CPU)

Sensor Failure

Invalid Sensor Reading

Sensor Not Available

Effector Failure

Effector Not Available

No Sensor Reading

Communicate Sensor
reading to Effector

Self-Adaptive Control
Loop

Resource Exhaustion
(Memory)

Communication Error

Measure Decrease in response time

Maximize Performance

Sufficient Resources Available

Effector Operational

Configuration File is Accessible

Valid Sensor Reading

Sensor Operational

Serve more visitors

Figure 15: Goal Refinement Graph of Self-System A – Locked Configuration File Obstacle

Impact

83

Step E: Definition of the Changeload

Defining the changeload, Step E, was conducted in the same manner as proposed by

Almeida and Vieira (2012a) in which the most relevant obstacles were selected to include in the

changeload by defining an exposure matrix and relevancy cut-off level. The goal of the exposure

matrix was to prioritize obstacle relevance based on the previously defined obstacle attributes.

The combination (i.e. their intersection) of the OB and OSDG attributes corresponded to the

obstacle’s relevance level in the same way the combination of impact and probability denoted

relevance in the risk-based approach. The goal-oriented approach utilized the same relevance

defined in the risk-based approach and described in Chapter 1.

Let Rel be the relevance scale for the current evaluation of the SUB, where a

“negligible” relevance denoted an obstacle that can be overlooked and “mandatory” relevance

denoted an obstacle of obligatory inclusion into the changeload, as defined in Equation 32

(Almeida & Vieira, 2012a).

 Rel negligible, very low, low, high, very high, mandatory

Equation 32: Definition of the Relevance Scale

Mapping the relevance levels to numeric values provided a method for further automation

of the approach by making mathematical comparisons straightforward, as shown in Table 12.

The relevance levels were mapped to ascending integers, such as from one (less relevant) to six

(most relevant).

84

Relevance Level Value

Negligible 1

Very Low 2

Low 3

High 4

Very High 5

Mandatory 6

Table 12: Relevance Level Numeric Mapping

Finally, the exposure matrix was populated as recommended in the risk-based approach,

with the OB and OSDG attributes on the axes and relevance levels as their intersection, as shown

in Table 13. Table 14 shows the exposure matrix for example Self-System A. The obstacles

were only included within the exposure matrix’s relevance levels to illustrate their assignment

and would not be done in practice.

 OB

 Very High High Low Very Low

O
S

D
G

 Catastrophic Mandatory Very High High Medium

Critical Very High High Medium Low

Marginal High Medium Low Very Low

Negligible Medium Low Very Low Negligible

Table 13: Exposure Matrix for the Goal-Oriented Approach

Table 14: Exposure Matrix for example Self-System A

 OB

 Very High (4) High (3) Low (2) Very Low (1)

O
S

D
G

Catastrophic

(1 and 2)

Mandatory

Resource exhaustion (CPU)

Resource exhaustion (Memory)

Very High High Medium

Critical (3) Very High

High

Configuration file locked

No sensor reading

Invalid sensor reading

Medium Low

Marginal (4)

High

Sensor failure

Sensor not available

Medium
Effector failure

Effector not available

Communication error

Low Very Low

Negligible

(5 and 6)
Medium Low Very Low Negligible

85

A relevance cut-off level was then defined in an effort to include only those obstacles

deemed relevant to the current evaluation (Almeida & Vieira, 2012a).

Let the defined relevance cut-off level, RCL , be an element in the set of possible

relevance levels, Rel , where RCL defines the minimum level of relevance of included

obstacles within the changeload, as defined in Equation 33.

 | RelRCL x x

Equation 33: Definition of the Relevance Cut-Off

The risk-based approach recommended an RCL of at least “mandatory”, however, this

study utilized an RCL of “high” to ensure test coverage.

Table 15 shows the previously defined exposure matrix with the relevance cut-off level

applied, while Table 16 demonstrates the exposure matrix with the cut-off level applied for the

example Self-System A. The obstacles were only included within the exposure matrix’s

relevance levels to illustrate their assignment and would not be done in practice.

 OB

 Very High High Low Very Low

O
S

D
G

Catastrophic Mandatory Very High High Medium

Critical Very High High Medium Low

Marginal High Medium Low Very Low

Negligible Medium Low Very Low Negligible

Table 15: Exposure Matrix with Cut-Off Level Applied

86

Table 16: Exposure Matrix with Cut-Off Level Applied for example Self-System A

The changeload was then defined as the set of enumerated changes, goal orientedEC ,

which contained obstacles whose relevance met or exceeded the defined relevance cut-off level,

RCL , as depicted in Equation 34. The changeload definition for example Self-System A is

shown in Equation 35 with a cut-off level of “high”.

 { | , }goal oriented relevanceEC RCL o o O o RCL

Equation 34: Changeload Definition

: high { | , high}

| , {high, very high, mandatory}

goal oriented relevance

relevance

EC RCL o o O o

o o O o

Equation 35: Changeload Definition for example Self-System A

The changeload corresponded to a minimized subset of the system’s entire change space,

whereby only those obstacles of high or greater relevance were included (bold outline), as

illustrated in Figure 16. The excluded obstacles are indicated with a dotted outline.

 OB

 Very High (4) High (3) Low (2) Very Low (1)

O
S

D
G

Catastrophic

(1 and 2)

Mandatory

Resource exhaustion (CPU)

Resource exhaustion (Memory)

Very High High Medium

Critical (3) Very High

High

Configuration file locked

No sensor reading

Invalid sensor reading

Medium Low

Marginal (4)

High

Sensor failure

Sensor not available

Medium
Effector failure

Effector not available

Communication error

Low Very Low

Negligible

(5 and 6)
Medium Low Very Low Negligible

87

Minimize response timeMaximize content fidelity

Measure Increase in response time

Response Time Sensor

Decrease content fidelity

Increase content fidelity

Fidelity Effector

Configuration File Locked

Resource Exhaustion
(CPU)

Sensor Failure

Invalid Sensor Reading

Sensor Not Available

Effector Failure

Effector Not Available

No Sensor Reading

Communicate Sensor
reading to Effector

Self-Adaptive Control
Loop

Resource Exhaustion
(Memory)

Communication Error

Measure Decrease in response time

Maximize Performance

Sufficient Resources Available

Effector Operational

Configuration File is Accessible

Valid Sensor Reading

Sensor Operational

Serve more visitors

Figure 16: Considered Obstacles for example Self-System A

The obstacles were translated into concrete changes only after the definition of the

changeload, as depicted in Table 17. This is in contrast to the risk-based approach, where

concrete changes were created for each identified change scenario prior to the cut-off being

applied, which resulted in wasted effort and increased costs. Table 18 shows an example of the

concrete obstacles within the defined changeload for example Self-System A.

Obstacle Target
Target

Type

Trigger

Instant
Duration Amount OSDG OB Relevance

 ms ms %

 ms ms %

Table 17: Concrete Obstacles in the final Changeload generated by the Goal-Oriented

Approach

88

Obstacle Target
Target

Type

Trigger

Instant
Duration Amount OSDG OB Relevance

Configuration

File Locked

Increase /

Decrease

Content

Fidelity

Action 15s 120s 100% Critical High High

No Sensor

Reading

Measure

Increase /

Decrease in

Response

Action 60s,

120s,

180s

30s 100% Critical High High

Invalid

Sensor

Reading

Measure

Increase /

Decrease in

Response

Time

Action 100s,

200s,

300s

5s 100% Critical High High

Sensor failure Response

Time Sensor

Agent 500s 60s 100% Marginal Very

High

High

Sensor not

available

Response

Time Sensor

Agent 475s 15s 100% Marginal Very

High

High

Resource

Exhaustion

(CPU)

Maximize

Performance,

Self-Adaptive

Control Loop,

Response

Time Sensor,

Fidelity

Effector

Goal,

Agent,

Agent,

Agent

600s,

700s,

800s

10s, 30s,

90s

75%,

90%,

100%

Catastrophic Very

High

Mandatory

Resource

Exhaustion

(Memory)

Maximize

Performance,

Self-Adaptive

Control Loop,

Response

Time Sensor,

Fidelity

Effector

Goal,

Agent,

Agent,

Agent

700s,

800s,

900s

10s, 30s,

90s

75%,

90%,

100%

Catastrophic Very

High

Mandatory

Table 18: Final Changeload with Concrete Obstacles for example Self-System A

Case Study

A case study was conducted to determine the cost-effectiveness of the goal-oriented

approach over the risk-based approach. In Almeida and Vieira (2012a), the authors conducted a

case study of a fictitious ADBMS to demonstrate the effectiveness of the risk-based approach to

define a suitable changeload. However, they did not provide comprehensive documentation for

each step, including those related to discovery, identification, and analysis. To the best of the

89

author’s knowledge, no comprehensive case study utilizing the risk-based approach and focusing

on overall costs existed within literature.

Therefore, this research conducted a case study applying the risk-based and goal-oriented

approaches against the same subject system. The data from each approach was recorded and

compared as described in the following section

Subject System

The ZNN.com system is an N-tier web-based information system designed to reproduce

the real-world systems utilized in large-scale online news providers, such as CNN.com. It was

built on RAINBOW, an architecture-based platform for self-adaptation, and focused on meeting

QoS goals while minimizing server costs (Cámara, Lemos, Vieira, et al., 2013; S. W. Cheng et

al., 2009). The RAINBOW framework provided reusable, generic, and cost-effective

mechanisms to implement the self-adaptive control loop, the MAPE loop, which monitored the

target system, detected changes, planned how to adapt, and executed the adaptation in response

to the changes (S. W. Cheng et al., 2009). The RAINBOW framework is depicted below in

Figure 17.

Figure 17: RAINBOW Framework

90

The ZNN.com system’s N-tier architecture consisted of a set of application servers that

served web content, such as images, videos, and text, from back-end database servers to clients

(c0 – c2) via front-end presentation logic, as shown in Figure 18. It utilized a load balancer

(lbproxy) to distribute incoming requests across servers (s0 – s3) based on their utilization.

Figure 18: ZNN.com System Architecture

The system’s runtime goals were to prevent the loss of customers due to poor

performance by reducing content fidelity during peak times. Thus, its high-level goals consisted

of performance, cost, and content fidelity, similar to the example utilized throughout this

document. The case study analyzed documentation presented in S. W. Cheng, Huang, Garlan,

Schmarl, and Steenkiste (2004), S. W. Cheng et al. (2009), and Cámara, Lemos, Vieira, et al.

(2013), to determine the characteristics of the ZNN.com system to avoid the need for a physical

implementation.

Analysis of Results

The study’s results were analyzed to determine the cost-savings provided by the goal-

oriented approach over the risk-based approach and to compare the characteristics of the

resulting changeloads. Cost savings was determined by utilizing the Simplified Test Suite Cost

91

Comparison Inequality (rewritten) in Equation 15. However, further reductions to the inequality

were possible based on the values obtained through the case studies.

The cost of a test selection strategy, s and 's , which included the costs of personnel,

equipment, and resources, the cost of executing a single unattended test against the SUB, e , and

the cost of comparing a test’s output against the system’s specification to analyze its result, c ,

were the same for both approaches and are constant. Therefore, the inequality was further

reduced with the removal of all constants as shown in Equation 37.

' '
1

s

s

T T

T T

Equation 36: Reduced Test Suite Cost Inequality

The total number of tests considered throughout the risk-based approach, represented by

sT , the total number of tests included in the final risk-based approach changeload, T ,, the total

number of tests considered throughout the goal-oriented approach, '

sT , and the total number of

tests included in the final risk-based approach changeload, 'T , correspond to the cost of each

approach. The goal-oriented approach provided a cost-savings over the risk-based approach if

the inequality held true. The value of the ratio (the left side of the inequality) indicated the

relative cost savings experienced from the utilization of the goal-oriented approach.

The resulting changeloads were compared to determine the effectiveness of the goal-

oriented approach. The number of identified changes for each included relevance level was used

to determine the goal-oriented approach’s comprehensiveness. A greater distribution of highly

relevant changes denoted greater changeload relevance.

92

The degree to which the changeloads were reduced by the application of the relevance

cut-off level was used to determine the wastefulness of the approach by identifying the number

of irrelevant changes identified.

The overall effectiveness of the approach was determined by calculating the return on

investment for each selection strategy, sROI , defined as the quotient of the total number of

changes with relevance level of at least “high” identified by the strategy, (:)T RCL high , and

the total number of tests identified by the test selection strategy, sT , as shown in Equation 37.

A larger sROI value implied a greater return and effectiveness of the selection strategy.

(:)
s

s

T RCL high
ROI

T

Equation 37: Test Selection Strategy's Return on Investment

Summary

This research extended the risk-based approach proposed by Almeida and Vieira (2012a)

by incorporating goal-oriented requirements engineering techniques developed by Dardenne et

al. (1993). A case study approach was be used to demonstrate the validity and effectiveness of

the goal-oriented approach over the risk-based approach, where a target system was analyzed

using both approaches and their results compared. This allowed direct comparison of the

approaches and enabled future studies to utilize the methodology and results. The results of the

case study are be presented in tabular and graphical format to allow direct comparison of their

data, discussed in the next section. The hypothesized outcome was the integration and utilization

of goal-oriented requirements engineering techniques to analyze the system would result in fewer

93

test cases being defined and executed for a given target system resulting in lower resilience

benchmarking costs of self-adaptive systems.

The following section presents the data produced by the case study, the case study’s

results, and their analysis.

94

Chapter 4

Results

The results of the case study demonstrated that the goal-oriented approach minimized the

test suite and resulting changeload for the subject system, successfully reducing the cost of

resilience benchmarking of self-adaptive systems by over 80%. The case study’s produced data

is presented in the next section, followed by the presentation of the study’s results and their

analysis.

Presentation of Data

The following section presents the data produced by the risk-based approach, followed by

the data produced by the goal-oriented approach.

Risk-Based Approach Data

The base scenario defined in Step A of the risk-based approach is presented below in

Table 19. The high-level goals, operating conditions, and base line workload are taken from the

ZNN.com specification (V.-W. Cheng, 2008).

Step A: Identification of the Base Scenario

Goals Operating Conditions Workload

Serve news content (content quality)

Reasonable response time range

(performance)

Within operating budget (cost)

Adequate resources

Normal request traffic

Table 19: Risk-Based Approach Base Scenario Definition Data

Step B: Identification of Change Scenarios

The data produced in Step B of the risk-based approach is shown in Table 20 and Table

21 Table 21 only contains a sample of the data produced, and the concrete change details (i.e.

95

trigger instant, duration, and amount) were omitted, as there were a large number of identified

changes. The full list of identified changes can be found in Appendix B.

 Base Scenario Elements

 Goals Operating Conditions Workload

S
o

u
rc

e
s

o
f

C
h

a
n

g
e

Target System

(ZNN.com N-tier

system)

Internal node connection faults

Gauge Issues

Adaptive Overhead

Effector Issues

Configuration

Resources

(Hardware)

Fluctuations in server resources

Fluctuations in network performance

New HW

Fluctuations in Load Balancer Performance

and Availability

Backup Issues

Faulty HW

Resources

(Software)

OS Faults

File System Faults

Fluctuations in service availability

OS Updates

Environment

Operator Errors

Power availability

Attack

Fluctuations in request

type

Fluctuation in number of

requests

Fluctuation in number of

users

Content stealing

Table 20: Risk-Based Approach Change Class and High-Level Change Mapping to Base

Scenario Elements Data

Specific Change Class Impact Probability Relevance

Unable to communicate with Server (1… n) Internal node

connection

faults

Catastrophic High Very High

Unable to communicate x n Catastrophic High Very High

Communication Failure: Server to Load Balancer Marginal Low Medium

Communication Timeout: Server to Load Balancer Negligible High Low

Communication Corruption Negligible Very Low Negligible

Network link saturation Marginal High Medium

Link congestion: Load Balancer to Servers Marginal Very High High

Communication Delay: Load Balancer to Servers Marginal Very High High

Unable to turn server on (stuck off) Effector Catastrophic Very High Mandatory

Unable to turn server off (stuck on) Critical Low Medium

Unable to reduce content fidelity (stuck high) Catastrophic Very Low Medium

Unable to increase content fidelity (stuck low) Critical Very Low Medium

Unable to increase content fidelity (stuck medium) Marginal Very Low Low

Unable to decrease content fidelity (stuck medium) Marginal Very Low Low

… … … … …

Table 21: Risk-Based Approach Change Scenario Definitions Sample Data

96

Goal-Oriented Approach Data

The following section presents the data generated by the goal-oriented approach.

Step A: Identification of System Goals

The initial goal refinement graph produced in Step A of the goal-oriented approach is

shown in Figure 19. It is composed of six refined goals and their relationships.

Figure 19: Goal-Oriented Approach Goal Refinement Graph Data

Step B: Identification of Obstacles

The expanded goal refinement graph produced in Step B of the goal-oriented approach is

depicted in Figure 20. It contains all identified goals, actions, agents, assumptions, and

obstacles. Table 22 contains a summary of the expanded goal refinement graph illustrated in

Figure 20, allowing for a straightforward analysis of its composition.

97

Figure 20: Goal-Oriented Approach Expanded Goal Refinement Graph with Obstacles,

Assumptions, Agents, and Actions Data

98

Expanded Goal Refinement Graph Composition

Total Number of Goal Nodes 6

Total Number of Actions Nodes 10

Total Number of Assumptions Nodes 24

Total Number of Obstacles Nodes 41

Max Distance (Obstacle to Goal) 8

Min Distance (Obstacle to Goal) 4

Table 22: Expanded Goal Refinement Graph Composition Summary Data

Step C: Definition of Obstacle Attributes

Step C of the goal-oriented approach produced the definition of the OSDG and OB

obstacle attributes, as well as their associated and effective ranges, as shown in Table 23 and

Table 24.

Risk-Based

Impact Attribute

Goal-Oriented

OSDG Attribute
Effective Range

Catastrophic [1, 4] 1, 2, 3, and 4

Critical (4, 5.3] 5

Marginal (5.3, 6.7] 6

Negligible (6.7, 8] 7 and 8

Table 23: Goal-Oriented Approach OSDG Attribute Data

Risk-Based

Impact Attribute

Goal-Oriented

OB Attribute Range
Effective Range

Very High [6, 4.5) 5 and 6

High [4.5, 3) 4

Low [3, 1.5) 2 and 3

Very Low [1.5, 0) 1

Table 24: Goal-Oriented Approach OB Attribute Data

99

Step D: Evaluation of Obstacle Attributes and Step E: Definition of the Changeload

Table 25 shows the test suite produced by the goal-oriented approach with their

associated obstacle attributes. Note that the trigger instant, duration, and amount of each

obstacle were omitted for ease of review.

Obstacle Target Target Type OSDG OB Relevance

Response Time Sensor

Unavailable

Response

Time Sensor

Agent,

Assumption
Catastrophic (4) Low (2) High

Response Time Sensor

Failure
 Catastrophic (4) Low (2) High

Response Time Sensor

Readings Inaccurate (-1)
 Catastrophic (4) Low (2) High

Response Time Sensor

Readings Delayed (high

latency)

 Catastrophic (4) Low (2) High

Server Load Sensor

Unavailable

Server Load

Sensor

Agent,

Assumption
Catastrophic (4) Low (3) High

Server Load Sensor

Failure
 Catastrophic (4) Low (3) High

Server Load Sensor

Readings Inaccurate (-1)
 Catastrophic (4) Low (3) High

Server Load Sensor

Readings Delayed (high

latency)

 Catastrophic (4) Low (3) High

Self-Adaptive Control

Loop Failure

Self-Adaptive

Control

Agent,

Assumption
Critical (5) Very High (6) Very High

Insufficient Resources

Available (CPU)

Load

Balancer

Agent,

Assumption
Marginal (6) Very High (6) High

Insufficient Resources

Available (Memory)
 Marginal (6) Very High (6) High

Insufficient Resources

Available (Disk)
 Marginal (6) Very High (6) High

Load Balancer

Unavailable
 Marginal (6) Very High (6) High

Load Balancer Failure Marginal (6) Very High (6) High

Network Bandwidth

Sensor Unavailable

Network

Bandwidth

Sensor

Agent,

Assumption
Catastrophic (4) Low (3) High

Network Bandwidth

Sensor Failure
 Catastrophic (4) Low (3) High

Network Bandwidth

Sensor Readings

Inaccurate (-1)

 Catastrophic (4) Low (3) High

Network Bandwidth

Sensor Readings Delayed

(high latency)

 Catastrophic (4) Low (3) High

Server Pool Effector’s

Effects are Incorrect

Server Pool

Effector

Agent,

Assumption
Catastrophic (4) High (4) Very High

100

Server Pool Effector’s

Effects are Delayed (high

latency)

 Catastrophic (4) High (4) Very High

Server Pool Effector

Unavailable
 Catastrophic (4) High (4) Very High

Server Pool Effector

Failure
 Catastrophic (4) High (4) Very High

Unable to Decrease Server

Pool Size
 Catastrophic (4) High (4) Very High

Unable to Increase Server

Pool Size
 Catastrophic (4) High (4) Very High

Content Fidelity Effector

Unavailable

Content

Fidelity

Effector

Agent,

Assumption
Catastrophic (4) High (4) Very High

Content Fidelity Effector

Failure
 Catastrophic (4) High (4) Very High

Unable to Increase

Content Fidelity
 Catastrophic (4) High (4) Very High

Unable to Decrease

Content Fidelity
 Catastrophic (4) High (4) Very High

Insufficient Resources

Available (CPU)
Server Pool

Agent,

Assumption
Catastrophic (4) Very Low (1) Medium

Insufficient Resources

Available (Memory)
 Catastrophic (4) Very Low (1) Medium

Insufficient Resources

Available (Disk)
 Catastrophic (4) Very Low (1) Medium

Sever Pool Unavailable Catastrophic (4) Very Low (1) Medium

Single Server Failure Catastrophic (4) Very Low (1) Medium

Multiple Server Failure

(n-1 servers fail)
 Catastrophic (4) Very Low (1) Medium

Server Pool Failure (n

server fail)
 Catastrophic (4) Very Low (1) Medium

WWW Service Failure Catastrophic (4) Very Low (1) Medium

WWW Server Unavailable Catastrophic (4) Very Low (1) Medium

Network Link Failure

(Server)
 Catastrophic (4) Very Low (1) Medium

Network Link Failure –

Multiple (n-1 Servers)
 Catastrophic (4) Very Low (1) Medium

Network Link Failure –

All (n Servers)
 Catastrophic (4) Very Low (1) Medium

Slashdot Request Pattern Catastrophic (4) Very Low (1) Medium

Table 25: Goal-Oriented Approach Final Changeload with Concrete Obstacles Results

101

Presentation of Results

The following section presents the case study results. Table 26 shows the number of

identified changes utilizing the risk-based and goal-oriented approaches and includes the

numeric and percent difference for each relevance level. Table 27 shows the number of included

changes for each relevance level and the final changeload size produced by each approach.

Risk-Based

Approach

Goal-Oriented

Approach
Difference

Percent

Difference

1 Negligible 4 0 -4 -100%

2 Very Low 9 0 -9 -100%

3 Low 14 0 -14 -100%

4 Medium 138 13 -125 -91%

5 High 43 17 -26 -60%

6 Very High 35 11 -24 -69%

7 Mandatory 9 0 -35 -100%

8 Total Test Suite Size 252 41 -211 -84%

Table 26: Test Suite Construction and Total Size Comparison Results

Risk-Based

Approach

Goal-Oriented

Approach
Difference

Percent

Difference

1 Negligible 0 0 - -

2 Very Low 0 0 - -

3 Low 0 0 - -

4 Medium 0 0 - -

5 High 43 17 -26 -60%

6 Very High 35 11 -24 -69%

7 Mandatory 9 0 -9 -100%

8 Final Changeload Size 87 28 -59 -68%

Table 27: Included Change Scenarios and Final Changeload Size Comparison after Cut-

Off Results

102

Results Analysis

The following section analyzes the results of the case study presented in the previous

section based on the qualities outlined in the Analysis of Results section to determine the relative

cost savings, effectiveness, wastefulness, and return on investment of the goal-oriented approach.

Cost Savings

Equation 36 was utilized to determine overall cost-savings of the goal-oriented approach

and utilized the results presented in Table 26 and Table 27.

41 28
1 0.2035 1

252 87

Equation 38: Cost Savings Inequality Results

The resulting inequality, shown in Equation 38, held true and indicated that the goal-

oriented approach provided cost savings over the risk-based approach. The calculated value

quantified the extent of the cost savings, where the ratio signified the overall cost of the goal-

oriented approach being 20.35% of the overall cost of the risk-based approach. Said differently,

the goal-oriented approach reduced the cost of resilience benchmarking by 79.65%. Even if the

full goal-oriented test suite were utilized in an effort to ensure maximum test coverage and

comprehensiveness of evaluation, the approach would still provide a cost savings of 75.81% over

the risk-based approach.

The cost savings was achieved by reducing the number of identified and enumerated

changes against the subject system. For example, the risk-based approach’s use of a high-level

base scenario definition resulted in a large number of workload pattern variations that needed to

be defined for the workload, disk utilization, network congestion, and resource utilization to fully

evaluate the system on any changes to these aspects. They included steady state, sinusoidal,

103

stepwise, ramp, exponential, and random request / utilization patterns for the subject system’s

major components: web server pool CPU, memory, and disk utilization; load balancer CPU,

memory, and disk utilization; the internal network’s bandwidth and latency patterns; and the web

client workload’s request type variation and request timing patterns. They totaled seventy

distinct changes and constituted 27.78% of the risk-based approach’s test suite. However, all of

the request changes were found to be irrelevant to the SUB’s evaluation, and omitted from the

final changeload, since none of them met the high relevancy requirement.

Another example is changes affecting traditional agents, such as faulty hardware and

operator error, were not considered in the goal-oriented approach since a self-adaptive agent was

not responsible for ensuring their resilience to runtime changes. This contrasts the risk-based

approach, which considered runtime changes to all aspects of the system, such as eight faulty

hardware changes, six general security changes, eleven common administrative user errors, eight

operating system faults, and four electrical system changes. These changes accounted for

14.68% of the risk-based test suite while 62.16% of those defined were omitted from the final

risk-based changeload due to low relevance.

Effectiveness

The relevance distribution for each test suite was derived from Table 26 and is presented

graphically in Figure 21. Table 28 provides a summary of the test suite distribution relative to

the RCL.

104

Figure 21: Test Suite Relevance Distribution of Identified Changes in the Resulting Test

Suites

Relevance Distribution Risk-Based Approach Goal-Oriented Approach

< High 65.48% 31.71%

≥ High 34.52% 68.29%

Table 28: Test Suite Relevance Distribution Summary

The majority of changes identified by the risk-based approach had a relevance level of

medium, which comprised 54.76% of the test suite. The test suite also contained 5.56% low,

3.57% very low, and 1.59% negligibly relevant changes. The majority of changes identified by

the goal-oriented approach had a relevance level of high, which comprised 41.46% of the test

suite. The test suite also contained 31.71% changes of medium relevance and zero low, very

low, and negligibly relevant changes.

The results showed that the goal-oriented approach was effective at producing a relevant

test suite for the subject system as its resulting test suite was composed of only 31.71% irrelevant

3.57%

13.89%
17.06%

54.76%

5.56%
3.57%

1.59%
0.00%

26.83%

41.46%

31.71%

0.00% 0.00% 0.00%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Mandatory Very High High Medium Low Very Low Negligible

Distribution of Identified Changes

Risk-Based Approach Goal-Oriented Approach

105

changes and 68.29% relevant changes. This was in contrast to the risk-based test suite was

composed of 65.48% irrelevant changes and 34.52% relevant changes.

Examples of irrelevant changes identified by the risk-based approach were power supply

failure, operating system updates, and malicious attacks. While the possibility of these changes

occurring and ultimately diminishing the system’s ability to achieve its goals exists, they did not

meet the relevance requirement of the resilience evaluation and therefore provided little value in

their consideration. These types of changes are more appropriately evaluated using

dependability and security benchmarking as they do not typically consider self-adaptive

mechanisms (Almeida & Vieira, 2012a; A. B. Brown et al., 2004; Meyer, 2009).

Wastefulness

The wastefulness of the approach was defined as the ratio of discarded changes to the

total number of defined changes. The data was extracted from Table 28, where the risk-based

and goal-oriented approaches discarded approximately 65.48% and 37.71% of their defined test

suite after the RCL was applied, respectively.

The results indicated that the goal-oriented approach was less wasteful than the risk-

based approach since a greater percentage of the identified changes met or exceeded the

relevance requirement and were included in the final changeload. Avoiding the wasted effort

from the identification, definition, and enumeration of irrelevant changes is a straightforward

method of reducing benchmarking costs (Barbosa et al., 2005). In this instance, the goal-

oriented approach significantly reduced wasted effort by reducing the amount of irrelevant

changes that would ultimately be discarded by the RCL.

106

Return on Investment

The return on investment of each approach was calculated utilizing Equation 37 and

populated with the results presented in Table 26 and Table 27.

The return on investment of the risk-based approach, risk basedROI , was calculated to be

0.3452. This value signified a return of approximately one relevant change for every three

changes identified by the risk-oriented approach and corresponded to the roughly 65%

wastefulness factor calculated in the previous section. The return on investment of the goal-

oriented approach, goal orientedROI , was calculated to be 0.6829. This value signified a return of

approximately two relevant change for every three changes identified by the goal-oriented

approach, and correlated to the approximate 32% wastefulness factor of the approach.

The higher return on investment, combined with the lower wastefulness factors, provide a

clear picture of goal-oriented approach’s value in reducing the cost of resilience benchmarking

over the risk-based approach.

Summary

The goal-oriented approach was shown to effectively reduce the cost of defining a

resilience changeload for self-adaptive systems. The approach utilized system knowledge to

identify the subject system’s self-adaptive agents, their operational assumptions, and the

obstacles that would hinder the system’s ability to attain runtime goals. The results of the case

study showed the goal-oriented approach to provide a cost savings by being less wasteful and

more effective at defining relevant changeload, thereby providing a greater return on invested

effort when compared to the risk-based approach on the same subject system.

107

Chapter 5

Conclusions

This dissertation demonstrated that the goal-oriented approach for defining resilience

changeloads is an effective method for reducing the overall cost of resilience benchmarking of

self-adaptive systems over existing approaches. A comparative case study showed that utilizing

knowledge of the system’s goals and self-adaptive mechanisms is an effective method for

identifying relevant runtime changes while simultaneously reducing the overall costs of

resilience benchmarking. The incorporation of goal-oriented requirements engineering

techniques to extract the pertinent system information from the SUB provided sufficient

guidance to avoid the issues associated with existing methods, specifically, the identification of

irrelevant and redundant changes.

Incorporating test suite minimization techniques at the onset of benchmarking activities

greatly reduces the overall cost and effort required to carry out resilience evaluation, especially

for large and complex systems. The cost reduction increases the likelihood of comprehensive

verification of runtime behavior and the validation of system capabilities and resilience

expectations in dynamic environments. This increases trust in the system and its services, which

is especially important due to society’s growing reliance on self-adaptive systems for

infrastructure and critical services.

The goal-oriented approach entails analyzing, refining, and relating the self-adaptive

system’s goals in a goal refinement graph to reveal its runtime goals and behavior. The system is

further analyzed to incorporate self-adaptive responses (i.e. runtime actions) and their

responsible self-adaptive agents into the graph to identify the system components requiring direct

108

assessment due to their resilience responsibilities. Runtime assumptions are then enumerated for

each self-adaptive agent to capture their expected operational and environmental conditions. The

test suite is then produced by enumerating all unfavorable runtime conditions, or obstacles, that

would contradict an assumption, directly affect a self-adaptive response, or mechanism, and

obstruct the attainment of runtime goals. The goal-oriented requirements engineering techniques

utilized within the approach were able to extract significant system knowledge that provides

guidance for runtime change identification, providing cost savings over existing approaches.

The primary goal of designing an approach that reduces overall benchmarking costs

while ensuring test coverage over past work was displayed through the results presented in

Chapter 4.

The goal-oriented approach demonstrated greater cost effectiveness than the risk-based

approach (Almeida & Vieira, 2012a) by producing a minimized test suite for the subject system

and reducing the cost of resilience benchmarking by 79.65%. The goal-oriented approach also

achieved a greater degree of return on investment by producing a more favorable relevant to

irrelevant change ratio by a factor of two. Additionally, the goal-oriented approach reduced

wasted effort and shown to be more effective at identifying highly relevant changes, both by a

factor of two. The results demonstrated that the goal-oriented approach is effective in defining a

relevant resilience changeload while reducing overall costs by minimizing the total number of

identified test cases in the test suite and the number of enumerated changes in the changeload.

Implications

The problem of defining a changeload for the resilience benchmarking of self-adaptive

systems has been addressed by previous work (Almeida & Vieira, 2012a) but resulted in

extremely large test suites and high costs (Barbosa et al., 2005; Pressman, 2005; Vieira &

109

Madeira, 2004). The high cost of benchmarking often forced practitioners to omit

comprehensive resilience evaluation as a cost-savings strategy since testing and maintenance

costs often accounted for up to 80% of total system cost (Jorgensen, 2002). Previous benchmark

cost saving techniques focus on minimizing the test suite by removing redundant and irrelevant

test cases but they require exhaustive test suites be defined first. This study used system

knowledge to guide the definition of test cases and avoided the definition and enumeration of

irrelevant test cases by incorporating goal-oriented requirements engineering analysis techniques.

The case study showed that the approach was effective at reducing the overall cost of resilience

benchmarking while ensuring a high degree of changeload relevance. Refinements to this

approach presents the potential for further cost savings while ensuring the relevance of the

resulting changeload by further reducing the number of identified irrelevant changes.

Recommendations

The goal-oriented approach was developed in order to demonstrate the ability of system

knowledge to reduce resilience benchmarking costs. While the approach was effective in this

regard, it has several opportunities for improvement.

First, the definition of the relevance cut-off level (RCL) mirrored the risk-based approach

to facilitate result comparison. Refinement of the RCL definition process may result in a cut-off

level that is more appropriate to the SUB and its expected operational constraints (Almeida &

Vieira, 2012a). For instance, an RCL of high may be too constraining for a military system that

may require evaluation that is more comprehensive.

Additionally, refinement to the obstacle attributes, and their associated thresholds, may

result in change relevance assignments that are more suitable to a SUB than those used within

this study. The total number of attribute values, four for both the OSDG and OB, and the six

110

change relevance levels, mirrored those utilized in the risk-based approach. Refinement to the

attributes and relevance levels may increase their applicability, appropriateness, and

expressiveness for other SUBs.

Finally, extension of the goal refinement graph to include additional dimensions of

system knowledge may provide additional insight into the system’s runtime behavior and should

be investigated. For example, additional graph theory analysis techniques, such as node failure

modeling (Heegaard & Trivedi, 2009), may provide further insight into an obstacle impact and

provide a more appropriate quantification method. Further, goal priorities or weights may

provide a more effective method of evaluating obstacle relevance, failure propagation, and

perceived failure qualities (Quadri & Farooq, 2010). The incorporation of runtime simulations,

documentation review, or adaptive modeling may provide guidance into the evaluation of

adaptive strategy and runtime behavior since a system may respond differently to the same

changes in a different sequence (Almeida & Vieira, 2011; Andersson et al., 2009; Madan,

Goševa-Popstojanova, Vaidyanathan, & Trivedi, 2004). Further, source code analysis may also

be useful to determine specific adaptive mechanisms and capabilities, providing greater insight

into functionality requiring evaluation and component-specific runtime obstacles that would

otherwise go unidentified (Barbosa et al., 2005).

Summary

Society’s reliance on software systems to provide mission critical and infrastructure

services continues to increase (IBM, 2003). The systems must continue to operate as expected

especially when unfavorable or unexpected situations arise, such as attack, power outage, and

failure (Almeida & Vieira, 2012a; Huebscher & McCann, 2004; IBM, 2003). This has resulted

in a continued increase in system complexity and scale to cope with society’s growing

111

performance, redundancy, robustness, and data demands (IBM, 2003). The management and

maintenance of these systems has grown increasingly costly and error prone due to the explosion

in their growth and complexity (Ganek & Corbi, 2003), especially when coupled with the

unpredictable workloads produced by society (IBM, 2003). The resulting service outages and

disruptions negatively affected those reliant on their services with financial and societal

consequences (Ganek & Corbi, 2003).

System designers incorporated self-adaptive mechanisms into systems in order to address

the problem of ensuring the system’s resilience to runtime changes and reducing the reliance on

human operators to conduct complex management, configuration, and tuning tasks (Bondavalli

et al., 2009; Group, 2002; IBM, 2003; Moorsel et al., 2009). These mechanisms increased a

system’s resilience to runtime changes and instilled it with dynamic runtime behavior which was

able to respond to changes within its operational context with little or no human intervention

(Almeida & Vieira, 2011; B. Cheng et al., 2009; IBM, 2003). Consequently, the self-adaptive

systems required verification and validation of their runtime behavior in order to elicit a

sufficient level of trust for their use in infrastructure and critical systems (A. Avizienis, J.-C.

Laprie, B. Randell, & C. Landwehr, 2004; Kanoun et al., 2004). However, resilience evaluation

of these systems was often overlooked or avoided (Quadri & Farooq, 2010) because the

additional dimension of runtime variability caused the evaluation and verification of runtime

requirements and goal attainment to be complex, labor intensive, and costly (Almeida & Vieira,

2012a; Bondavalli et al., 2009; A. B. Brown et al., 2004).

Existing techniques, such as the risk-based approach for defining resilience changeloads

of self-adaptive systems, focused on identifying relevant risks that would result in failure to

attain runtime goals (Almeida & Vieira, 2012a). The risk-based approach utilized extended of

112

Software Risk Evaluation (SRE) techniques and deductive reasoning to define a resilience

changeload in a five-step process:

 Step A – Identification of the Base Scenario: The typical high-level goals, operating

conditions, and workload were identified for the system-class.

 Step B – Identification of Change Scenarios: The potential sources of risks to the base

scenario’s high-level goals were identified, mapped to classes of changes, and then

specific changes were defined that may directly affect the identified high-level goals.

 Step C – Definition of Change Scenario Attributes: Attributes were then defined to

qualify the importance and priority of each defined change scenario.

 Step D – Evaluation of the Change Scenario Attributes: The defined change scenarios

were then evaluated and assigned attributes using expert knowledge and multi-voting

schemes. The combination of change scenario attributes corresponded to the change

scenario’s relevance to the system evaluation.

 Step E – Definition of the Changeload: The final changeload was then defined by

defining the relevancy cut-off level, or RCL, to omit irrelevant change scenarios from the

changeload.

Issues existed, however, as the approach directed the evaluator to consider a very large

change space for the system under benchmark by treating the system goals and operating

conditions in an abstract manner, resulting in high costs. The authors included a cost

minimization technique, the RCL, to reduce the number of enumerated changes by removing

irrelevant changes from the changeload. However, the approach resulted in a very large test

suite that was labor intensive and costly to define and enumerate on complex self-adaptive

systems (Almeida & Vieira, 2012a). The removal of irrelevant, repetitive, and redundant

113

changes from the test suite has been shown to successfully minimize the test suite and reduce

benchmarking costs (Barbosa et al., 2005; Galeebathullah & C.P.Indumathi, 2010; Xavier et al.,

2008), however, these techniques require an exhaustive test suite be defined first and then

filtered, which resulted in additional labor and costs.

This dissertation was developed to incorporate the use of system knowledge to guide the

identification of runtime changes to reduce the number of irrelevant, repetitive, and redundant

changes. Its primary goal was to extend past work and develop an approach that reduced the

overall costs of resilience benchmarking while maintaining changeload relevance. This

dissertation developed a goal-oriented approach, which produced a minimized changeload that

indicated it achieved this goal. The goal-oriented approach was developed by leveraging goal-

oriented requirements engineering techniques (van Lamsweerde, 2000) to guide the analysis of

self-adaptive systems to identify relevant runtime changes.

The basis of the goal-oriented approach is to extract detailed information of the system to

identify its runtime goals, their underlying assumptions, and obstructing conditions for goal

attainment. The approach consists of a five-step process:

 Step A – Identification of System Goals: HOW and WHY goal refinement techniques

are used to iteratively refine the system’s high-level goals to determine how high-level

goals are attained (sub-goals) and why they exist (parent goals) to determine goal

relationships and dependencies. A goal refinement graph is created to visualize their

relationships using the KAOS specification.

 Step B – Identification of Obstacles:

o Part 1 consists of analyzing the system to determine the actions conducted to

achieve each identified goal, the agent responsible for carrying out the actions,

114

and underlying assumptions that need to be true at runtime. These nodes are

added to the goal refinement graph to provide further insight into the system and

its behavior.

o Part 2 consists of analyzing the system and the goal refinement graph to identify

the obstructing conditions under which goal attainment is unachievable. The

obstacles are then incorporated into the goal refinement graph.

 Step C – Definition of Obstacle Attributes: Attributes are then defined using graph

theory and characteristics of the goal refinement graph to quantify the importance of each

obstacle.

 Step D – Evaluation of Obstacle Attributes: The defined obstacles are then assigned

attributes based on their node characteristics in the graph to determine their relevance to

the system evaluation.

 Step E – Definition of the Changeload: The final changeload is then defined by using

an RCL to further minimize the test suite.

A comparative case study using the risk-based and goal-oriented approaches on the same

subject system, ZNN.com (V.-W. Cheng, 2008), was conducted to gauge the approach’s

effectiveness to define a minimized changeload. The data produced by the approaches, as well

as the final resilience changeload, were compared to determine the goal-oriented approach’s

relative cost savings, wastefulness, effectiveness, and return on investment over the risk-based

approach. The results demonstrated that the goal-oriented approach successfully reduced the

size of the test suite and final changeload providing an overall cost savings of 79.65% over the

risk-based approach while effectively producing a test suite of higher relevance. Additionally,

115

the goal-oriented approach was shown to be less wasteful and provide a greater return on

invested effort, both by a factor of two, over previous work.

This dissertation demonstrated that the utilization of system knowledge to guide the

definition of a resilience changeload could result in significant cost savings while producing a

highly relevant changeload. It provides a method of defining a cost effective resilience

changeload that is widely applicable to address the resilience benchmarking needs of large and

complex self-adaptive systems.

116

Appendix A

Leung and White (1991) proposed a testing cost model for the comparison of selective

retesting versus retest-all strategies in regression testing, which was useful when comparing two

testing strategies against the same system. The cost model defined the total cost of a software

testing strategy, ()C Strategy , against a set of test cases, T , which was comprised of the costs

of system analysis, Ca , test selection, Cs , test execution, Ce , result analysis and understanding,

Cu , and result checking, Cc , as shown in Equation 1 in the Changeload Challenges section.

Thus, the costs of the risk-based and proposed goal-oriented approach are expressed as

shown in Equation 39.

() () () () () ()

() (') (') (') (') (')

C risk based Ca T Cs T Ce T Cu T Cc T

C goal oriented Ca T Cs T Ce T Cu T Cc T

Equation 39: Cost of Testing Strategies

The following depicted in Equation 40 must hold true to validate a cost reduction using

the goal-oriented approach.

() ()C goal oriented C risk based

Equation 40: Cost Savings Inequality as proposed by Leung and White (1991)

More specifically, Equation 41 shows the cost of selection for each approach as being

dependent on the number of tests defined in the test suite, sT , prior to the relevance cut-off being

applied.

'(') '() (') (') (') () () () () ()s sCa T Cs T Ce T Cu T Cc T Ca T Cs T Ce T Cu T Cc T

Equation 41: Cost Savings Inequality with specific costs and different Selection Costs

117

Leung and White (1991) mentioned that a thorough analysis of a system has a greater

cost, Ca , than a less thorough analysis, however, this cost was offset by the reduction in the cost

of results understanding,Cu , due to the additional effort required to understand the system’s

behavior and its outputs (Leung & White, 1991). Thus, the increased cost of analysis, (')Ca T ,

and reduced cost of result understanding, (')Cu T , of the goal-oriented approach was equivalent

to the cost of analysis, ()Ca T , and results understanding ()Cu T of the risk-based approach, as

shown in Equation 42.

 (') () (') () (') (') () ()Ca T Ca T Cu T Cu T Ca T Cu T Ca T Cu T

Equation 42: Analysis and Understanding Costs Equivalence

The cost savings inequality was combined with the cost equivalence and rewritten as

shown in Equation 43.

'() (') (') () () ()s sCs T Ce T Cc T Cs T Ce T Cc T

Equation 43: Simplified Savings Inequality with different Selection Costs

The values of Cs , Ce , and Cc were dependent on the number of test cases in T ,

represented by the cardinal T , therefore, the cost of each step was rewritten as shown in

Equation 44, where, s , e and c were constants and represented the selection cost, execution cost,

and result checking cost, respectively.

Risk-Based

()

()

()

s sCs T s T

Ce T e T

Cc T c T

' '

Goal-Oriented

'() '

(') '

(') '

s sCs T s T

Ce T e T

Cc T c T

Equation 44: Reduction of Cost Terms

118

The constant 's represented a different selection cost to capture the cost associated with

utilizing the goal-oriented approach due to the extension of the test selection process. The cost

of execution of each test case and the cost of resulting checking was fixed for both approaches.

The inequality was then simplified as shown in Equation 45.

'' ' 's ss T e T c T s T e T c T

Equation 45: Simplified Test Suite Cost Comparison Inequality

119

Appendix B

Specific Change Target Impact Probability Relevance

Unable to communicate with Server (1… n)
Internal node

connection faults
Catastrophic High Very High

Unable to communicate x n Catastrophic High Very High

Communication Failure: Server to Load

Balancer
 Marginal Low Medium

Communication Timeout: Server to Load

Balancer
 Negligible High Low

Communication Corruption Negligible Very Low Negligible

Network link saturation Marginal High Medium

Link congestion: Load Balancer to Servers Marginal Very High High

Communication Delay: Load Balancer to

Servers
 Marginal Very High High

Unable to turn server on (stuck off) Effector Catastrophic Very High Mandatory

Unable to turn server off (stuck on) Critical Low Medium

Unable to reduce content fidelity (stuck high) Catastrophic Very Low Medium

Unable to increase content fidelity (stuck low) Critical Very Low Medium

Unable to increase content fidelity (stuck

medium)
 Marginal Very Low Low

Unable to decrease content fidelity (stuck

medium)
 Marginal Very Low Low

Unable to measure bandwidth on server Gauge Critical Low Medium

Unable to measure response time from server Critical Low Medium

Unable to measure server load Marginal High Medium

Reported server load is invalid (-1) Negligible Very Low Negligible

Reported server load is incorrect Negligible Very Low Negligible

Reported server load is delayed Negligible Very High Medium

Gauge not updating reading Negligible Low Very Low

Operating Budget set too low Configuration Critical Very High Very High

Operating Budget set too high Critical High High

Response time range too aggressive (too

narrow)
 Critical Very High Very High

Response time range too conservative (too

broad)
 Critical Very High Very High

Operating budget exhaustion (limit reached) Catastrophic Very High Mandatory

Adaptive strategy changed (thresholds have

changed during operation)
 Marginal High Medium

Adapts too slow to fluctuations in server load +

response time + bandwidth
Adaptive

Overhead
Catastrophic Very High Mandatory

Adapts too quickly to fluctuations in server

load + response time + bandwidth
 Marginal Very High High

Adaptive functionality causes resource

exhaustion
 Catastrophic Low High

Adaptive thrashing (variables changed

repeatedly within a short period of time)
 Catastrophic High Very High

CPU Utilization Fluctuations: Servers
Resource

Fluctuations
Marginal Very High High

Disk Latency Fluctuations: Servers Marginal Very High High

Low Disk Space Critical Very Low Medium

No disk space Catastrophic Very Low Medium

High disk latency Critical High High

120

Disk failure Catastrophic Very High Mandatory

RAID Array Failure Catastrophic High Very High

RAID Controller Failure Catastrophic High Very High

Disk thrashing Critical Very High Very High

RAM Utilization Fluctuations: Servers Marginal Very High High

Server CPU Latency Utilization Patterns

Steady Request Pattern (Start: n) Marginal High Medium

Sinusoid Request Pattern (Trough: n, Peak: m) Marginal High Medium

Stepwise Request Pattern (Start: n, Increment:

m, End: p)
 Marginal High Medium

Ramp Request Pattern (Start: n, End: p) Marginal High Medium

Step Request Pattern (Trough: n, Peak: m) Marginal High Medium

Exponential Request Pattern (Power: 2^p) Marginal High Medium

Random Request Pattern (Min: n, Max: m) Marginal High Medium

Server RAM Latency Utilization Patterns

Steady Request Pattern (Start: n) Marginal High Medium

Sinusoid Request Pattern (Trough: n, Peak: m) Marginal High Medium

Stepwise Request Pattern (Start: n, Increment:

m, End: p)
 Marginal High Medium

Ramp Request Pattern (Start: n, End: p) Marginal High Medium

Step Request Pattern (Trough: n, Peak: m) Marginal High Medium

Exponential Request Pattern (Power: 2^p) Marginal High Medium

Random Request Pattern (Min: n, Max: m) Marginal High Medium

Server Disk Latency Utilization Patterns Marginal High Medium

Steady Request Pattern (Start: n) Marginal High Medium

Sinusoid Request Pattern (Trough: n, Peak: m) Marginal High Medium

Stepwise Request Pattern (Start: n, Increment:

m, End: p)
 Marginal High Medium

Ramp Request Pattern (Start: n, End: p) Marginal High Medium

Step Request Pattern (Trough: n, Peak: m) Marginal High Medium

Exponential Request Pattern (Power: 2^p) Marginal High Medium

Random Request Pattern (Min: n, Max: m) Marginal High Medium

CPU Utilization Fluctuations: Load Balancer Marginal High Medium

Disk Latency Fluctuations: Load Balancer Marginal High Medium

RAM Utilization Fluctuations: Load Balancer Marginal High Medium

Load Balancer CPU Latency Utilization

Patterns

Steady Request Pattern (Start: n) Marginal High Medium

Sinusoid Request Pattern (Trough: n, Peak: m) Marginal High Medium

Stepwise Request Pattern (Start: n, Increment:

m, End: p)
 Marginal High Medium

Ramp Request Pattern (Start: n, End: p) Marginal High Medium

Step Request Pattern (Trough: n, Peak: m) Marginal High Medium

Exponential Request Pattern (Power: 2^p) Marginal High Medium

Random Request Pattern (Min: n, Max: m) Marginal High Medium

Load Balancer RAM Latency Utilization

Patterns

Steady Request Pattern (Start: n) Marginal High Medium

Sinusoid Request Pattern (Trough: n, Peak: m) Marginal High Medium

Stepwise Request Pattern (Start: n, Increment:

m, End: p)
 Marginal High Medium

Ramp Request Pattern (Start: n, End: p) Marginal High Medium

Step Request Pattern (Trough: n, Peak: m) Marginal High Medium

121

Exponential Request Pattern (Power: 2^p) Marginal High Medium

Random Request Pattern (Min: n, Max: m) Marginal High Medium

Load Balancer Disk Latency Utilization

Patterns

Steady Request Pattern (Start: n) Marginal High Medium

Sinusoid Request Pattern (Trough: n, Peak: m) Marginal High Medium

Stepwise Request Pattern (Start: n, Increment:

m, End: p)
 Marginal High Medium

Ramp Request Pattern (Start: n, End: p) Marginal High Medium

Step Request Pattern (Trough: n, Peak: m) Marginal High Medium

Exponential Request Pattern (Power: 2^p) Marginal High Medium

Random Request Pattern (Min: n, Max: m) Marginal High Medium

Load Balancer at maximum load Catastrophic High Very High

All Servers at maximum load Catastrophic High Very High

High network congestion
Fluctuations in

network

performance

Critical High High

Low bandwidth connection for Servers Critical Low Medium

High latency Critical High High

High response time Critical High High

Request Timeout Critical High High

Low bandwidth connection for Clients Negligible High Low

100% utilization Catastrophic Low High

Network not found Catastrophic Very Low Medium

No Connection Catastrophic Low High

Network Utilization Pattern x 7

Steady Request Pattern (Start: n) Marginal High Medium

Sinusoid Request Pattern (Trough: n, Peak: m) Marginal High Medium

Stepwise Request Pattern (Start: n, Increment:

m, End: p)
 Marginal High Medium

Ramp Request Pattern (Start: n, End: p) Marginal High Medium

Step Request Pattern (Trough: n, Peak: m) Marginal High Medium

Exponential Request Pattern (Power: 2^p) Marginal High Medium

Random Request Pattern (Min: n, Max: m) Marginal High Medium

Network Latency Pattern x 7

Steady Request Pattern (Start: n) Marginal High Medium

Sinusoid Request Pattern (Trough: n, Peak: m) Marginal High Medium

Stepwise Request Pattern (Start: n, Increment:

m, End: p)
 Marginal High Medium

Ramp Request Pattern (Start: n, End: p) Marginal High Medium

Step Request Pattern (Trough: n, Peak: m) Marginal High Medium

Exponential Request Pattern (Power: 2^p) Marginal High Medium

Random Request Pattern (Min: n, Max: m) Marginal High Medium

Disk drive added New HW Negligible Low Very Low

RAM added Negligible Low Very Low

NIC added Negligible Low Very Low

RAID controller added Negligible Low Very Low

RAID controller replaced Marginal Low Medium

New network available Negligible Low Very Low

New storage device added (NAS / SAN) Negligible Low Very Low

Server added Negligible High Low

Server removed Critical Low Medium

Content File corruption File System Faults Catastrophic Low High

122

Content File unavailable Catastrophic High Very High

Access Denied to Content File Catastrophic High Very High

Content File not found (404) Catastrophic Low High

Content File In use / locked Critical High High

File System Corruption (general) Critical Very Low Medium

Configuration File corruption Catastrophic Low High

Configuration File unavailable Catastrophic Low High

Access Denied to Configuration File Catastrophic Low High

Configuration File not found Catastrophic Low High

Configuration File In use / locked Catastrophic Low High

WWW log unavailable Catastrophic Low High

WWW log not found Catastrophic Low High

WWW log corruption Catastrophic High Very High

WWW log full Catastrophic Very High Mandatory

Load Balancer not available

Fluctuations in

Load Balancer

Performance and

Availability

Catastrophic High Very High

Load Balancer Failure Catastrophic High Very High

Load Balancer misconfigured Critical Very High Very High

Load Balancer high latency to Servers Critical Very High Very High

Load Balancer high latency to Clients Negligible High Low

Load Balancer congestion (internal) Critical Very High Very High

Load Balancer timeout Catastrophic High Very High

RAM bit errors Faulty HW Marginal Very Low Low

CPU bit errors Marginal Very Low Low

NIC fails Catastrophic Very Low Medium

NIC drops packets Critical High High

Disk fails Catastrophic Very High Mandatory

Network Cable faulty Critical Very Low Medium

Power supply failure Marginal Low Medium

Backup battery failure Critical Very Low Medium

Update failed to apply OS Faults Marginal Very High High

Service terminate Catastrophic High Very High

Buffer Overflow Critical Very High Very High

Unexpected Reboot Catastrophic Low High

System unresponsive Catastrophic High Very High

Network Port locked Catastrophic Very Low Medium

OS Corruption Critical Low Medium

Device Driver failure Critical High High

WWW service timeout
Fluctuations in

service

availability

Catastrophic High Very High

WWW service stopped Critical Low Medium

WWW service fails Catastrophic Very Low Medium

WWW service restarts unexpectedly Critical Low Medium

WWW service unavailable Catastrophic Low High

New Patch installed on Server
New SW / OS

Updates
Negligible Very High Medium

New patch unsuccessfully installed on Server Marginal Very High High

New patch locks OS files on Server Critical High High

New patch corrupts files on Server Critical Low Medium

New patch resets configuration on Server Catastrophic Very High Mandatory

123

New patch closes ports on Server Marginal High Medium

New patch affects WWW unexpectedly on

Server
 Marginal High Medium

New patch auto-reboots Server Marginal High Medium

New patch hangs services on Server Marginal High Medium

New Patch installed on Load Balancer Negligible Very High Medium

New patch unsuccessfully installed on Load

Balancer
 Marginal Very High High

New patch locks OS files on Load Balancer Critical High High

New patch corrupts files on Load Balancer Critical Low Medium

New patch resets configuration on Load

Balancer
 Catastrophic Very High Mandatory

New patch closes ports on Load Balancer Catastrophic High Very High

New patch affects WWW unexpectedly on

Load Balancer
 Catastrophic High Very High

New patch auto-reboots Load Balancer Catastrophic High Very High

Additional software added to Server Negligible High Low

WWW Services / Application Updated

Successfully
 Negligible High Low

WWW Services / Application Updated

Unsuccessfully
 Critical Low Medium

WWW Service failure due to failed upgrade on

Server
 Critical Low Medium

WWW Server configuration reset due to patch

on Server
 Catastrophic High Very High

WWW Server configuration reset due to

upgrade on Server
 Catastrophic High Very High

WWW Service fails to start after upgrade on

Server
 Critical Low Medium

New patch hangs services on Load Balancer Catastrophic High Very High

DDoS Attack Attack Catastrophic Low High

Server hacked - content changed Marginal High Medium

Server hacked - page redirects Marginal High Medium

Server hacked - malicious program installed Critical Low Medium

Man in the Middle Attack Marginal Low Medium

0-Day Attack (unknown attack) Critical Very Low Medium

Cross-linking Attack of Text Content Stealing Critical Very High Very High

Cross-linking Attack of Images Critical Very High Very High

Server rebooted Operator Errors Critical Very High Very High

Server turned off Catastrophic Very High Mandatory

Network cable unplugged Catastrophic Low High

Load balancer turned off Catastrophic Low High

Load balancer rebooted Critical High High

Services restarted Critical High High

Services stopped Catastrophic Low High

Permissions changed incorrectly Critical Low Medium

Backup during peak hours Critical High High

Content file deleted Catastrophic High Very High

Configuration file deleted Catastrophic High Very High

Power Loss Power availability Critical High High

Power Overload Marginal Low Medium

Cooling system malfunction Catastrophic Low High

Physical access unavailable Marginal Very Low Low

124

Unable to backup Backup Issues Marginal Low Medium

Backup medium unavailable Negligible Low Very Low

Backup medium full Negligible Very Low Negligible

Backup medium locked Negligible High Low

Backup medium corrupt Negligible High Low

Backup corrupt Marginal High Medium

Regular requests
Fluctuations in

request type
Negligible Very High Medium

Image only requests Marginal Very Low Low

Text only requests Negligible Low Very Low

Steady Request Pattern (Start: n) Marginal High Medium

Sinusoid Request Pattern (Trough: n, Peak: m) Marginal High Medium

Stepwise Request Pattern (Start: n, Increment:

m, End: p)
 Marginal High Medium

Ramp Request Pattern (Start: n, End: p) Marginal High Medium

Step Request Pattern (Trough: n, Peak: m) Marginal High Medium

Exponential Request Pattern (Power: 2^p) Marginal High Medium

Random Request Pattern (Min: n, Max: m) Marginal High Medium

1 req / min
Fluctuation in

number of

requests

Negligible Very High Medium

10 req / min Negligible Very High Medium

50 req / min Marginal High Medium

250 req / min Marginal High Medium

1000 req / min Critical Low Medium

2500 req / min Critical Low Medium

10,000 req / min Catastrophic Very Low Medium

1 users
Fluctuation in

number of users
Negligible Very High Medium

10 users Negligible Very High Medium

50 users Marginal High Medium

250 users Marginal High Medium

1000 users Critical Low Medium

2500 users Critical Low Medium

10,000 users Catastrophic Very Low Medium

Combination of # of users and # of requests Marginal High Medium

Steady Request Pattern (Start: n) Workloads Marginal High Medium

Sinusoid Request Pattern (Trough: n, Peak: m) Marginal High Medium

Stepwise Request Pattern (Start: n, Increment:

m, End: p)
 Marginal High Medium

Ramp Request Pattern (Start: n, End: p) Marginal High Medium

Step Request Pattern (Trough: n, Peak: m) Marginal High Medium

Exponential Request Pattern (Power: 2^p) Marginal High Medium

Random Request Pattern (Min: n, Max: m) Marginal High Medium

392 Workload Variations Marginal High Medium

Table 29: Risk-Based Approach Change Scenario Definitions Full Results

125

References

Agrawal, N., Arpaci-Dusseau, A. C., & Arpaci-Dusseau, R. H. (2008). Towards realistic file-

system benchmarks with CodeMRI. SIGMETRICS Perform. Eval. Rev., 36(2), 52-57.

doi: 10.1145/1453175.1453184

Almeida, R., Madeira, H., & Vieira, M. (2010, June 21-25 2010). From Performance to

Resilience Benchmarking. Paper presented at the Conference on Distributed Computing

Systems Workshops (ICDCSW), 2010 IEEE 30th International

Almeida, R., & Vieira, M. (2011). Benchmarking the resilience of self-adaptive software

systems: perspectives and challenges. Paper presented at the Proceedings of the 6th

International Symposium on Software Engineering for Adaptive and Self-Managing

Systems, Waikiki, Honolulu, HI, USA.

Almeida, R., & Vieira, M. (2012a). Changeloads for Resilience Benchmarking of Self-Adaptive

Systems: A Risk-Based Approach. Paper presented at the 2012 Ninth European

Dependable Computing Conference.

Almeida, R., & Vieira, M. (2012b, Sept 10-14 2012). Changeloads: A Fundamental Piece on the

SASO Systems Benchmarking Puzzle. Paper presented at the Self-Adaptive and Self-

Organizing Systems Workshops (SASOW), 2012 IEEE Sixth International Conference

on.

Andersson, J., Lemos, R., Malek, S., & Weyns, D. (2009). Modeling Dimensions of Self-

Adaptive Software Systems. In H. C. Betty, Rog, L. rio, G. Holger, I. Paola & M. Jeff

(Eds.), Software Engineering for Self-Adaptive Systems (pp. 27-47): Springer-Verlag.

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic Concepts and Taxonomy

of Dependable and Secure Computing. IEEE Trans. Dependable Secur. Comput., 1(1),

11-33. doi: 10.1109/tdsc.2004.2

Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy

of dependable and secure computing. Dependable and Secure Computing, IEEE

Transactions on, 1(1), 11-33. doi: 10.1109/TDSC.2004.2

Barbosa, R., Vinter, J., Folkesson, P., & Karlsson, J. (2005). An approach to reducing the cost of

fault injection. Paper presented at the in Proceedings of Real-Time in Sweden 2005

(RTiS 2005), Skövde, Sweden.

Bondavalli, A., Lollini, P., Barbosa, R., Ceccarelli, A., L. Falai, Karlsson, J., . . . Vieira, M.

(2009). Research Roadmap, Deliverable D3.2, AMBER - Assessing Measuring and

Benchmarking Resilience: funded by the European Union.

Bra, P. D., Aerts, A., Berden, B., Lange, B. d., Rousseau, B., Santic, T., . . . Stash, N. (2003).

AHA! The adaptive hypermedia architecture. Paper presented at the Proceedings of the

fourteenth ACM conference on Hypertext and hypermedia, Nottingham, UK.

126

Brown, A. B., Hellerstein, J., Hogstrom, M., Lau, T., Lightstone, S., Shum, P., & Yost, M. P.

(2004). Benchmarking autonomic capabilities - Promises and Pitfalls. Paper presented at

the Proceedings of the International Conference on Autonomic Computing (ICAC’04).

Brown, G., Cheng, B. H. C., Goldsby, H., & Zhang, J. (2006). Goal-oriented specification of

adaptation requirements engineering in adaptive systems. Paper presented at the

Proceedings of the 2006 international workshop on Self-adaptation and self-managing

systems, Shanghai, China.

Brun, Y., Serugendo, G. M., Gacek, C., Giese, H., Kienle, H., Litoiu, M., . . . Shaw, M. (2009).

Engineering Self-Adaptive Systems through Feedback Loops. In H. C. Betty, Rog, L. rio,

G. Holger, I. Paola & M. Jeff (Eds.), Software Engineering for Self-Adaptive Systems (pp.

48-70): Springer-Verlag.

Burgman, M., Fidler, F., Mcbride, M., Walshe, T., & Wintle, B. (2006). Eliciting Expert

Judgments: Literature Review: Australian Centre for Excellence in Risk Analysis

(ACERA) - University of Melbourne.

Cailliau, A., & Lamsweerde, A. (2013). Assessing requirements-related risks through

probabilistic goals and obstacles. Requirements Engineering, 18(2), 129-146. doi:

10.1007/s00766-013-0168-5

Cámara, J., Lemos, R., Vieira, M., Almeida, R., & Ventura, R. (2013). Architecture-based

resilience evaluation for self-adaptive systems. Computing, 1-34. doi: 10.1007/s00607-

013-0311-7

Cámara, J., Lemos, R. d., Laranjeiro, N., Ventura, R., & Vieira, M. (2013). Robustness

Evaluation of Controllers in Self-Adaptive Software Systems. Paper presented at the

Proceedings of the 6th Latin American Symposium on Dependable Computing (LADC

2013).

Cheng, B., & Atlee, J. M. (2007). Research directions in requirements engineering. Paper

presented at the Future of Software Engineering (FOSE'07).

Cheng, B., Lemos, R. d., Giese, H., Inverardi, P., Magee, J., Andersson, J., . . . Whittle, J. (2009).

Software Engineering For Self-Adaptive Systems.

Cheng, S. W., Garlan, D., & Schmerl, B. (2009, 18-19 May 2009). Evaluating the effectiveness

of the Rainbow self-adaptive system. Paper presented at the Software Engineering for

Adaptive and Self-Managing Systems, 2009. SEAMS '09. ICSE Workshop on.

Cheng, S. W., Huang, A.-C., Garlan, D., Schmarl, B., & Steenkiste, P. (2004). Rainbow:

Architecture-based Self-Adaptation with Reusable Infrastructure. Paper presented at the

Proceedings of the International Conference on Autonomic Computing (ICAC’04).

Cheng, V.-W. (2008). Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation.

(Doctor of Philosophy), Carnegie Mellon University. (CMU-ISR-08-113)

127

Chvatal, V. (1979). A Greedy Heuristic for the Set-Covering Problem. Mathematics of

Operations Research, 4(3), 233-235. doi: 10.2307/3689577

Cin, M. D., Kanoun, K., Buchacker, K., Zuinga, L. L., Lindstrom, R., Johanson, A., . . . Suri, N.

(2002). DBench Dependability Benchmark - Workload and Faultload Selection (ETIE3).

http://webhost.laas.fr/TSF/DBench/: The European Commission of Community Research

in Information Society Technologies (IST).

Council, T. P. P. (2010). TPC Benchmark C, Standard Specification, Version 5.11. Retrieved

June 1, 2013, from http://www.tpc.org/tpcc

Dardenne, A., Lamsweerde, A. v., & Fickas, S. (1993). Goal-directed requirements acquisition.

Sci. Comput. Program., 20(1-2), 3-50. doi: 10.1016/0167-6423(93)90021-g

Feather, M. S., Fickas, S., Lamsweerde, A. V., & Ponsard, C. (1998). Reconciling System

Requirements and Runtime Behavior. Paper presented at the Proceedings of the 9th

international workshop on Software specification and design.

Fernandez, J., & Garcia, J. M. (1999). Representative Benchmarks for Commercial Workloads. X

Jornadas de Paralelismo(September 1999).

Friginal, J., de Andres, D., Ruiz, J.-C., & Gil, P. (2011). On Selecting Representative Faultloads

to Guide the Evaluation of Ad Hoc Networks. Paper presented at the 5th Latin-American

Symposium on Dependable Computing (LADC), 2011 Sao Jose dos Campos.

Galeebathullah, B., & C.P.Indumathi. (2010). A Novel Approach for Controlling a Size of a Test

Suite with Simple Technique. International Journal on Computer Science and

Engineering (IJCSE), Vol 2(Issue 3), 614-618.

Ganek, A. G., & Corbi, T. A. (2003). The dawning of the autonomic computing era. IBM Syst. J.,

42(1), 5-18. doi: 10.1147/sj.421.0005

Garlan, D. (2010). Software engineering in an uncertain world. Paper presented at the

Proceedings of the FSE/SDP workshop on Future of software engineering research, Santa

Fe, New Mexico, USA.

Gil, P., Arlat, J., Madeira, H., Crouzet, Y., Jarboui, T., Kanoun, K., . . . Gracia, J. (2002).

DBench Dependability Benchmark - Fault Representativeness (ETIE2) DBench

Dependability Benchmark: The European Commission of Community Research in

Information Society Technologies (IST).

Graefe, G., Idreos, S., Kuno, H., & Manegold, S. (2010). Benchmarking Adaptive Indexing.

Paper presented at the Proceeding TPCTC'10 Proceedings of the Second TPC technology

conference on Performance evaluation, measurement and characterization of complex

systems

Group, Y. (2002). How much is an hour of downtime worth to you? (pp. 178 - 187). Must-Know

Business Continuity Strategies.

http://webhost.laas.fr/TSF/DBench/:
http://www.tpc.org/tpcc

128

Harrold, M. J., Gupta, R., & Soffa, M. L. (1993). A methodology for controlling the size of a test

suite. ACM Trans. Softw. Eng. Methodol., 2(3), 270-285. doi: 10.1145/152388.152391

Heegaard, P. E., & Trivedi, K. S. (2009). Network survivability modeling. Computer Networks,

53(8), 1215-1234. doi: 10.1016/j.comnet.2009.02.014

Hellerstein, J. L., Diao, Y., Parekh, S., & Tilbury, D. M. (2004). Feedback Control of Computing

Systems: John Wiley \\& Sons.

Hemmati, H., Briand, L., Arcuri, A., & Ali, S. (2010). An enhanced test case selection approach

for model-based testing: an industrial case study. Paper presented at the Proceedings of

the eighteenth ACM SIGSOFT international symposium on Foundations of software

engineering, Santa Fe, New Mexico, USA.

Huebscher, M. C., & McCann, J. A. (2004). Evaluation Issues in Autonomic Computing. Paper

presented at the Grid and Cooperative Computing – GCC 2004 Workshops (2004).

Hurtado, S., Sen, S., & Casallas, R. (2011). Reusing legacy software in a self-adaptive

middleware framework. Paper presented at the Adaptive and Reflective Middleware on

Proceedings of the International Workshop, Lisbon, Portugal.

IBM. (2003). An architectural blueprint for autonomic computing. Tech. rep., from

http://users.encs.concordia.ca/~ac/ac-resources/AC_Blueprint_White_Paper_4th.pdf

Jorgensen, P. C. (2002). Software Testing: A Craftsman's Approach: CRC Press.

Kaddoum, E., Raibulet, C., Georg, J.-P., Picard, G., & Gleizes, M.-P. (2010). Criteria for the

evaluation of self-* systems. Paper presented at the Proceedings of the 2010 ICSE

Workshop on Software Engineering for Adaptive and Self-Managing Systems, Cape

Town, South Africa.

Kang, Z., Kumar, A., Harrison, T. P., & Yen, J. (2011). Analyzing the Resilience of Complex

Supply Network Topologies Against Random and Targeted Disruptions. Systems

Journal, IEEE, 5(1), 28-39. doi: 10.1109/JSYST.2010.2100192

Kanoun, K., Madeira, H., & Arlat, J. (2002). A Framework for Dependability Benchmarking in

Supplement of the 2002 Int. Conf. on Dependable Systems and Networks (DSN-2002) (pp.

12-15).

Kanoun, K., Madeira, H., Crouzet, Y., Cin, M. D., Moreira, F., García, J.-C. R., . . . Yuste, P.

(2004). DBench Dependability Benchmarks. In B. a. C. Deliverables BDEV3 (Ed.):

European Community under the “Information Society Technology” Programme (1998-

2002).

Khalil, Y. H., Elmaghraby, A., & Kumar, A. (2008, 6-9 July 2008). Evaluation of resilience for

Data Center systems. Paper presented at the Computers and Communications, 2008.

ISCC 2008. IEEE Symposium on.

http://users.encs.concordia.ca/~ac/ac-resources/AC_Blueprint_White_Paper_4th.pdf

129

Laddaga, R. (2006, 24-24 Sept. 2006). Self Adaptive Software Problems and Projects. Paper

presented at the Software Evolvability, 2006. SE '06. Second International IEEE

Workshop on.

Laddaga, R., & Robertson, P. (2000). Self Adaptive Software: A Position Paper. Retrieved

March 1, 2013

Laprie, J.-C. (2008). From Dependability to Resilience. Paper presented at the Proceedings of the

IEEE International Conference on Dependable Systems and Networks (DSN-2008).

Lemos, R. d., Giese, H., Müller, H. A., Shaw, M., Andersson, J., Baresi, L., . . . Wuttke, J. (2010,

October 2010). Software Engineering for Self-Adaptive Systems: A Second Research

Roadmap. Paper presented at the Dagstuhl Seminar Proceedings 10431 on Software

Engineering for Self-Adaptive Systems.

Leung, H. K. N., & White, L. (1991, 15-17 Oct 1991). A cost model to compare regression test

strategies. Paper presented at the Software Maintenance, 1991., Proceedings. Conference

on.

Lorenzoli, D., Tosi, D., Venticinque, S., & Micillo, R. A. (2007). Designing multi-layers self-

adaptive complex applications. Paper presented at the Fourth international workshop on

Software quality assurance: in conjunction with the 6th ESEC/FSE joint meeting,

Dubrovnik, Croatia.

Madan, B. B., Goševa-Popstojanova, K., Vaidyanathan, K., & Trivedi, K. S. (2004). A method

for modeling and quantifying the security attributes of intrusion tolerant systems.

Performance Evaluation, 56(1-4), 167-186. doi: 10.1016/j.peva.2003.07.008

Madeira, H., Kanoun, K., Arlat, J., Costa, D., Crouzet, Y., Cin, M. D., . . . Madeira, H. (2002,

October 23-25, 2002). Towards a Framework for Dependability Benchmarking. Paper

presented at the 4th European Dependable Computing Conference (EDCC4),, Toulouse,

France.

Madeira, H., & Koopman, P. (2001). Dependability Benchmarking: making choices in an n-

dimensional problem space. Paper presented at the Proceedings of the first workshop on

Evaluating and Architecting System Dependability.

Meyer, J. F. (2009). Defining and Evaluating Resilience : A Performability Perspective. Paper

presented at the in Proceedings of the International Workshop on Performability

Modeling of Computer and Communication Systems (PMCCS-9).

Moorsel, A. v., Alberdi, E., Bondavalli, A., Durães, J., Esposito, R., Falai, L., . . . Zhang, H.

(2009). Final State of the Art, Deliverable D2.2, AMBER - Assessing, Measuring and

Benchmarking Resilience.

Morandini, M., Penserini, L., & Perini, A. (2008). Towards goal-oriented development of self-

adaptive systems. Paper presented at the Proceedings of the 2008 international workshop

on Software engineering for adaptive and self-managing systems, Leipzig, Germany.

130

Parekh, J., Kaiser, G., Gross, P., & Valetto, G. (2006). Retrofitting Autonomic Capabilities onto

Legacy Systems. Cluster Computing, 9(2), 141-159. doi: 10.1007/s10586-006-7560-6

Potts, C. (1995). Using schematic scenarios to understand user needs. Paper presented at the

Proceedings of the 1st conference on Designing interactive systems: processes, practices,

methods, & techniques, Ann Arbor, Michigan, United States.

Pressman, R. S. (2005). Software Engineering: A Practioner's Approach (6e ed.). New York:

McGraw-Hill Education.

Quadri, S. M. K., & Farooq, S. U. (2010). Software Testing – Goals, Principles, and Limitations.

Paper presented at the International Journal of Computer Applications (0975 – 8887).

Roberto, N. (2013). On Fault Representativeness of Software Fault Injection. IEEE Transactions

on Software Engineering, 39(1), 80-96.

Salehie, M., & Tahvildari, L. (2009). Self-adaptive software: Landscape and Research

Challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2), 1-42. doi:

10.1145/1516533.1516538

Tamura, G., Villegas, N. M., Muller, H. A., Sousa, J. P., Becker, B., Karsai, G., . . . Wong, K.

(2012). Towards Practical Runtime Verification and Validation of Self-Adaptive Software

Systems: Springer.

Traeger, A., Zadok, E., Joukov, N., & Wright, C. P. (2008). A nine year study of file system and

storage benchmarking. Trans. Storage, 4(2), 1-56. doi: 10.1145/1367829.1367831

van Lamsweerde, A. (2000). Requirements engineering in the year 00: a research perspective.

Paper presented at the Proceedings of the 22nd international conference on Software

engineering, Limerick, Ireland.

van Lamsweerde, A. (2001, 2001). Goal-oriented requirements engineering: a guided tour.

Paper presented at the Proceedings of the Fifth IEEE International Symposium on

Requirements Engineering.

van Lamsweerde, A., & Letier, E. (1998). Integrating obstacles in goal-driven requirements

engineering. Paper presented at the Proceedings of the 20th international conference on

Software engineering, Kyoto, Japan.

van Lamsweerde, A., & Letier, E. (2000). Handling Obstacles in Goal-Oriented Requirements

Engineering. IEEE Trans. Softw. Eng., 26(10), 978-1005. doi: 10.1109/32.879820

Vieira, M., & Madeira, H. (2003). A dependability benchmark for OLTP application

environments. Paper presented at the Proceedings of the 29th international conference on

Very large data bases - Volume 29, Berlin, Germany.

Vieira, M., & Madeira, H. (2004, 28-30 Sept. 2004). Portable faultloads based on operator

faults for DBMS dependability benchmarking. Paper presented at the Computer Software

131

and Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual

International.

Visser, W., Pasareanu, C. S., & Khurshid, S. (2004). Test input generation with java PathFinder.

Paper presented at the Proceedings of the 2004 ACM SIGSOFT international symposium

on Software testing and analysis, Boston, Massachusetts, USA.

Weicker, R. P. (1990). An Overview of Common Benchmarks. Computer, 23(12), 65-75. doi:

10.1109/2.62094

Weyns, D., Iftikhar, M. U., Iglesia, D. G. d. l., & Ahmad, T. (2012). A survey of formal methods

in self-adaptive systems. Paper presented at the Proceedings of the Fifth International C*

Conference on Computer Science and Software Engineering, Montreal, Quebec, Canada.

Williams, R., Behrens, S., & Pandelios, G. (1999). SRE Method Description (Version 2.0).

Xavier, K. S., Hanazumi, S., & Melo, A. C. V. d. (2008). Using Formal Verification to Reduce

Test Space of Fault-Tolerant Programs. Paper presented at the Proceedings of the 2008

Sixth IEEE International Conference on Software Engineering and Formal Methods.

Zhang, J., & Cheng, B. H. C. (2007). Towards Re-engineering Legacy Systems for Assured

Dynamic Adaptation. Paper presented at the Proceedings of the International Workshop

on Modeling in Software Engineering.

	Nova Southeastern University
	NSUWorks
	2014

	A Method to Reduce the Cost of Resilience Benchmarking of SelfAdaptive Systems
	Steve Hernandez
	Share Feedback About This Item
	NSUWorks Citation

	Table of Contents
	List of Figures
	List of Equations
	List of Tables
	Introduction
	Introduction
	Changeloads
	Changeload Challenges

	Problem Statement
	Prior Work
	Software Risk Evaluation Steps
	Almeida and Vieira Proposed Extension
	Contribution Summary

	Issues
	Vague treatment of System Goals
	Vague treatment of Operating Conditions
	Cost

	Goal
	Relevance and Significance
	Barriers and Issues
	Assumptions, Limitations, and Delimitations
	Definition of Terms
	Summary

	Review of the Literature
	Introduction
	Benchmarking
	Dependability Benchmarking
	Faultloads
	Faultload Challenges

	Self-Adaptive Systems
	Resilience Benchmarking
	Cost Saving Techniques
	Summary

	Methodology
	Overview of Research Methodology
	Approach Overview
	Step A: Identification System Goals
	Step B: Identification of Obstacles
	Step B Part 1: Action, Agent, and Assumption Analysis
	Step B Part 2: Obstacle Analysis

	Step C: Definition of Obstacle Attributes
	Step D: Assignment of Obstacle Attributes
	Step E: Definition of the Changeload

	Case Study
	Subject System

	Analysis of Results
	Summary

	Results
	Presentation of Data
	Risk-Based Approach Data
	Step A: Identification of the Base Scenario
	Step B: Identification of Change Scenarios

	Goal-Oriented Approach Data
	Step A: Identification of System Goals
	Step B: Identification of Obstacles
	Step C: Definition of Obstacle Attributes
	Step D: Evaluation of Obstacle Attributes and Step E: Definition of the Changeload

	Presentation of Results
	Results Analysis
	Cost Savings
	Effectiveness
	Wastefulness
	Return on Investment

	Summary

	Conclusions
	Implications
	Recommendations
	Summary

	Appendix A
	Appendix B
	References

