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Abstract 

Diel vertical migrations (DVM) comprise the largest animal migration on the planet 

and are a phenomenon present in all bodies of water on Earth. A strong sound scattering 

layer undergoing DVM was observed in the Straits of Florida via a bottom-mounted 

Acoustic Doppler current profiler (ADCP) Workhorse Longranger 75 kHz (Teledyne RD 

Instruments) located at the 244 m isobath. ADCP average backscatter showed a clear 

periodicity corresponding with sunrise and sunset times indicating the presence of a 

nocturnal DVM. Analysis of the ADCP backscatter data indicated zooplankton 

swimming velocities were faster during sunrise than sunset times. In several cases the 

zooplankton swimming velocity appeared to be faster at the beginning of the descent, 

after which the swimming velocity decreased. Analysis of ADCP velocity data indicated 

a measureable decrease in the northward component of the current velocity field during 

migrations (sunrise and sunset) compared to three hours prior. This was presumably 

associated with an increase in drag due to turbulent friction associated with DVM. A non-

hydrostatic computational fluid dynamics (CFD) model with injection of Lagrangian 

particles was utilized to simulate the effects of DVM on the velocity field and turbulence 

signature of the Florida Current. A domain simulating a section of the Florida Current 

was created and zooplankton were represented by particle injection with a discrete phase 

model. The model was run with and without particles, holding all other parameters the 

same, for comparison. Idealized temperature stratification and velocity profiles were set 

for both summer and winter conditions to observe seasonal differences. For each case, 

velocity and turbulence with particles were compared to results without particles to 

confirm the changes in profiles were due to the zooplankton (Lagrangian particles). In 

several cases there was an observable change in average x-velocity profiles due to the 

injection of particles into the domain. In all cases there was an observable increase in 

subgrid turbulent viscosity in the wake of the injected particles. This effect was much 

stronger in the winter case, most likely due to stratification of the water column which 

gave a near critical Richardson number. These results indicated that DVM does in fact 

have an effect on the velocity profile and turbulence signature in a strong current under 

certain conditions and that there was a seasonal difference due to stratification profiles.  

Keywords: diel vertical migration, zooplankton, computational fluid dynamics, 

turbulence, velocity. 
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1. INTRODUCTION 

1.1 Diel Vertical Migrations 

Diel vertical migration (DVM) is a migration pattern in which organisms migrate 

from the depths of the ocean to the surface and back on a daily basis (Iwasa, 1982; 

Richards et al., 1996). Knowledge of and interest in DVM dates back to at least the late 

1800s (Loeb, 1893) but the mechanism triggering this phenomenon is still poorly 

understood (Cohen and Forward, 2009). DVMs compose the largest animal migrations on 

Earth and they occur in all of the world’s oceans, lakes, and ponds that contain habitats 

where the risk of predation and resource concentration are significantly higher in the 

upper layers than in the lower (Andersen et al., 1991). Ianson et al. (2004) proposed from 

conservative assumptions that 15% of zooplankton biomass migrates. DVM appears to 

have evolved independently in many diverse groups of organisms, indicating that there is 

some major selective advantage for this behavior (Enright, 1977). Migration does not 

occur in lakes which have no difference in food concentration in upper and lower layers 

(Gliwicz, 1987). In addition, Bollens and Frost (1989) demonstrated that the introduction 

of predators induced DVM in an environment where migrations did not occur in the 

absence of predators. Organisms can migrate distances ranging from a couple of 

centimeters to hundreds of meters (Lampert, 1989). Many of these organisms actively 

seek out or avoid certain environmental conditions by swimming vertically. Those 

organisms with swim bladders can maintain a preferred position in the water column by 

actively maintaining neutral buoyancy (Huebert et al., 2010). Figure 1-1 shows examples 

of the most common migrators and the extremely high density of organisms that can 

undergo DVM. 
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Figure 1-1. Examples of zooplankton that undergo DVM. Top left is an example of a 

euphausiid (http://www.cmarz.org/). Top middle is an example of a chaetognath 

(http://taxondiversity.fieldofscience.com/). Top right are fish larvae 

(http://images.fineartamerica.com/). Bottom left is a copepod 

(http://taxondiversity.fieldofscience.com/). Bottom right is a school of migrating krill 

showing the large density of organisms migrating. 

 

1.1.1 DVM Patterns 

There are three different patterns of DVM that organisms follow: nocturnal, twilight, 

and reverse. Nocturnal DVM, or ‘Type I’ migration, is the most common pattern 

(Hutchinson, 1967). It is represented by a single ascent at sunset and descent at sunrise. 

Reverse DVM or ‘Type II’ migration is the opposite of nocturnal. The organisms descend 

at sunset and ascend at sunrise. This pattern has not been recorded in the open ocean; 

however, it has been found in lakes and coastal marine environments (Enright, 1977; 

Brodeur, 1994, Cohen and Forward, 2009) where demersal predators are present. The 

third type of DVM, Twilight DVM, consists of two separate ascents. The organism 

begins its ascent at sunset, reaches surface waters and then passively sinks through the 

night, termed midnight sinking or nocturnal sinking, and ascends once again just before 

sunrise. After sunrise, the organisms sink to a maximum depth for the day (Iwasa, 1982; 

Haney, 1988; Lampert, 1989; Cohen and Forward, 2002; Huebert et al., 2011). These 

http://www.cmarz.org/
http://taxondiversity.fieldofscience.com/
http://images.fineartamerica.com/
http://taxondiversity.fieldofscience.com/
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patterns are shown in Figure 1-2. These are not the only DVM patterns observed; a 

continuum exists between the extremes (Haney, 1988). Organisms can exhibit more than 

one of these general patterns during their life cycle. There are many factors that 

contribute to the pattern of migration an organism undergoes. Some factors include light 

cues, tidal cycle, stage of growth, presence/absence of food, season, age, sex, and depth 

of thermocline, pyconocline or chlorophyll maximum (Haney, 1988; Lampert 1989; 

Brodeur, 1994; Gray, 1998; Huebert et al., 2010; Irisson, 2010).  Gray (1998) found that 

a stratified water column was not necessary for DVM to occur, but may change the 

pattern. Patterns of change in DVM can vary among species, larval stage, fat content 

(Rudjakov, 1970), sex, location or season (Enright, 1977; Andersen et al., 1991; Richards 

et al., 1996; Gray, 1998; Klevjer and Kaartvedt, 2011). Huebert et al. (2011) indicated 

that changes in migration patterns occurred with ontogenic stage; smaller zooplankton are 

typically found in shallower water during the day and move deeper with increasing size. 

This is most likely due to organisms being larger and denser at later life history stages 

and, therefore, more visible to predators than smaller stages (DeRobertis, 2002).  

a) b)    

c)  

Figure 1-2. DVM patterns a) Nocturnal DVM b) Twilight DVM c) Reverse DVM 

(courtesy of Dr. Tamara Frank) 
 

1.1.2 Cues 

Light is the main physical cue or control mechanism that triggers DVM. This is 

termed the primary proximate or casual cause because it is the only parameter that 

changes on a daily basis and provides primary stimulus to trigger timing of migrations 

(Andersen et al., 1991; Richards et al., 1996). It initiates synchronization of upward 

motion and the rate of ascent (Haney, 1988). Light can be viewed as an endogenous cue 

by entraining circadian rhythm orzoo as  an exogenous/external cue (Forward, 1988). 
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While the initiation and synchronization of DVM are triggered by light, it appears that 

the level of locomotion can be modified by temperature, food, and pressure (Rudjakov, 

1970). At dusk a spectral change in the light field occurs, and light shifts toward shorter 

wavelengths. This shift is observable from approximately 10 to 150 m depth. Below 150 

m the shift can no longer be observed, indicating some other cue must be used by species 

at these depths (Frank and Widder, 1996).  

There are three hypotheses that discuss what aspects of the change in light field 

triggers nocturnal/twilight DVM. These are the absolute intensity-threshold hypothesis, 

rate of change hypothesis and preferendum hypothesis.  

The absolute intensity-threshold hypothesis states that ascent at sunset is initiated 

once the light intensity decreases below a threshold level and descent at sunrise is 

initiated as the light intensity increases above threshold intensity (Cohen and Forward, 

2009). Studies indicate that it is highly unlikely this is the sole cue used by most species. 

It is likely that animals are responding to absolute change in intensity along with another 

cue (Swift and Forward, 1988; Haney et al., 1990).  

The preferendum or isolume hypothesis states that zooplankton have a preferred or 

optimal light intensity (isolume) or range of light intensities, within which they prefer to 

remain (De Robertis, 2003). Zooplankton will swim or passively sink to move into and 

remain in their preferred isolume. Several studies indicate that some species appear to be 

following an isolume such as some invertebrates, while others, such as fish, do not (Frank 

and Widder, 1997).  

The rate of change hypothesis states that the cue for triggering vertical migrations is 

the rate and direction of change in light from ambient level, not absolute light, which can 

vary over the course of a day (Cohen and Forward, 2009). According to this hypothesis, 

light can act as orienting, controlling, and initiating cues (Bainbridge, 1961; Forward, 

1985). There is evidence from the field that zooplankton move faster with a faster rate of 

change of light (Richards et al., 1996). It is likely that some species are cued by changes 

in absolute light intensity, some are cued by the rate of change intensity, and others are 

following an isolume. It is also probable that most species use a combination of these 

cues (Richards et al., 1996; Frank and Widder, 1997; Cohen and Forward, 2009). There 

are some species that may not be cued by light at all, but are simply following the 

movements of their prey. 

1.1.3 Predator Avoidance 

Why do organisms migrate? There have been many hypotheses proposed regarding 

the ultimate cause of why organisms undergo DVM. The most widely accepted 

hypothesis is the predator avoidance hypothesis. This hypothesis states that adoption of 

migratory or non-migratory behaviors is based on the relative abundance of visual 
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orienting predators, food, and level of satiation (Gliwicz, 1987; Lampert, 1989; De 

Robertis et al., 2003). The concentration of food at depth is not enough to meet energy 

requirements of many organisms; therefore, migration to the near surface waters is 

necessary to meet these demands (Stitch and Lampert, 1981). Predators are more likely to 

see their prey during the day, leading to the occupation of darker deeper water during the 

day, and ascent to the surface waters during the evening (Enright, 1977). Assuming 

predation is based on visual cues, a size bias in the timing of ascent and descent should be 

present. Smaller animals ascend earlier and descend later than larger organisms because 

they are less visible to predators (Yamamura, 1998; De Robertis and Jaffe 2000; De 

Robertis, 2002). This size bias was observed in Oceanographyer Canyon by Frank and 

Widder (2002) and Saanich Inlet, British Colombia, Canada by Kunze et al. (2006). 

DVM is a defense behavior and is likely to cause reductions in growth and fecundity. 

Therefore, food must be in ample supply in the surface waters together with a large 

number of visual predators to make migration energetically beneficial (Lampert, 1989; 

Loose and Dawidowicz, 1994).  

The abundance of predators and predation rates can change dramatically over 

seasonal time scales, altering DVM rates and patterns (Iwasa, 1982; Loose and 

Dawidowicz, 1994). The amplitude of DVM is proportional to the water clarity and the 

presence or absence of moonlight. Results from Cohen and Forward (2005) suggested 

that copepod species ascend earlier in the evening when predator abundance is low and 

later in the evening when high predator abundance is present. The longest migrations will 

always occur during periods with a new moon at night and cloudless days. These 

conditions will provide the greatest change in light between day and night. These 

conditions allow organisms to come closer to the surface at night because they are 

unlikely to be seen, but they need to go deeper during the day to avoid visually orienting 

predators (Gliwicz, 1986).  

There is quite a bit of support for the predator avoidance hypothesis. It has been 

shown in the field and laboratory that vertical migrations can be induced in previously 

non-migrating species by the introduction of predators (Haney, 1988; Bollens and Frost, 

1989). Gliwicz (1986) observed that migrations did not occur in lakes where 

planktivorous fish predators were not present, short range DVM occurred in lakes that 

had been stocked with fish for decades and long range DVM occurred in lakes that had 

been stocked for centuries.  

1.1.4 Measurements  

The deep scattering layer was first discovered in 1942 off the coast of San Diego, 

California when Sound Navigation and Ranging (SONAR) was first used. An apparent 

upward migration of the “bottom” was observed in the evening and a downward 

migration in the morning (Dickson, 1972). It was soon discovered that this phenomenon 
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had a biological cause, zooplankton undergoing DVM, and was present throughout the 

world’s oceans. The discovery of the deep scattering layer via SONAR provided a new 

method of studying these migrations. The basic concept behind SONAR is that when a 

ping is emitted from the instrument, the sound strikes an underwater object that reflects 

sound and a portion of the sound wave is reflected back to the instrument. For the 

purposes of biological studies, sound waves do not reflect off of soft fish bodies, but can 

reflect off of the swim bladders in fish or oil droplets in crustaceans. Echo strength is 

dependent on size and density contrast of the pinged object. Problems with utilizing this 

method to study DVM include the inability to detect small zooplankton and fish without 

swim bladders, or identify taxa present.  

Most studies conducted on DVM were accomplished using net sampling methods. 

These types of studies usually collected samples around the clock, avoiding times directly 

around sunset and sunrise, when migrations would be occurring. Differences in biomass 

collected during day samples vs. night samples indicate whether vertical migrations are 

occurring. Net studies have an advantage over acoustic studies in that they are able to 

identify species present in migrations. This helps to determine types, size, and swimming 

speeds (from laboratory experiments) of organisms and how they will interact with the 

physical characteristics of the water column, such as velocity fluctuations and turbulence 

signature (Videler et al., 2002; Yen et al., 2003). However, nets can also miss very small 

organisms depending on the mesh size and larger organisms may be able to swim away 

avoiding being caught in the net (Ianson, 2004).  

Acoustic studies are able to determine exact timing, distance and speed of migrations 

of a mass of organisms in a large volume of water. The first acoustic Doppler current 

profiler (ADCP) was developed in 1981 by request of scientists of the Coastal Ocean 

Dynamics Experiment (Williams, 2010). They desired an autonomous, self-powered, 

internally recording current profiler. ADCPs measure flow velocity by recording the 

Doppler shift of transmitted acoustic pulses that return to the sensor after encountering 

particles, or clusters of scattering particles, in the water column. The Doppler Effect is 

the change in the observed pitch resulting from relative motion between the observer and 

the sound wave. The Doppler Shift is the difference between the frequency of received 

and transmitted sounds proportional to change in speed. Typically, scattering particles 

move at the same rate as the fluid, unless they are swimming organisms. This property 

allows the use of an ADCP to detect vertical swimming movements and estimate 

velocities, especially in times of ascent at sunset and descent at sunrise (Smyth et al., 

2006). Increased echo frequency indicates the object is moving towards the instrument. It 

uses three or four transducers orthogonal to each other and at some horizontal angle. 

With this, the instrument can determine speed and direction of the flow (Gordon, 1996). 

The greatest advantage to this instrument is the ability to obtain measurements 

throughout the water column from a single device. The device sends a series of acoustic 
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pulses or pings into the water column. As sound moves through the water column, the 

ADCP measures the reflected sound or backscatter and can potentially provide 

information on the number of scatterers, but requires a special calibration (Gordon, 

1996). 

One limitation to ADCP measurements is the lack of resolution to identify and 

follow individual animals (De Robertis, 2003; Ianson, 2004). ADCPs can only detect 

scatterers larger than a certain size, based on the frequency of the instrument. Therefore 

not all migrators can be observed with acoustic measurements. In addition, an ADCP 

cannot tell the difference between fish, squid or crustaceans that contain swim bladders or 

oil droplets of equivalent sizes. Observations can also be contaminated by large bubbles 

or features such as thermoclines. The echo from a "hard" surface is much stronger than 

the weak echoes from scatterers in the water. Therefore, measurements near the seafloor 

or surface are not accurate and are usually rejected (Gordon, 1996).  

1.1.5 Models 

Numerical models are another method of studying DVM and the effect of 

zooplankton, usually simulated with particles, on mixing and turbulence in a fluid flow. 

Using a modeling approach, effects from DVM can be simulated in many different 

conditions and types of fluid flow. It is possible to explore variables of the particles 

placed in the model, such as organism size, number of migrators present, and swimming 

speed. Models are a great way to get an approximation of unknown factors in a system. 

While models can be a great tool for simulating an effect of DVM, it is necessary to 

validate the model with real world data. The results of the model can then be compared to 

acoustic and/or net data collected from the field. 

No one method is able to fully analyze the effect of DVM in the physical 

environment. Therefore, several different methods should be utilized simultaneously to 

get a better understanding. The optimal combination of data would be acoustic 

measurements, net samples, turbulence profiling with a specialized instrument, laboratory 

experiments and computation fluid dynamics modeling.  

1.2 Biomixing 

Oceanography has long been focused on identifying processes that account for the 

external work required to sustain oceanic circulation. Some of these processes include 

surface heating and cooling, winds, tidal mixing, and internal waves. From these 

processes, it has been estimated that 2 to 3 terawatts (TW) of power is required to sustain 

circulation (Wunsch and Ferrari, 2004; St. Laurent and Simmons, 2006). If only waves 

and tides are considered, there is an apparent deficit of approximately 1 TW in the energy 

budget (Munk and Wunsch, 1998; Wunsch, 2000). Dewar et al. (2006) proposed that 

wind and tide may not contribute as much energy as previously thought. A significant 
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portion of tidal energy may be dissipated against topographic features or boundaries. 

Wind energy enters at the surface of the ocean and may dissipate as it propagates to the 

depth of the ocean. The oceanic biosphere captures approximately 63 TW of solar 

energy, and while only a small percentage makes it into mechanical energy of swimming 

this appears to fill the gaps in the energy budget (Dewar et al., 2006; Visser, 2007). 

The potential input of energy by marine organisms to the ocean mixing energy 

budget, known as the concept of biomixing, was first proposed in 1966 by Walter Munk. 

The concept of biogenic ocean mixing needs a detailed understanding of many processes, 

including organism behavior and characteristics, mechanisms of mixing stratified fluids 

by swimming animals and how physical processes affect these factors (Katija, 2012). 

Biomixing implies that biology has a strong impact on oceanic mixing. On a global scale 

this would mean that swimming organisms bring cold water from the deep ocean, thereby 

contributing to global ocean circulation (Dewar et al., 2006). It is possible that DVM 

could help regulate gas exchange between the ocean and atmosphere, thereby playing a 

role in the carbon cycle and climate (Kunze et al., 2006). On a local scale this could 

explain higher levels of surface production that cannot be accounted for by physical 

mixing mechanisms (Jenkins and Doney, 2003). This could be due to schools of 

organisms migrating through the thermocline and causing nutrient rich water to mix 

upward increasing the possibility of phytoplankton growth (Huntley and Zhou, 2004; 

Visser, 2007).   

Swimming-induced turbulence is caused by velocity fluctuations from motion at 

relatively small scales. Swimming organisms dissipate considerable amounts of 

mechanical energy. Laboratory studies confirmed that schools of swimming animals 

create measurable increases in fluid disturbances (Catton et al., 2011) caused by velocity 

fluctuations from animal motion at small length scales (Huntley and Zhou, 2004). 

Evaluations based on energetics of swimming organisms indicated that organisms 

ranging from large zooplankton (0.5 cm) to cetaceans (10 m) can generate turbulent 

dissipation rates, ε, on the order of 10
-5 

W kg
-1

 in schools and swarms (Huntley and Zhou, 

2004; Dewar et al. 2006). This is comparable to dissipation rates associated with major 

storms and may potentially provide a source of fine-scale turbulent mixing (MacKenzie 

and Leggettt, 1993). These values are three to four orders of magnitude larger than 

average dissipation rate in a stratified ocean.  

Observations obtained by Kunze et al. (2006) indicated an instantaneous increase in 

dissipation rates by four to five orders of magnitude in the wake of a migrating school of 

krill (Fig. 1-3). While this DVM was short in duration, it led to an increase in daily-

averaged turbulent eddy diffusivities by two to three orders of magnitude. Subsequent 

studies showed shear fluctuations at length scales up to one meter larger than the 

individual organism (Kunze et al., 2007). This indicated that the krill in the study acted as 

a unit rather than individuals when swimming upward (Kunze et al., 2006). In 
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aggregations of zooplankton, turbulence will not have time to decay before being 

encountered by another organism causing an increase of turbulence length and temporal 

scales (Gregg and Horne, 2009). The net dissipation rate due to a school of swimming 

organisms depends on the power expended per individual and the number of individuals 

per unit volume (Dewar et al., 2006). For a school of krill with body length of 

approximately 1.5 cm, swim speeds of 5 to 10 cm s
-1

, and density of individuals of about 

5000 organisms m
-3

, the dissipation rate is approximately equal to 10
-5 

to 10
-4 

W kg
-1

 

(Huntley and Zhou, 2004) which is consistent with the observations from Kunze et al. 

(2006). This behavior has also been shown using modeling techniques. Dabiri (2010) 

used a simple rigid body model and observed overturning length scales larger than the 

individual animals during a vertical motion of the entire aggregation. 

 

  
Figure 1-3. Acoustic backscatter data from a 200-kHz echosounder reveals vertical 

migration of the backscatter layer. The lowering and raising of the vertical microstructure 

profiler is also evident for some profiles (Kunze et al., 2006). 

 

2 OBJECTIVES 

2.1 Significance 
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DVM occurs in all types of bodies of water on the Earth’s surface. This study 

focused on the migrations occurring in the Florida Current throughout the Straits of 

Florida. These DVMs are of particular interest because they occur in a very strong 

western boundary current in a confined area between the southern end of Florida and the 

Bahamas. This restricted space creates a very fast flow with unusual properties. Due to 

these properties, many larvae and zooplankton flow through this passage allowing for 

dispersal throughout the western Atlantic Ocean. The velocity and strength of the Florida 

Current varies greatly with depth, which influences the flow pattern of any zooplankton 

entrained in the current (Huebert et al., 2011). 

The Florida Current has historically been attractive to study because of its 

geographically constrained location and proximity to shore. Pillsbury (1891) performed 

the first study to quantitatively measure the strength and direction of transport in the 

Florida Current by measuring average surface velocities at six anchor stations between 

Fowey Rocks and Gun Cay. In the late 1960s, Schmitz and Richardson (1968) made 

measurements of the Florida Current using new current meters and dropsondes, 

instruments which provide vertical averages of horizontal current velocity, to take 

absolute current measurements and determine the structure of the current. At the same 

time these new instruments became available, computing power began expanding rapidly 

and numerical models became more sophisticated (Leaman et al., 1987). 

Due to the constrained area of Florida Current flow, it has a very high transport rate. 

The Florida Current has been estimated to have a mean transport rate of 30 x 10
6 

m
3 

s
-1

, 

or 20 Sv, with a maximum flow in summer and minimum in winter (Anderson et al., 

1985; Leaman et al., 1987). Due to the strong topographic changes and wind effects, the 

Florida Current experiences many different types of motions, including coastal 

countercurrent, undercurrent, meanders, and eddies, over different spatial and temporal 

scales. Temporal scales can range from a few days to seasonal and, interannual time 

frames (Schott et al., 1988; Lee and Williams, 1999).  Niiler (1968) and Soloviev et al. 

(2003) reported current oscillations with approximately 10 hour periods. There have also 

been reports of strong undercurrents below the Florida Current (Düing and Johnson, 

1971; Leaman et al., 1987; Soloviev et al., in review). This type of motion makes this 

part of the Subtropical Atlantic Gyre difficult to fully understand.   

Knowledge gained from this study could have many significant impacts on the 

scientific community. Results will add to our knowledge of the flow of the Florida 

Current. We have a comprehensive understanding of the basic physical properties of the 

Florida Current, but biophysical properties are poorly understood in most systems. This 

study seeks to add to the knowledge base of biological influence on the physical 

environment through turbulent mixing. These results will also add to the ever expanding 

knowledge base of DVM and how migrations affect the physical environment. Much 

research has been conducted on each aspect of this study, but limited work has been 



21 
 

completed on the interaction of the biological migration and the physical properties of a 

current. 

The effect of turbulence caused by DVMs in the Florida Current, could impact 

mixing throughout the water column. DVM could be important for mixing nutrients, 

organic matter, and gases through the thermocline (Andersen et al., 1991; Kunze, 2009; 

McManus, 2012). This is specifically important when looking at the possibility of future 

oil spills. A drilling project located in the loop current is being initiated off the northern 

coast of Cuba (Gibson, 2014). If a spill or a leak occurs in this area, the flow would take 

oil directly into the Florida Current and in the path of migrating zooplankton. These 

organisms would migrate through the oil slick and disperse it through the water column 

as they migrate, causing emulsification. This oil, now dispersed throughout the water 

column, will stick to the organisms and could potentially kill zooplankton, including fish 

and crustacean larvae. Therefore, the ability to produce accurate models of the effects of 

migrating zooplankton on biomixing is critical to making management decisions 

regarding allowable locations of drilling projects (if domestic) and producing an effectual 

plan of action should an oil spill occur. 

2.2 Hypotheses 

ADCP data was utilized to test whether zooplankton DVM had a statistically 

significant effect on physical oceanographic conditions of the water column. The effect 

observed from field data was reproduced using computation fluid dynamics software. 

ADCP and modeling data were compared to determine if zooplankton DVM in the Straits 

of Florida cause a statistically significant change in the northward current velocity 

component and/or the turbulence signature, enhancing mixing of the Florida Current. 

Data from each season was analyzed separately to test if there were seasonal differences 

in DVM strength. ADCP data was used to calculate average zooplankton vertical swim 

velocities during migration. This information was used to determine if there was a 

difference in swim speed in sunrise vs. sunset. 

3 METHODS 

3.1 Study Site 

The Florida Current is a subsidiary feature of the Subtropical Atlantic Gyre and has 

similar physical properties as the rest of the western boundary current system, which is 

comprised of the Loop Current in the Gulf of Mexico, the Florida Current in the Straits of 

Florida and the Gulf Stream in the North Atlantic Ocean. The Florida Current has a 

strong influence on the circulation on the continental shelf off southeastern Florida 

(USCG, 2008; Soloviev et al., in review). It begins as the Yucatan Current, which flows 

as the Loop Current through the Gulf of Mexico and through the Straits of Florida as the 

Florida Current. This portion flows through the narrow passage between the southern end 
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of Florida and northern Cuba, and then turns toward the north, flowing between Florida 

and the western Bahamas. As the current continues northward, it becomes the Gulf 

Stream near the Georgia/South Carolina border as it approaches the Mid Atlantic Bight 

(Fig. 3-1) (Lee and Williams, 1999; Huebert et al., 2011).  

a) b)  

Figure 3-1. Maps of the flow of the Gulf of Mexico. a) An overview of the entire North 

Atlantic Gyre http://solarsytem101.blogspot.com/2011_02_01_archive.html. b) A closer 

look at the Straits of Florida (our study area) http://www.spacedaily.com/images-

lg/topographical-map-straits-of-florida-current-lg.jpg 

 

3.2 Data Collection 

The majority of data for this study were collected during previous Nova Southeastern 

University Oceanographic Center (NSUOC) projects. Physical data were collected using 

a bottom mounted Teledyne RD Instruments ADCP (Workhorse Longranger 75 kHz) 

equipped with four transducers with a 20 degree inclination from vertical (Fig. 3-2) 

(USCG, 2008). For the first four years of data collection, the ADCP was located off the 

coast of Pompano Beach, FL (26.1911°N, 79.9739°W) at a 240 m isobath. Measurements 

were taken once every hour from January 23, 2007 at 15:00 GMT through October 19, 

2010 at 14:17 GMT. This data set was used to address seasonal variability. The ADCP 

was then relocated to the Florida Straits off Dania Beach at a 244 m depth isobath 

(26.0315ºN, 79.9937°W) and measurements were taken every 5 minutes from December, 

16 2010 at 11:00 GMT until October 11, 2011 at 14:30 GMT. The battery of the 

instrument was changed twice at this location resulting in three data sets which were 

approximately one season each. These groups are termed winter (December 16, 2010 at 

11:00 through February 8, 2011 at 7:20), spring (February 9, 2011 at 11:00 through April, 

26 2011 at 14:30), and summer (April 27, 2011 at 13:00 through October 11, 2011 at 

17:50). An ADCP located at the 11m isobath (26.0731°N, 80.1014°W) was used for tidal, 

wave and coastal information. Locations of data collection are shown in Figure 3-3.  

http://solarsytem101.blogspot.com/2011_02_01_archive.html
http://www.spacedaily.com/images-lg/topographical-map-straits-of-florida-current-lg.jpg
http://www.spacedaily.com/images-lg/topographical-map-straits-of-florida-current-lg.jpg
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a)  b) 

Figure 3-2. Instrumentation: a.) The mooring that the instrument was deployed on; b) 

Teledyne RD Instruments ADCP (Workhorse Longranger 75 kHz) equipped with four 

transducers with a 20 degree inclination from vertical 

 

a)  b)  

Figure 3-3. Map of the sites where instruments were located. a) Large scale area where 

the study was conducted. b) Magnified white box from a). 1. ADCP mooring at 240 m 

isobath (Pompano). 2. ADCP mooring on 11 m isobath, shallow water measurements. 3. 

ADCP mooring at 244 m isobath (Dania Beach). 4. NDBC wind speed data Fowey 

Rocks. 

 

Zooplankton and ichthyoplankton samples were collected via bongo and Tucker 

trawl nets to identify species present at deep water sites within and nearshore of the 

Florida Current. These samples were used to calculate zooplankton community 
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compositions and densities. Daytime and nighttime samples were collected at five 

stations from nine to twenty-four km offshore at shallow (25 m) and deep (200 m) depths. 

Two bongo nets were used at both depths and all five sites. One net was 202 µm mesh 

and the other net was 335 µm mesh. Both nets had flow meters attached in order to 

calculate the volume of seawater passing through for each tow, allowing for zooplankton 

density calculations. A Tucker mid-water trawl net with 760 µm mesh and attached flow 

meters collected zooplankton samples from the 0-25 m, 25-200 m and 200-0 m. 

Zooplankton samples from the bongo and Tucker nets were preserved in 5% seawater 

buffered formalin solution and then transferred to 70% ethanol solution for storage. For 

this project, data from the Tucker and bongo nets at sample Site 3 (the same location as 

the ADCP) provided taxa composition, the size range of the organisms, typical swimming 

velocities, and typical zooplankton density/biomass in day versus night samples (USCG, 

2008). These data were needed to correctly set aspects of the computation fluid dynamics 

model. 

Additional physical data was compiled through a variety of sources to assist in the 

analysis of the ADCP data. Sunrise and sunset times were collected from 

http://aa.usno.navy.mil/cgi-bin/aa_rstablew.pl. Full and new moon times were obtained 

from http://eclipse.gsfc.nasa.gov/phase/phases2001.html. Wind speed and direction were 

obtained from the National Oceanic and Atmospheric Administration's National Data 

Buoy Center (NOAA NDBC) at the Fowey Rocks station (Fig. 3-3), which recorded a 

measurement every five minutes. Tidal information was determined from the pressure 

sensor on the ADCP mooring. 

3.3 Data Analysis 

ADCP data were accessed using WinADCP software and exported in .mat format to 

be analyzed using Matlab software. Matlab was used to reproduce the contour plots of 

backscatter from the ADCP with additional information overlaid including sunrise, 

sunset, full, and new moon times. Zooplankton swim speeds were approximated by 

calculating the rate of change in the average backscatter at sunrise and sunset. The length 

of time of migration was determined on the x-axis (seconds) and the distance migrated 

was determined from the y-axis (meters). This information was used to calculate the rate 

of change of backscatter during migration. The zooplankton vertical swim velocity was 

estimated by dividing the difference in distance by difference in time giving a velocity. 

This calculation was performed for individual days and averaged over each season for the 

Dania Beach data set. Averages over each season were obtained by averaging the 

backscatter signal from each seasonal data set for 60 before and after sunset/sunrise. The 

rate of change in backscatter signal was then calculated from this average backscatter 

contour. Matlab was also used to analyze the northward current velocity component of 

the Florida Current at sunrise/sunset compared with data from three hours prior to 

determine if there was any change in velocity due to DVM. The sunrise and sunset 

http://aa.usno.navy.mil/cgi-bin/aa_rstablew.pl
http://eclipse.gsfc.nasa.gov/phase/phases2001.html
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averages were calculated for 60 minutes before and after sunrise or sunset. Only cases 

when the Florida Current was present, northward velocity greater than 0.75 m s
-1

, were 

considered. A 95% confidence interval was calculated for the average northward velocity 

profiles.  

3.4 Computational Fluid Dynamics Model 

ANSYS Fluent, commercial computational fluid dynamics (CFD) modeling 

software, was utilized to simulate the same biological/physical phenomena in an idealized 

situation. This was simulated using a 50 by 50 by 250 m domain with a one meter 

resolution mesh representing a section of the Florida Current (Fig. 3-4). For each model 

case a two hour spin up was run initially to allow the model to solve the flow equations. 

From this spin up, two separate cases were run, one with particles and one without 

particles for comparison. All models were run with a five second time step for 1440 steps 

(2 hours) with maximum 20 iterations per step. For every model run, gravity and energy 

equations were turned on. Even with increased computational power it was prohibitive to 

fully solve the three-dimensional Navier-Stokes equations in a turbulent flow. Therefore, 

some simplifying assumptions were made. Turbulence was modeled using Large Eddy 

Simulation/Wall Adapting Local Eddy Viscosity Model (LES WALE) which filtered the 

time-dependent Navier-Stokes equations (Eqn. 1 through 4).  

 
Figure 3-4. Domain used for ANSYS Fluent CFD model 
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where     is the stress tensor due to molecular viscosity defined  by 
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and     is the subgrid-scale stress defined by 
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In the WALE model the eddy viscosity was modeled by: 

      
     

    
  

 
  

          
 

       
    

  
 

  
                                                 (5) 

where    and    
 in the WALE model are defined, respectively as  
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In Fluent the default value of the WALE constant Cw is 0.325 (Fluent Theory Guide).  

It was very important to set accurate initial boundary conditions to allow the model 

to solve the flow equations and, therefore, converge faster. Periodic boundary conditions 

were imposed to allow infinite fetch and to allow the particles to stay in the domain 

indefinitely. At the top boundary of the water column, specified shear was set at 0.048 Pa 

to simulate a 5 m s
-1

 northerly wind and at -0.048 Pa to simulate a 5 m s
-1

 southerly wind. 

Heat flux was also set at the top boundary to simulate a more realistic environment. For 

summer conditions, the heat flux was set at 100 W m
-2

 during the day (immediately 

before sunset) and -20 W m
-2

 during night (immediately after sunset). For winter, the heat 

flux was set at 20 W m
-2

 before sunset and -100 W m
-2

 after sunset. Similar surface heat 

fluxes were set at sunrise. The bottom boundary was set to no slip condition, indicating 

that the fluid sticks to the wall. The side walls of the domain were set with 0 Pa specified 

shear. 

Not all options could be preset within the current ANSYS Fluent platform. To 

counter this, a user defined function was written using C++ language to define initial 

temperature and velocity profiles to simulate stratification of the Florida Current. 

Stratification profiles were significantly different in summer and winter conditions and 

the effect of Richardson number (Ri) determined from these profiles was of critical 
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importance. When Ri values approach 0.25, the critical value, the flow can become more 

unstable and, therefore, more turbulent. Below this critical value, smaller disturbances to 

the flow will create larger increases in turbulence.  

Average profiles of the initial temperature and velocity are shown in Figure 3-5.  In 

this study actual stratification information was not collected, so idealized profiles were 

used. The mixed layer was set to extend deeper in the water column during winter than in 

summer. The thermocline began at 75 m depth and a shallow layer at the top of the 

thermocline, from 75 to 85 m, occurred where the stratification was very strong, giving a 

Richardson number (Ri) less than critical value. In summer conditions, the mixed layer 

was set much shallower, beginning at 40 m depth, and the thermocline was a much 

thicker layer. This stratification profile gave a much higher Ri not approaching critical 

values. For both summer and winter conditions, the thermocline extended to 150 m depth. 

The Ri gives an indication of whether a flow will be stable or subject to overturning. In 

the winter thermocline, the Ri was less than 0.25 which was below the critical value 

indicating the flow was not stable and likely to overturn at least on local scales based on 

current shear. In summer, the Ri was greater than 0.25 and did not approach critical 

values, indicating a stable flow. 

 

Figure 3-5. Initial stratification conditions for temperature and velocity in summer and 

winter cases. a) Temperature profile (K) for summer b) X velocity (m s
-1

) for summer c) 

Temperature profile for winter (K) d) X velocity profile for winter (m s
-1

) 

a

) 

b

) 

c

) 

d

) 
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The model used a pressure-based solver with the SIMPLE scheme for pressure-

velocity coupling. For spatial discretization, Standard Scheme was used for pressure, 

Least Squares Based was used for gradient, Bounded Central Difference was used for 

momentum, and Second Order Upwind was used for energy. The time-stepping scheme 

was set to Second Order Implicit. The liquid material within the domain was set to water 

and a Bousinessq approximation was used to allow faster convergence of the model. This 

approximation treats density as a constant value in all solved equations except the 

buoyancy term in the momentum equation. 

                                                                    (8) 

where     is the constant density of the the flow,    is the operating temperature and   is 

the thermal expansion coefficient. Density of water was set to 998.2 kg m
-3

. The 

operating density was set to 0 to account for hydrostatic pressure and operating 

temperature was set to 288.15 K which was within the range of temperatures defined to 

simulate the Florida Current. 

To model zooplankton, particles were injected into the domain in ANSYS Fluent 

using a discrete phase model (DPM). DPM allows simulation of a discrete second phase 

in a Lagrangian frame of reference. The fluid, or first phase, was treated as a continuum 

by solving the Navier-Stokes equations. The dispersed, or second, phase consisted of 

spherical particles dispersed in the continuous phase and was solved by tracking a large 

number of particles. Fluent computes particle trajectories individually at specific intervals 

during the calculation. Unsteady tracking of particles was enabled so Fluent advances 

each particle a specified number of particle time steps before the flow solution is updated. 

The particles and the flow develop together in time. A coupled DPM was selected 

making the effects of the particles influence the flow solution and interact with the 

continuous phase. Number of continuous phase iterations per DPM iteration was set to 

two. This controlled the frequency that the particles were tracked and the solution 

updated. The option to update DPM sources with each flow iteration was selected so the 

particle source term was recalculated every iteration.  

In the coupled DPM model, the mass flow rate of a particle injection is required, 

which determines the number of particles injected per unit of time. To aid in the 

determination of the mass flow rate of particles injected in the CFD model, zooplankton 

biomass (mL m
-3

) and concentrations (# m
-3

) from several previous studies were 

referenced and converted to a mass flow rate (kg s
-1

), utilizing several simplifying 

assumptions. For studies that indicated number of organisms per cubic meter, the 

organisms were assumed to be spherical particles with 0.01 m diameter. For all studies, 

zooplankton were assumed to have the same density as water (1000 kg m
-3

). This was 

calculated for only the top 100 m of the domain as this is the area that DVM was 

observed from the acoustic data in this study. 
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Calculation of mass flow rate was possible due to the zooplankton samples collected. 

This study determined zooplankton biomass by the method of displacement of volume 

(Beer, 1976). At the location of the ADCP, biomass values ranged from 0.001 to 1.13 mL 

m
-3

. The maximum value was used for this calculation since zooplankton studies 

typically are underestimates. The mass flow rate was determined by multiplying the 

biomass (1.5 mL m
-3

) for this study site (Criales et al., 2004) by the volume of the 

domain to obtain mL of organism per cubic meter. Milliliters were converted to cubic 

meters and then multiplied by the density of zooplankton resulting in kilograms of 

particles (Eqn. 8). Particles were only injected at one time step so the calculated value 

served as the mass flow rate (kg s
-1

) for particle injection into the domain.   
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One study was performed close to our study area by oceanographers and biologists 

from Southeast Fisheries Science Center and University of Miami Rosenstiel School of 

Marine and Atmospheric Sciences (UM RSMAS). This project was known as SEFCAR 

and utilized a 1 m
2
 and a 10 m

2
 MOCNESS (Multiple Opening/Closing Net and 

Environmental Sampling System). They observed biomasses ranging from 0.05 to 1.5 mL 

m
-3 

(Criales et al., 2004) calculated from displacement volume (Beer, 1976). The same 

calculation as in equation 8 was made for data from this study (9). 
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In a study performed by Kunze et al. (2006), a very high concentration of 

euphausiids was observed via acoustic measurements. They observed 10,000 organisms 

m
-3

. The number of organisms was multiplied by the volume of the top 100 m of the 

domain to obtain the total number of organisms present. It was then multiplied by the 

organisms' density and by the volume of the particle (Eqn. 9). Particles were only 

injected at one time step, so this value can be taken as the mass flow rate (kg s
-1

).  

     
 

          
      

  

                                    (11) 

These calculations provided a range of possible mass flow rates to use for this 

simulation. DPM with differing mass flow rates were tested to determine what 

concentration of particles was needed to show an effect on turbulence signature and 

velocity profiles. 

Injection type was set to standard, so a single parcel of particles was injected at each 

time step. The number of particles in the parcel, NP, was determined by 

     
  

  
                                                                  (12) 

where NP is the number of particles in a parcel, ms is the mass flow rate of the particle 

stream, Δt is the time step, and mp is the particle mass. The spherical drag law was set to 
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approximate drag of the particles. The drag coefficient, CD, for spherical particles is 

defined by 

      
  

  
 

  

   
                                                            (13) 

where α1, α2, and α3 are constants over several ranges of Re (Morsi and Alexander, 1972). 

The physics of the DPM is described by ordinary differential equations while 

continuous flow is expressed as partial differential equations. This means that the DPM 

has its own numerical mechanisms and discretization schemes. The trapezoidal scheme 

was chosen for the high order tracking scheme which uses a semi-implicit trapezoidal 

integration. The implicit scheme was chosen for the low order tracking scheme which 

uses Eulerian integration of 
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where    is an additional acceleration term,            is the drag force per unit particle 

mass and  
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where    is the fluid phase velocity,     is the particle velocity, μ is the molecular viscosity 

of the fluid, ρ is the fluid density,    is particle density, and   is the particle diameter. Re 

is the Reynolds number defined as 

   
           

 
                                                              (16) 

When the particle reaches hydrodynamic equilibrium, the high order scheme is 

insufficient because the step length is limited. At this point Fluent switches to the stable 

lower order scheme and gives larger integration steps. 

Initial conditions must be set for the DPM calculations to proceed. An injection was 

created and properties were assigned to it such as starting position, size, mass flow, and 

time of injection. Particles were set to a uniform in size of 1 cm diameter. Temperature of 

the particles was set to 290 K which was within the range of temperatures set by the user 

defined stratification profiles in both summer and winter cases. Particles were injected 

from a surface within the first time step of the model. Sunrise was simulated by injecting 

particles at the top boundary of the domain and sunset was simulated by injecting 

particles at 110 m depth near the bottom of thermocline. The particle type was set to inert 

so they obeyed the force balance (Eqns. 10 through 12). 

When the DPM model was initiated, inert particles were created to inject at the 

selected surface. Water particles were created and then density was changed to 

approximate sinking or swimming behavior and renamed as zooplankton. Water density 
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was selected because zooplankton were assumed to be very similar to water for most 

properties. For sunrise, the zooplankton particles were set to a density of 1025 kg m
-3

 to 

sink through the water column. For sunset, they were set to 986 kg m
-3

 to float to the 

surface. Turbulent dispersion of particles due to turbulence in the fluid phase was 

predicted using the stochastic tracking model and activating the discrete random walk 

model, also called the eddy lifetime model. This model includes the effect of 

instantaneous turbulent velocity fluctuations on the particle trajectories and is written as  

                                                                (17) 

Next, boundary conditions for the DPM were set at each boundary. This determined 

the fate of the trajectory of the particles. For sunrise cases, the DPM boundary condition 

at the top and side boundaries were set to reflect particles and the bottom boundary was 

set to allow the particles to escape. For sunset cases the top boundary was set to allow 

particles to escape and the bottom and side boundaries were set to reflect particles back 

into the domain. The inlet was set to a periodic boundary so particles flowed out one side 

of the model and back into the other side with the fluid flow. The escape boundary 

condition allowed particles to leave the domain when they hit a wall. The reflect 

boundary condition caused the particles to bounce off the wall retaining the same 

momentum as before the collision and remain in the domain.   

Analysis of average velocity profiles and turbulence signatures from model results 

was conducted by exporting data from the model. For each model run, factors were 

exported over the entire water column in an ASCII format to be processed in Matlab. A 

Matlab script was developed to observe average profiles of velocity in the x-direction and 

subgrid turbulent viscosity for particles versus no particles cases. Contour plots for 

subgrid turbulent viscosity were taken directly from ANSYS Fluent and images of 

particle locations were processed using CFD-post, an ANSYS post-processing tool. 

4 RESULTS 

4.1 Observational Data 

4.1.1 Backscatter 

4.1.1.1 Velocity Contours 

A contour plot of the ADCP northward current velocity taken during the Dania 

Beach data set in spring is shown in Figure 4-1. This image clearly shows the presence of 

the strong western boundary current, the Florida Current and its meanders offshore. 

Warm colors near the surface indicate the Florida Current was present directly above the 

bottom mounted ADCP instrument with a top speed of approximately 2 m s
-1

. Cooler 

colors near the surface indicate the Florida Current had meandered offshore. The Florida 
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Current did not reach the bottom at this location at any time. It ranged from the surface to 

approximately 140 m deep and weakened with depth. Meandering of the Florida Current 

has been documented in many studies (Niiler, 1968; Soloviev et al., 2003). 

 
Figure 4-1. Northward current velocity contour plot. Dania Beach spring data set 

February 9, 2011 to April, 26, 2011 

 

4.1.1.2 Dania Beach 

A contour plot of the ADCP backscatter averaged over all four beams is shown in 

Figures 4-2 through 4-5, separated by season. Part a) of these plots shows the contour 

plot of backscatter directly as recorded by the instrument. A periodic pattern in the 

backscatter with higher values in the surface water followed by higher values in mid-

depths appeared throughout most of the data set, suggesting the presence of a DVM 

cycle. To observe if this was DVM, part b) shows the same plot with sunrise indicated by 

a solid white line, sunset set as a dashed white line, new moon as a solid black line, and 

full moon as a dashed black line. The sunset and sunrise times clearly coincided with the 

dramatic changes in backscatter in the surface layers. DVM patterns due to lunar cycle, 

however, were not analyzed for this thesis.  
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Figure 4-2. a) Beam averaged backscatter from bottom mounted ADCP on Dania Beach 

(26.0315°N, 79.9937°W) during winter months (December 16, 2010 at 11:00 through 

February 8, 2011 at 7:20).b) Sunrise indicated by a solid white line, sunset by a dashed 

white line, new moon by a solid black line and full moon by a dashed black line. 

a) 

b) 
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Figure 4-3. a) Beam averaged backscatter from bottom mounted ADCP on Dania Beach 

(26.0315°N, 79.9937°W) during spring months (February 9, 2011 at 11:00 through April, 

26 2011 at 14:30). b)  Sunrise times indicated by a solid white line, sunset by a dashed 

white line, new moon by a solid black line and full moon by a dashed black line. 

a) 

b) 
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Figure 4-4. A) Beam averaged backscatter from bottom mounted ADCP on Dania Beach 

(26.0315°N, 79.9937°W) during summer months (April 27, 2011 at 13:00 through July 

15, 2011 at 23:45). B) Sunrise times indicated by a solid white line, sunset by a dashed 

white line, new moon by a solid black line and full moon by a dashed black line. 

a) 

b) 

a) 
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Figure 4-5. a) Beam averaged backscatter from bottom mounted ADCP on Dania Beach 

(26.0315°N, 79.9937°W) during summer months (July 16, 2011 at 000 through October 

11, 2011 at 17:50). b) Sunrise times indicated by a solid white line, sunset by a dashed 

white line, new moon by a solid black line and full moon by a dashed black line. 

 

 

b) 

a) 
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4.1.1.3 Pompano 

Contour plots of averaged ADCP backscatter from the Pompano four year data sets 

are shown in Figures 4-6 through 4-17. As with the Dania Beach data set, sunrise times 

are indicated with a solid white line, sunset times are indicated with a dashed white line, 

new moon is shown in a solid black line, and full moon is shown with a dashed black 

line. The same periodicity that was present in the Dania Beach data set appeared to be 

present the majority of the time in the longer Pompano data set. There was typically a 

larger concentration of particles, indicated by stronger backscatter, in the surface waters 

just after sunset which moved back to depth after sunrise. This pattern was expected from 

DVM. Again, the lunar cycle was not researched further during this study. 

4.1.2 Zooplankton Swimming Speeds 

Focusing on sunrise and sunset times on the backscatter contour allowed estimation 

of the rate at which the scatterers moved toward or away from the surface layers. Many 

cases showed two distinct rates during sunrise but sunset only showed one slope. In the 

case shown in Figure 4-18, the downward swimming speed at sunrise was initially 4.3 cm 

s
-1

 and then dropped off to 2.5 cm s
-1

 which was comparable with Kunze et al. (2006) 

who showed average ascent speeds of 2.5 to 3.5 cm s
-1

 in Saanich Inlet, British 

Colombia, Canada. At sunset the approximate swim speed was 2.6 cm s
-1

. Backscatter 

was averaged at sunrise and sunset times over the course of each season to obtain an 

average zooplankton swim speed. During the winter season average swimming speed at 

sunrise was 1.05 cm s
-1

 and at sunset was 0.85 cm s
-1

 (Fig. 4-19). For spring, sunrise had 

two separate slopes. Initially the decent rate was 2.22 cm s
-1

 for and after approximately 

20 minutes, slowed to 0.79 cm s
-1

. The ascent rate at sunset was 1.28 cm s
-1

 (Fig. 4-20). 

During summer, the scatterers did not appear to migrate down as far in the water column 

as during the other seasons. The average sunrise speed was 0.76 cm s
-1

 and sunset was 

0.60 cm s
-1

 (Fig. 4-12). Swimming speed was averaged over the full 11 month data set. 

The average sunrise speed was 1.52 cm s
-1

 and average sunset speed was 0.79 cm s
-1

 (Fig. 

4-22). These swim velocities are summarized in Table 4-1. 

Table 4-1. Average zooplankton swimming speeds calculated from slope of backscatter 

Average Zooplankton Swim Speeds 

 Sunrise Sunset 

Winter 1.05 
 

0.85 

Spring 2.22 – 0.79 1.28 

Summer 0.76 0.60 

All 1.52 0.79 

 



38 
 

 
Figure 4-6. a) Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) January 23, 2007 at 23:00 GMT to May 8, 2007 at 21:00 GMT. 

b) Sunrise times indicated by a solid white line, sunset by a dashed white line, new moon 

by a solid black line and full moon by a dashed black line. 

b) 

a) 
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Figure 4-7. a) Beam averaged backscatter from bottom mounted ADCP at 

Pompano (26.1911°N, 79.9739°W) May 8, 2007 at 22:00 GMT to August 19, 

2007 at 0:00 GMT. b) Sunrise times indicated by a solid white line, sunset by a 

dashed white line, new moon by a solid black line and full moon by a dashed 

black line. 

b) 

a) 
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Figure 4-8. a) Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) August 19, 2007 at 1:00 GMT to November 26, 2007 at 10:00 

GMT. b) Sunrise times indicated by a solid white line, sunset by a dashed white line, new 

moon by a solid black line and full moon by a dashed black line.  

b) 

a) 
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Figure 4-9. a) Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) November 26, 2007 at 11:00 GMT to March 13, 2008 at 15:00 

GMT. b) Sunrise times indicated by a solid white line, sunset by a dashed white line, new 

moon by a solid black line and full moon by a dashed black line.  

b) 

a) 
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Figure 4-10. a) Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) March 13, 2008 at 16:00GMT to June 28, 2008 at 18:00 GMT. 

b) Sunrise times indicated by a solid white line, sunset by a dashed white line, new moon 

by a solid black line and full moon by a dashed black line.  

b) 

a) 
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Figure 4-11. a) Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) June 28, 2008 at 19:00 GMT to November 18, 2008 at 6:00 

GMT. b) Sunrise times indicated by a solid white line, sunset by a dashed white line, new 

moon by a solid black line and full moon by a dashed black line.  

b) 

a) 
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Figure 4-12. a) Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) November 18, 2008 at 7:00 GMT to March 11, 2009 at 17:00 

GMT. b) Sunrise times indicated by a solid white line, sunset by a dashed white line, new 

moon by a solid black line and full moon by a dashed black line.  

b) 

a) 
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Figure 4-13.a)  Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) March 11, 2009 at 18:00 GMT to June 30, 2009 at 20:00 GMT. 

b) Sunrise times indicated a solid white line, sunset by a dashed white line, new moon by 

a solid black line and full moon by a dashed black line.  

b) 

a) 



46 
 

Figure 4-14. a) Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) June 30, 2009 at 21:00 GMT to October 19, 2009 at 23:00 

GMT. b) Sunrise times indicated by a solid white line, sunset by a dashed white line, new 

moon by a solid black line and full moon byn a dashed black line.  

b) 

a) 
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Figure 4-15. a) Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) October 20, 2009 at 0:00 GMT to February 8, 2010 at 2:00 

GMT. b) Sunrise times indicated by a solid white line, sunset by a dashed white line, new 

moon by a solid black line and full moon by a dashed black line.  

b) 

a) 
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Figure 4-16. a) Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) February 8, 2010 at 3:00 GMT to May 30, 2010 at 5:00 GMT. 

b) Sunrise times indicated by a solid white line, sunset by a dashed white line, new moon 

by a solid black line and full moon by a dashed black line.  

b) 

a) 
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Figure 4-17. a)  Beam averaged backscatter from bottom mounted ADCP at Pompano 

(26.1911°N, 79.9739°W) May 30, 2010 at 6:00 GMT to September 17, 2010 at 18:00 

GMT. b) Sunrise times indicated by a solid white line, sunset by a dashed white line, new 

moon by a solid black line and full moon by a dashed black line.  

b

) 

a

) 
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Figure 4-18. Swimming vertical velocity of zooplankton calculated using acoustic 

(ADCP) backscatter signal in a sunrise and a sunset case. This case showed two different 

zooplankton velocities (depending on depth) during sunrise while sunset only showed 

one. Horizontal line of the triangle depicts the length of time that migration occurred, 

vertical lines indicate depth of migration. Slope formula was used to determine velocity. 
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Figure 4-19. Averaged winter zooplankton swim speeds during a) sunrise and b) sunset 

conditions calculated from ADCP backscatter from winter months (December 16, 2010 to 

February 8, 2011). Horizontal line of the triangle depicts the length of time that migration 

occurred, vertical lines indicate depth of migration. Slope formula was used to determine 

velocity. 
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Figure 4-20. Averaged spring zooplankton swim speeds during a) sunrise and b) sunset 

conditions calculated from ADCP backscatter from spring months (February 9, 2011 to 

April, 26, 2011). Horizontal line of the triangle depicts the length of time that migration 

occurred, vertical lines indicate depth of migration. Slope formula was used to determine 

velocity. 
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Figure 4-21.  Averaged summer zooplankton swim speeds during a) sunrise and b) sunset 

conditions calculated from ADCP backscatter from summer months (April 27, 2011 to 

October, 11, 2011). Horizontal line of the triangle depicts the length of time that 

migration occurred, vertical lines indicate depth of migration. Slope formula was used to 

determine velocity. 
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Figure 4-22. Averaged zooplankton swim speeds during a) sunrise and b) sunset 

conditions calculated from ADCP backscatter from full 11 month data set (December 16, 

2010 to October, 11, 2011). Horizontal line of the triangle depicts the length of time that 

migration occurred, vertical lines indicate depth of migration. Slope formula was used to 

determine velocity. 
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4.1.2 Velocity 

4.1.2.1 Dania Beach 

Northward current velocity profiles were averaged over all sunrise and sunset times 

for each season and for the complete 11 month data set. These profiles were compared to 

the averaged profile three hours prior. Only cases within the Florida Current, 

characterized by a northward current velocity greater than 0.75 m s
-1

,
 
were considered. A 

95% confidence interval was calculated to determine statistical significance. A 

statistically significant decrease in northward velocity in the top 100 m occurred during 

time intervals around sunset and sunrise as compared to three hours prior. The decrease 

in velocity in winter during migration times was not statistically significant with a 95% 

confidence interval (Fig 4-23). Spring showed no change in average northward velocity 

profile (Fig 4-24). Summer showed a statistically significant decrease in the northward 

velocity component during migration as compared to three hours prior (Fig 4.25). The 

complete 11 month data set showed a statistically significant decrease in the northward 

component of velocity during migrations as compared to three hours prior (Fig 4-26). 

4.1.2.2 Pompano 

Northward current velocity profiles were averaged over all sunrise and sunset times 

for each season and for the complete four year data set. These profiles were compared to 

the averaged profile three hours prior. Only cases within the Florida Current, 

characterized by a northward current velocity greater than 0.75 m s
-1

, were considered. A 

95% confidence interval was calculated to determine statistical significance. There were 

no observable change in velocity in the winter and spring cases (Fig. 4-27 and 4-28). 

There was an observable decrease in the northerly velocity component in summer and fall 

cases and when all four years of data were averaged (Fig. 4-29 through 4-31). However, 

these were not statistically significant at the 95% confidence level.  
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Figure 4-23. Winter northward current velocity profiles of sunrise/sunset compared to 

three hours prior using a 95% confidence interval (represented with dotted lines) from 

Dania Beach data set. a) Complete average velocity profile. b) Top 110 m of the profile 

represented by the black box in part a. 
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Figure 4-24. Spring northward current velocity profiles of sunrise/sunset compared to 

three hours prior using a 95% confidence interval (represented by dotted lines) from 

Dania Beach data set. a) Complete average velocity profile. b) Top 110 m of the profile 

reprsented by the black box in part a.  
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Figure 4-25. Summer northward current velocity profiles of sunrise/sunset compared to 

three hours prior using a 95% confidence interval (represented by dottend lines) from 

Dania Beach data set. a) Complete average velocity profile. b) Top 110 m of the profile 

reprsented by the black box in part a. 
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Figure 4-26. Full 11 month data set northward current velocity profiles of sunrise/sunset 

compared to three hours prior using a 95% confidence interval (reprsented by dotted 

lines) from Dania Beach data set. a) Complete average velocity profile. b) Top 110 m of 

the profile represented by the black box in part a. 
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Figure 4-27. Winter northward current velocity profiles of sunrise/sunset compared to 

three hours prior using a 95% confidence interval (represented by dotted lines) from 

Pompano 4 year data set. a) Complete average velocity profile. b) Top 110 m of the 

profile represented by the black box in part a. 
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Figure 4-28. Spring northward current velocity profiles of sunrise/sunset compared to 

three hours prior using a 95% confidence interval (respresented by dotted lines) from 

Pompano 4 year data set. a) Complete average velocity profile. b) Top 110 m of the 

profile represented by the black box in part a. 
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Figure 4-29. Summer northward current velocity profiles of sunrise/sunset compared to 

three hours prior using a 95% confidence interval (representd by the black box) from 

Pompano 4 year data set. a) Complete average velocity profile. b) Top 110 m of the 

profile represented by the black box in part a. 
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Figure 4-30. Fall northward current velocity profiles of sunrise/sunset compared to three 

hours prior using a 95% confidence interval (represented by dotted lines) from Pompano 

4 year data set. a) Complete average velocity profile. b) Top 110 m of the profile 

represented by black box in part a. 
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Figure 4-31. Full four year data set northward current velocity profiles of sunrise/sunset 

compared to three hours prior using a 95% confidence interval (represented by dotted 

lines) from Pompano 4 year data set. a) Complete average velocity profile. b) Top 110 m 

of the profile represented by the black box in part a. 
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4.2 Computational Fluid Dynamics Model 

A range of mass flow rates were tested to determine what level of zooplankton 

density was necessary to create an impact on velocity profiles and turbulence signatures. 

A mass flow rate of 5x10
4
 kg s

-1
 produced very little effect on turbulence and velocity. A 

mass flow rate of 2.5x10
5
 kg s

-1 
did produce an impact on turbulence in all cases and 

velocity in some cases. This mass flow rate is the upper limit for the DPM model because 

this model cannot handle a volume fraction of particles is larger than 0.1. All results 

presented below are from this upper limit. 

Data from the model runs were analyzed during a time step while the particles were 

moving through the mixed layer where the stratification was set so the Ri was much 

lower than the rest of the domain. The same time step was used for the corresponding no 

particles case. This was at a slightly different time for each model. The particles moved 

differently in each season due to differences in initial stratification conditions. The Ri 

was closer to the critical value in winter stratification, make the water column more 

susceptible to turbulent mixing. This made it slightly more difficult for the particles to 

penetrate through mixed layer than in summer stratification. The direction of particle 

movement influenced the time step in which the particles were moving through the mixed 

layer. In sunrise cases, particles were injected at the top boundary of the domain, 

therefore, they moved through the mixed layer fairly quickly. In sunset cases, particles 

were injected near the bottom of the thermocline, so they took longer to rise into the 

mixed layer. Winter sunrise cases were taken 15 minutes after particles were released 

from the surface. Winter sunset cases were taken 26 minutes and 40 seconds after 

particles were released from a 110 m depth, rising toward the surface. Summer sunrise 

northerly wind case was taken 10 minutes after particles were released from the surface. 

Summer sunrise southerly wind case was taken 11 minutes and 40 seconds after release 

from the surface. Sumer sunset cases were taken 30 minutes after the particles were 

released from a 110 m depth. 

4.2.1 Velocity 

Average x-velocity profiles were plotted for all model runs. Each case compared a 

run with particles in the domain to a run with no particles. All other settings for the two 

runs were exactly the same. In the winter sunrise northerly wind case, there was a slight 

decrease in velocity in the particles cases compared to no particles in the mixed layer of 

the water column. The sunrise southerly wind case showed a slight increase in velocity in 

the mixed layer when particles were present. There were slight distortions in the winter 

sunset cases (Fig. 4-32). In summer runs, there was a slight distortion of the x-velocity 

profile in the sunrise northerly wind case and there were no observable effects in any of 

the other cases (Fig. 4-33). X-velocity profiles were also averaged for each season (Fig. 
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4-34). There was a slight decrease in average velocity when winter cases were averaged 

and no difference when summer cases were averaged. 

 

Figure 4-32. Winter average northward velocity profiles from the CFD model. 
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Figure 4-33. Summer average northward velocity profiles from the CFD model. 

 

a) b)  

Figure 4-34. Season averaged northward velocity profiles from the CFD model. A) 

Winter cases. B) Summer cases. 
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4.2.2 Turbulence 

Average profiles of subgrid turbulent viscosity were plotted from the model runs.  

These profiles compared a model run with particles to one with no particles. All other 

settings in the runs were the same. In the winter cases, there was an obvious increase in 

turbulence in the mixed layer when particles were present in the average profiles of all 

cases. This increase was larger in the sunrise cases than the sunset cases (Fig. 4-35). In 

summer there were observable increases, but smaller than in winter cases, in the subgrid 

turbulent viscosity average profiles when particles were present in all cases. The effect of 

particles in sunrise cases was greater than sunset in cases (Fig. 4-36). Average subgrid 

turbulent viscosity profiles were also averaged for each season (Fig. 4-37). There was an 

obvious increase in turbulence in both averaged cases. This increase was greater during 

averaged winter cases. In all cases, turbulence was increased in the bottom boundary 

layer due to setting a no slip boundary condition at the bottom boundary which causes the 

fluid to stick to the wall at this boundary.  

A contour plot of subgrid turbulent viscosity was exported in particles and no 

particles cases to compare the level of turbulence in the wake of the particles simulating 

DVM. Particles tracks were also exported to easily visualize the location of the particles 

within the domain. All cases showed an increase of subgrid turbulent viscosity in the 

mixed layer with particles present compared to no particles.  

Winter cases had a very high level of turbulence (Figs 4-38 to 4-45). The scales 

range from 2x10
-8

 to 8.7 kg (m x s)
-1

. The winter cases all showed a substantial increase 

of turbulence in the mixed layer and all cases showed very low levels of turbulence when 

no particles were present. All of the cases had some turbulence in the surface layer due to 

wind stress imposed along the top boundary. 

All summer cases showed an increase in subgrid turbulent viscosity in cases with 

particles compared to those without. The differences were not as strong as in the winter 

cases. The absolute level of turbulence was lower due to the differences in stratification. 

The scale ranged from 5x10
-7

 to 5.9 kg (m x s)
-1

 which was much lower than the winter 

cases. Sunrise cases had an obvious increase of turbulence in the particles case compared 

to no particles. Sunset cases had a slightly elevated turbulent signature when particles 

were present, but it was not as obvious.  
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Figure 4-35. Winter average profiles of subgrid turbulent viscosity from CFD model. 
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Figure 4-36. Summer average profiles of subgrid turbulent viscosity from model runs. 

a) b)  

Figure 4-37. Season averaged northward velocity profiles from the CFD model. a) Winter 

cases. b) Summer cases. 
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Figure 4-38. Contour of subgrid turbulent viscosity on the center plane in winter sunrise 

southerly wind condition comparing particles to no particles case. This was 15 minutes 

after particle injection while they were still in the mixed layer. Image on right shows the 

location of the particles within the domain. 
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Figure 4-39. Subgrid turbulent viscosity in winter sunrise northerly wind condition 

comparing particles to no particles case. This was 15 minutes after particle injection 

while they were still in the mixed layer. Image on right shows the location of the particles 

within the domain. 
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Figure 4-40. Subgrid turbulent viscosity in winter sunset southerly wind condition 

comparing particles to no particles case. This was 26 minutes and 40 seconds after 

particle injection while they were still in the mixed layer. Image on right shows the 

location of the particles within the domain. 
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Figure 4-41. Subgrid turbulent viscosity in winter sunset northerly wind condition 

comparing particles to no particles case. This was 26 minutes and 40 seconds after 

particle injection while they were still in the mixed layer. Image on right shows the 

location of the particles within the domain. 
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Figure 4-42. Subgrid turbulent viscosity in summer sunrise southerly wind condition 

comparing particles to no particles case. This was 11 minutes and 40 seconds after 

particle injection while they were still in the mixed layer. Image on right shows the 

location of the particles within the domain. 
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Figure 4-43. Subgrid turbulent viscosity in summer sunrise northerly wind condition 

comparing particles to no particles case. This was 10 minutes after particle injection 

while they were still in the mixed layer. Image on right shows the location of the particles 

within the domain. 
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Figure 4-44. Subgrid turbulent viscosity in summer sunset southerly wind condition 

comparing particles to no particles case. This was 30 minutes after particle injection 

while they were still in the mixed layer. Image on right shows the location of the particles 

within the domain. 
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Figure 4-45 Subgrid turbulent viscosity in summer sunset northerly wind condition 

comparing particles to no particles case. This was 30 minutes after particle injection 

while they were still in the mixed layer. Image on right shows the location of the particles 

within the domain. 

 

5 DISCUSSION 

5.1 Observational Data 

5.1.1 Backscatter 

Acoustic data from the ADCP provided an excellent view of some of the major 

features of the Florida Current. Depth, velocity, tidal oscillations and meandering of the 

Florida Current were easily observable. These data provided good background 

information on the physical oceanographic conditions in the study area which helped to 

create a more accurate model. 

From the contour plots of ADCP backscatter (Fig 4-2 to 4-18), there was an obvious 

periodicity in the strength of the signal. Scattering particles were denser near the surface 
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layers immediately after sunset. Within an hour of sunset, in almost all cases, the 

backscatter intensity was much stronger at the surface than before sunrise indicating an 

upward migration. Within 45 minutes of sunrise, the higher backscatter at the surface had 

almost disappeared indicating a downward migration. This pattern was consistent with 

the Nocturnal DVM pattern and appeared in the data from both study sites on most days 

and when averaged over a season or the full data set.  

Zooplankton swimming speeds were calculated for individual cases, as an average 

over each season, and for the full 11 month data set from Dania Beach (Table 4-1). In 

many individual cases, such as the one shown in Figure 4-18, there were two different 

slopes during sunrise and the velocity at sunrise was faster than at sunset. This occurred 

throughout the Dania Beach data set in all seasons. The two different swim velocities 

were present but with less frequency during the summer season. There were many spikes 

in the data during this season due to biofouling of the instrument which could have 

contributed to this difference.   

Seasonal averaged swimming velocities were faster during sunrise than sunset in all 

cases. Yang (2013) observed the same pattern via acoustic measurements in the Luzon 

Strait, off the southeast coast of China. Averaged spring sunrise showed two distinct 

swimming velocities (Fig 4-20). The zooplankton swimming velocity appeared to be 

faster at the beginning of the downward motion, after which the swimming velocity 

slowed down. There are two possible hypotheses that may explain this observation. One 

hypothesis is the zooplankton were, in fact, swimming faster initially to leave the brightly 

lit surface waters as quickly as possible to avoid detection by visual predators, and then 

slowed down and sank passively to conserve energy to darker waters at depth. The other 

hypothesis is that multiple species were migrating down simultaneously. One species was 

a faster swimmer, which masked the slower speed of other species. Once this faster 

species migrated back down to depth, it was no longer masking the signal of the other 

species revealing the slower velocity.   

The method used to determine swim velocities from backscatter during migrations 

averaged the backscatter contours from 60 minutes before and after migrations. These 

averages did not account for differences in diel vertical migrations due to lunar cycle, 

cloud cover or other environmental conditions which could alter timing or 

synchronization of migration. This could have caused blurring of the data masking some 

features that were present in individual cases. The blurring of the data could account for 

the lower swimming velocities in seasonal cases as compared to individual cases. This 

could also be the reason that two swimming velocities were not present in winter or 

summer during sunrise.  
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5.1.2 Velocity 

Northward current velocity from the ADCP data in Figures 4-23 to 4-31 seemed to 

show little difference in velocity between sunrise/sunset and three hours prior in most 

cases. In the Dania Beach data set, however, the northward velocity significantly 

decreased (95% confidence interval) during a migration time compared to three hours 

prior in summer and in the averaged complete 11 month data set. The decrease in velocity 

was likely due to the change of the vertical mixing coefficient produced by additional 

turbulence from a large mass of zooplankton moving into or out of the area. Increased 

turbulent friction caused drag, reducing the northward current velocity. Swimming 

behavior has been known to cause an increase in turbulence on time scales smaller than a 

few minutes and length scales of a couple of body lengths of the zooplankton (Cheng and 

Chahine, 2001; Videler et al., 2002; Yen et al., 2003; Catton et al., 2011). An attempt to 

calculate kinetic energy from the variance of ADCP velocity data was made in order to 

use it as a proxy for turbulent kinetic energy. These values showed no significant 

differences because an ADCP is designed to look at velocity data, not turbulence. The bin 

size was also quite large (4 m), prohibiting the ability to look at small scale processes. All 

other cases showed no statistically significant change in northward current velocity. This 

was most likely due to noisy data and other physical factors more powerful than DVM 

influencing the velocity of the Florida Current, such as wind, tides, and current 

meandering. Also, the lack of change in the Pompano Beach data set may be due to the 

long sampling interval of the ADCP. A measurement was only taken once an hour, 

limiting the number of points available to average. 

5.2 Computational Fluid Dynamics Modeling 

5.2.1 Velocity 

Average x-velocity profiles were analyzed for model runs. These profiles seemed to 

be consistent with the observational data. A slight difference in x-velocity between 

particles and no particles model runs was present in both winter sunrise cases and in the 

summer northerly wind case. No difference was seen in sunset cases or in the summer 

sunrise southerly wind case. It appeared stratification of the water column was the factor 

that impacted average velocity profiles the most. When stratification profiles gave a Ri 

value near critical, changes in average velocity were more likely to occur. Speed of 

particle motion also appeared to play a role in distortions to the velocity profiles. 

Particles were set with a larger density difference within water during sunrise cases to 

mimic the faster swimming velocities found during sunrise times from the ADCP data. A 

faster motion of the particles might allow for more overturning of the water column, thus 

a greater change in velocity. A distortion of x-velocity was present in sunrise northerly 

wind cases for both seasons (Figs. 4-32 and 4-33). This implies that wind direction had a 
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small effect on changes to velocity profiles as well, but stratification and particle velocity 

were more important.  

When calculating the mass flow rate of particles, the assumption was made that 

zooplankton were the same density as water. This assumption is not accurate. The density 

of majority of zooplankton present in the net samples had a significantly lower density 

than water due to lipid content in the organisms. This assumption was used because the 

density of particles in the model controls the ascent or descent of diel vertical migrations. 

5.2.2 Turbulence 

An increase in average subgrid turbulent viscosity was present in all cases when 

Lagrangian particles were located within the mixed layer of the domain, shown in 

average profiles (Figs. 4-35 and 4-36) and contour plots (Figs. 4-38 to 4-45). The contour 

plots revealed higher levels of turbulence in the wake of the moving particles. The 

increase in turbulence shown in average profiles began deeper in the domain at sunset in 

both seasons because particles were released from near the bottom of the thermocline in 

these cases. Both seasons showed a greater increase in turbulence during sunrise which 

was most likely due to the higher velocity of particles in these cases. Winter cases 

showed a greater increase in turbulence than summer. This was likely due differences in 

stratification of the water column between seasons. In winter, the mixed layer was much 

shallower than in summer and had a sharper temperature gradient. This sharper gradient 

gave a smaller (near critical) Ri value which allowed for smaller disturbances to cause 

larger amounts of turbulence. In summer, the mixed layer was deeper than in winter and 

the temperature gradient was significantly smaller. The smaller gradient gave a Ri value 

much larger than the critical value near the top of the domain so turnover could not occur 

as readily. The increase in turbulence began at a deeper depth in the sunset cases because 

the particles were released near the bottom of the thermocline.  The Lagrangian particles 

in the CFD model simulated zooplankton undergoing DVM; therefore, this result 

indicates that DVM did cause an increase in turbulence in the upper mixed layer of the 

ocean. 

6 CONCLUSIONS 

6.1 Major Findings 

In conclusion, this work analyzed the DVM cycle of zooplankton in the Straits of 

Florida using ADCP data. Average backscatter profiles were used to approximate 

zooplankton swimming velocities during ascent and descent times. Velocity 

measurements from the ADCP were analyzed to determine the effect of DVM on 

northward current velocity profiles. A computational fluid dynamics model was used 

to simulate the effect of zooplankton DVM in the Florida Current on current velocity 

and turbulence structure.  
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An average zooplankton swimming velocity was calculated via average 

backscatter profiles over each season and over the complete data set for the Dania 

Beach site. This could not be calculated for the Pompano data set due to the long 

sampling interval. Swimming velocities during sunrise were faster than sunset in all 

cases. In many individual cases and in the averaged spring season, two different 

swimming velocities were observed. It is possible that there are, in fact, two 

different swimming velocities resulting from an initial quicker swimming rate at 

sunrise in order to leave the brightly lit surface waters as quickly as possible, followed by 

a passive sinking phase allowing the organisms to conserve energy once they made it to 

darker waters at depth. It is also possible that there were organisms swimming at different 

rates and the faster species masked the signal of the slower swimming species. Once 

these faster organisms have moved back to depth, the swimming velocities of the slower 

organisms are observable. 

A small, but measurable statistically significant decrease of the northward current 

velocity of the Florida Current had been linked to the presence of zooplankton 

undergoing a DVM cycle, but only in a few cases. This decrease in velocity is likely due 

to an increase in turbulent friction causing drag, thereby, slowing the current velocity 

slightly. Comparison of the model and average ADCP velocity profiles was 

complicated by their substantial dependence on the environmental conditions not 

directly related to DVM including wind, Florida Current meandering, and tides. 

An attempt was made to calculate kinetic energy from ADCP variance of 

velocity fluctuations, used as a proxy for turbulence; however, the differences were 

not statistically significant. This was likely due to the occurrence of other physical 

processes stronger than DVM. ADCPs are designed to measure current velocities 

and not turbulence. The bin size of this instrument is too large to observe small 

scale processes such as turbulence. To directly measure turbulence, in situ 

turbulence measurements need to be taken. The effect of DVM on the upper ocean 

turbulence, as determined from the CFD model, was more visible because the LES 

subgrid turbulence model is parameterized and physical effects of small scale 

processes, smaller than the mesh size, are observable. The subgrid turbulent 

viscosity increases in the wake of particles injected into the model in all cases , 

indicating that turbulence is increased by DVM on certain time and length scales. 

6.2 Limitations 

Acoustic measurements and zooplankton net sampling of DVM are limited in the 

scope of what they can collect. In this case, only organisms or groups of organisms larger 

than 8 mm could be detected with the 75 kHz ADCP used in this study. There are many 

migrating zooplankton that are smaller than the detectable size making a true estimation 

of the number of zooplankton difficult. It is also not possible to determine what species 
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were present or their swimming behaviors based on acoustics. With net sampling, it was 

only possible to tell what taxa and densities were present. Also, larger zooplankton can 

possibly avoid nets like the ones used to contribute to this study. Larger nets with larger 

mesh size could preclude the collection of smaller organisms. 

The acoustic data collected for this project had two components, one with a short 

sampling interval of five minutes and 11 month duration and the other with a long 

sampling interval of one hour and 4 year duration. It would be helpful to have a longer 

data set with a short sampling interval. Direct, in situ turbulence measurements of 

velocities in the microscale range would also be incredibly helpful to determine 

instantaneous turbulence structure. Stratification information should have been taken at 

the sampling site in order to make a realistic initial stratification profile for the model. 

As with all models, it is necessary to validate the results with real world conditions. 

In situ velocity profiles and turbulence structure were not present making it difficult to 

validate the model. The results of the model can be compared to acoustic data taken from 

the field, but as mentioned above, there are some limitations to what an ADCP can 

collect. No one method is able to analyze the effect of DVM on the physical environment 

so a mixture of methods should be used to acquire a more holistic picture. The optimal 

experimental design would include acoustic measurements, zooplankton net samples, 

turbulence profiling with a specialized instrument, particle image velocimetry laboratory 

experiments and computation fluid dynamics modeling.  
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