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A Mitogenomics View of the Population Structure and Evolutionary History 

of the Basking shark, Cetorhinus maximus 

 

Abstract 

The basking shark, Cetorhinus maximus, has historically been a target of international 

fisheries, leading to well-documented declines in parts of its global distribution. 

Currently, the basking shark is listed as globally ‘Vulnerable’ and regionally 

‘Endangered’ (North Pacific and Northeast Atlantic) on the IUCN Red List of Threatened 

Species, rendering the species an international conservation priority. Here, we assessed 

the global matrilineal genetic population structure and evolutionary history of the basking 

shark by completing the first whole mitochondrial genome sequence level survey of 

animals sampled from three globally widespread geographic regions: the western North 

Atlantic (n = 11), the eastern North Atlantic (n = 11), and within New Zealand territorial 

waters (n = 12).  Despite the relatively large amount of sequence data assessed (~16,669 

bp per individual), whole mitogenome analyses showed no evidence of population 

differentiation (ΦST = -0.047, P > 0.05) and very low nucleotide diversity (π = 0.0014 ± 

0.000) across a global seascape. The absence of population structure across large 

distances and even between ocean basins is indicative of long-dispersal by this species, 

including an ability to cross known biogeographic barriers known to differentiate 

populations of other highly vagile pelagic fishes. Notably, evolutionary analyses of the 

mitogenome sequences revealed two globally sympatric but evolutionary divergent 

lineages, with a Bayesian framework estimated coalescence time of ~2.46 million years 

ago. Coalescent-based Bayesian skyline analysis uncovered subtle evidence of 
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Pleistocene demographic flux for this species, including a potential decline in female 

effective population size. Thus, historical population changes may be responsible for the 

occurrence of the two highly divergent, yet sympatric lineages, as population declines 

may have resulted in the loss of intermediate haplotypes and resulted in an overall loss of 

genetic diversity. This work supports the recognition of basking sharks as a single 

matrilineal global population, and as such requires the application of a cooperative 

multiagency and international approach to fisheries management to conserve this highly 

vulnerable and ecologically unique species. 

 

Keywords: whole mitochondrial genome; Cetorhinus maximus; sympatric lineages; 

genetic diversity; conservation 
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Introduction 

Scientific advances in DNA sequencing technology have allowed for the efficient 

sequencing of whole mitochondrial genomes (mitogenomes), thus increasing the utility of 

these whole molecules as non-recombining, fast-evolving, population genetic and 

phylogeographic markers (Ma et al. 2012; Teacher et al. 2012; Winklemann et al. 2013). 

The use of whole mitogenome sequences to infer population structure and evolutionary 

relationships within species may help to eliminate a variety of the limitations inherent in 

sequencing shorter, single mitochondrial regions (e.g., low diversity, substitutionally 

constrained genes, and variable mutation rates among regions), allowing for more 

accurate and intraspecific relationships to be inferred (Subramanian et al. 2009; Morin et 

al. 2010; Knaus et al. 2011). In fact, numerous studies suggest that increasing the number 

of surveyed regions and/or the length of resolved sequences, may be more beneficial than 

simply increasing the number of individuals sequenced at a single locus when attempting 

to resolve population structure and increase phylogenetic accuracy (Saitou & Nei 1986; 

Ruvolo et al. 1991; Cummings et al. 1997; DeFilippis & Moore 2000; Rokas & Carroll 

2005; Morin et al. 2010). As such, researchers have begun adopting whole mitogenomic 

sequences to resolve the population genetic structure and evolutionary divergences within 

and among species with notable success (McGowen et al. 2009; Xiong et al. 2009; 

Vilstrup et al. 2011; Jacobsen et al. 2014; Karlsen et al. 2014). For instance, in some 

cases where previous single mitochondrial region/gene studies have found little genetic 

heterogeneity among individuals (Hoelzel et al. 2002; LeDuc et al. 2008), use of the 

entire mitogenome has yielded increased statistical and phylogenetic resolution and in 
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some cases has identified the presence of highly divergent historical lineages, suggesting 

the potential presence of species complexes or distinct sub-species (Morin et al. 2010). 

Such applications underscore the potential utility of the mitogenome as a powerful 

genetic marker, particularly for species where past studies have demonstrated poor 

resolution using fewer or shorter-length genetic markers.  

  The basking shark, Cetorhinus maximus, is globally distributed and is the world’s 

second largest fish species, attaining a maximum length of up to 12 meters (Castro 2011). 

With little known about this enigmatic species, its massive size and elusive nature has 

historically inspired numerous accounts of mythical “sea monster” sightings. When the 

remains of a decomposing basking shark was discovered onshore in 1808, its peculiar 

appearance, particularly its large body size and gill morphology, spawned the tale of 

Scotland’s Strongsay Beast; more recently, in 1977 a Japanese fishing vessel claimed 

discovery of a plesiosaur or prehistoric "sea-serpent” when their trawler encountered the 

decayed remains of what was ultimately determined to be a basking shark (Kuban 1997; 

Towerie 2014). While such bizarre encounters inspire the imagination of many, human-

basking shark interactions have historically been much more mundane, typically 

consisting of intensive targeted and non-targeted fishing. 

  While historically abundant, widespread overexploitation of basking sharks has 

led to severe global declines. Harpoon fisheries within the eastern North Atlantic 

selectively targeted basking sharks for their meat and liver oil through World War II. 

Hundreds, if not thousands, of basking sharks were killed from 1955 to 1969 within the 

Canadian Pacific Ocean as part of a basking shark eradication program aimed at reducing 

their interference with salmon gillnet and trawling fishing gear (Parker & Stott 1965; 
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Went & Súilleabháin 1967; COSEWIC 2007). Within the western South Pacific, similar 

declines have been noted due to extensive bycatch that occurred during the 1980s and 

1990s by deep-water trawl and setnet fisheries (Francis & Duffy 2002; Francis & Smith 

2010; Francis & Sutton 2012). In response to severe declines in basking shark abundance 

(Kunlik 1988, CITES 2002), fishery closures were implement to curb additional drastic 

decreases in numbers (Musik et al. 2000). However, despite numerous closures, basking 

sharks remain at high risk of global overexploitation due to the highly lucrative 

international fin trade; the sale of a single, large basking shark fin can fetch up to $57, 

000 USD within East Asian Markets (Clarke 2004; Magnussen et al. 2007). 

Consequently, the IUCN Red List of Threatened Species has listed the basking shark as 

globally “Vulnerable” and regionally “Endangered” in both the eastern North Pacific and 

eastern North Atlantic (Fowler 2005). In addition, tighter restrictions on the international 

trade of basking sharks has also occurred, with their addition in 2003 to Appendix II of 

the Convention on International Trade in Endangered Species (CITES) of Wild Fauna 

and Flora (CITES 2002).   

In addition to harvest closures and trade restrictions, proper management and 

conservation of exploited species requires a thorough understanding of their genetic 

connectivity and population dynamics (von der Heyden et al. 2014).  Despite its high 

profile nature and precarious conservation status, limited such information exists for 

basking sharks. To date only two studies have examined the genetic basis of connectivity 

in basking sharks.  Hoelzel (2001) in a preliminary genetic survey of only 17 animals 

found no population structure based on the mitochondrial protein coding gene, 

Cytochrome b. In a subsequent study using the non-coding mitochondrial control region 
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(CR; 1085 bp, n = 62), Hoelzel et al. (2006) again found an absence of significant genetic 

population structure among eight globally distributed basking shark sample sites (non-

significant and negative ΦST), as well as extremely low levels of genetic diversity (π = 

0.0013 ± 0.0009). In contrast to the genetic homogeneity found across the basking 

shark’s distribution, a CR genetic survey of the population genetic structure of the whale 

shark (Rhincodon typus), another globally distributed and highly migratory filter-feeding 

shark, revealed significant genetic differentiation between western Atlantic and Indo-

Pacific ocean individuals (ΦST = 0.107, P < 0.001) (Castro 2007), as well as much higher 

levels of genetic diversity (π = 0.0110 ± 0.006). The contrast between these two very 

large, pelagic, highly vagile, filter-feeding sharks highlights the possible uniqueness of 

the basking shark’s apparent high global genetic connectivity and low mitochondrial 

genetic diversity. In fact, to date, no other globally distributed elasmobranch has 

demonstrated such high levels of matrilineal genetic connectivity and low diversity 

across such vast spatial scales.   

While inter-ocean basin movements have yet to be documented for the basking 

shark, spatial movement data is consistent with potentially high connectivity across large 

spatial scales. For examples, pop-up satellite archival tag (PSAT) data have documented 

several migrations exceeding 5, 000 kilometers (km) (Gore et al. 2008; Johnston 2014), 

including the trans-Atlantic migration ( ~ 9, 500 km) of a basking shark originally tagged 

within the British Isles travelling to the coastal waters of Newfoundland, Canada (Gore et 

al. 2008). Moreover, Californian researchers documented the passage of a basking shark 

across the East Pacific Barrier, as a single individual travelled a total distance of ~ 4, 000 

km from the waters of the U.S. West Coast to the island of Hawai’i (Lee 2012). In 
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addition to large distances, recent work has also shown that basking sharks are capable of 

crossing what was presumed to be a likely thermal barrier for this species due to basking 

shark’s preference for cooler temperate waters (Castro 2011). A study examining the 

movement of basking sharks within the western North Atlantic discovered that during 

winter months PSAT tagged basking sharks travelled at mesopelagic depths (200-1000 

meters) while crossing the tropical waters of the equator (Skomal et al. 2009). These 

extensive movements indicate that presumed biological barriers present for many other 

smaller shark species (thermal waters, deep ocean depths) appear to have little effect on 

the migration patterns and lifecycles of basking sharks.  

In the light of recent tracking efforts revealing the broad spatial extent of basking 

shark oceanic movements (Sims & Quayle 1998; Gore et al. 2008; Skomal et al. 2009), it 

is not entirely surprising that Hoelzel et al. (2006) found little genetic differentiation 

among global collections. However, this study only assayed genetic variation present at a 

single mitochondrial region (i.e. CR), and the question of whether basking sharks truly 

represent a single, globally panmictic population remains open. Thus to investigate this 

species’ global genetic population structure and phylogeography, further examination 

using more data is warranted.  Herein, whole mitogenome sequences are used to explore 

numerous key uncertainties concerning the basking shark’s global genetic connectivity, 

including: (1) the identification of its global genetic population structure; (2) the relative 

signal of genetic diversity among different mitochondrial regions; and (3) the 

examination of the demographic history of this unique oceanic species. 
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Materials and Methods 

Sampling locations 

Basking shark tissue samples (fin or muscle) were collected from by-caught, 

stranded, or free-ranging individuals within the western North Atlantic (WNA), eastern 

North Atlantic (ENA), and New Zealand territorial waters (NZ) (Figure 1). All samples 

were stored in 95% ethanol prior to genomic DNA extraction. Genomic DNA was 

extracted and purified from ~25mg of tissue using the QIAgen DNeasy® Blood and 

Tissue Kit (Qiagen Inc., Valencia, CA). 

 

 

 

Figure 1. Map depicting the global geographic distribution (grey shaded regions) of the 

basking shark, Cetorhinus maximus (adapted from IUCN 2013) as well as sample 

collection sites and sizes. Sample sizes refer to the total number of complete 

mitogenomes. 
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Mitogenome Sequencing and Assembly 

The complete mitochondrial genomes (mitogenomes) of 34 basking sharks 

(GenBank Accession Numbers: KM096969 – KM096989)  (WNA, n = 11; NZ, n =12; 

ENA, n =11) were amplified via polymerase chain reaction (PCR) in overlapping 

segments (500 bp – 3.5 kbp), initially utilizing 120 primers designed from a previously 

published Mitsukuina owstoni reference mitogenome (GenBank accession number 

NC_011825; goblin shark reference) (Appendix A) and two universal 16S rRNA primers 

(Palumbi et al. 1991). An additional 28 basking shark-specific PCR primers were 

designed using the software Primer3 (Koressaar & Remm 2007; Untergrasser et al. 2012) 

to close sequence gaps between contigs and to achieve double-stranded DNA sequence 

coverage of the entire mitogenomes (Appendix B).  

All PCR amplifications were performed using touchdown cycling conditions 

(Don et al. 1991) in a total PCR reaction volume of 50 ul containing: 1uL of unquantified 

DNA, 0.2mM of each dNTP (GE Healthcare Inc., United Kingdom), 1X Coral Load PCR 

buffer (Qiagen Inc.), 1.0U of HotStar Taq™ DNA Polymerase (Qiagen Inc.), and 10pM 

of the Forward and Reverse primers. Electrophoresis of the resulting PCR products was 

performed using a 1.2% agarose gel to confirm both proper sizing of mitochondrial 

amplicons and absence of contamination in the negative controls (no genomic DNA). 

PCR products were purified using the QIAquick ® PCR Purification Kit (Qiagen Inc.) as 

per the manufacturer’s protocols. All cycle sequencing reactions were carried out using 

the Applied Biosystems BigDye Terminator v3.1 Cycle Sequencing Kit (Life 

Technologies Inc., Foster City, CA) and purification of the resultant cycle sequencing 

products was performed using the DyeEx 2.0 Spin Kit (Qiagen Inc.). Electrophoresis of 
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purified cycle sequencing products was performed on a 3130 Applied Biosystems 

Genetic Analyzer (Life Technologies Inc.). 

All contigs were manually checked and assembled using a previously published 

basking shark mitogenome generated in our laboratory as a comparative reference 

sequence (Hester et al. 2013) (GenBank Accession Number KF597303). DNA sequence 

alignments were performed using the software Geneious Pro 5.6.5 (Biomatters Inc., San 

Francisco, CA) (Drummond et al. 2012) and manually checked to ensure proper 

alignment.  

 

Datasets analyzed  

The complete basking shark mitogenome alignment (n = 34) was trimmed to 

generate four distinct datasets for analysis:  

I. An alignment of complete mitogenomes (16,664 - 16,670 bp).  

II. An alignment containing the complete concatenated sequences of all 13 

protein-coding genes (11, 429 bp).  

III. Individual alignments for specific region [i.e., each of the 13 protein-coding 

genes and each of the three non-protein coding regions (CR, 12S and 16S rRNA 

genes). 

IV. Preliminary statistical analyses (AMOVA, h, hd, and π) of a subset of the 

surveyed C. maximus mitogenomes (n = 30) revealed a low level of global genetic 

diversity and no population structure (data not shown). Since specific regions of 

the mitogenome can accumulate substitutions differentially, providing 

incongruent evolutionary signal (Zhang et al. 2013; Meiklejohn et al. 2014), an 
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additional 70 C. maximus individuals were sequenced at three mitochondrial 

DNA protein-coding genes in an attempt to improve the statistical resolution of 

my analyses: ATP synthase protein 8, (ATP8) (168 bp); Cytochrome c oxidase 

subunit II, (CO2) (691 bp); and NADH dehydrogenase 3 (ND3) (349 bp). Note: 

these three genes were selected for additional sequencing as they possessed the 

highest nucleotide diversity (based on preliminary analyses); however, upon 

analysis of all 34 complete mitogenomes, the protein-coding genes possessing the 

highest nucleotide diversity had changed (see Results: “Genetic variation and 

population structure analyses”). Dataset IV, therefore, is comprised of the 

concatenated sequences of these three genes, hereafter referred to as the ‘three 

most variable protein-coding genes’ (1, 208bp) and/or Dataset IV. 

 

Diversity and genetic differentiation analyses 

Diversity indices, including: haplotype diversity (hd), nucleotide diversity (π), and 

the number of unique haplotypes (h), were estimated using the software DNAsp 5.10.1 

(Librado & Rozas 2009) for datasets I - III. For these same datasets, the number of 

polymorphic sites was estimated using the program GenAlEx 6.5 (Peakall & Smouse 

2006, 2012).  

To investigate basking shark global population structure, a hierarchical analysis of 

molecular variance (AMOVA) was performed for all four datasets using Arlequin 3.5.1.3 

(Excoffier & Lischer 2010) to estimate FST (Weir & Cockerham 1984) and ΦST 

(Excoffier 1992). Pairwise estimates of differentiation (ΦST) among a priori geographic 

sampling locations were also generated using Arlequin for datasets I - IV.  Significance 
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values for both the AMOVA and pairwise divergences were estimated using 1,000 

simulations. 

 

Phylogenetic analyses 

The evolutionary relationships among complete mitogenome haplotypes (Dataset 

I) were inferred by generating a statistical parsimony network using the software TCS 

1.21 (Clement et al. 2000). To further resolve the level of genetic differentiation among 

resolved haplotypes, estimates of genetic distance [pairwise uncorrected p and Kimura 2-

parameter (K2P)] (Nei & Kumar 2000) were calculated in MEGA 5.0 (Tamura et al. 

2011) for datasets I and III.  

 The most suitable model of nucleotide evolution for Dataset II was determined 

using the software jModelTest 2.1.4 (Guindon & Gascuel 2003; Darriba et al. 2012). 

Contingent on assumptions of the downstream analysis, one of two methods was utilized 

to select the most appropriate model of evolution: the Akaike Information Criterion 

(AIC) (Akaike 1974; Burnham & Anderson 2002) for use in a maximum likelihood (ML) 

analysis framework or the Bayesian Information Criterion (BIC) (Schwartz 1978) for use 

in a Bayesian analysis framework. 

To further assess the evolutionary relationships among surveyed C. maximus 

haplotypes, maximum likelihood (ML) and Bayesian inference phylogenetic trees were 

constructed using the 13 concatenated protein-coding genes (Dataset II). An Unrooted 

ML tree was constructed using the software plug-in PhyML 3.0 (Burnham & Anderson 

2002) for Geneious Pro.  Statistical support for nodes was inferred by conducting 1000 

nonparametric bootstrap replicates. A Bayesian inference (BI) haplotype tree was 
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constructed using MrBayes (Huelzenbeck & Ronquist 2001) executed as a plug-in feature 

in Geneious Pro, and rooted with the concatenated protein-coding sequence of the white 

shark [Carcharodon carcharias (NC_022415)], the closest related (Heinicke et al. 2009) 

available Lamniformes whole mitogenome sequence. BI analyses were conducted using 

four heated chains (default heating values) consisting of a Markov Chain Monte Carlo 

(MCMC) chain length of 5, 000, 000 generations; sampling of chains was performed 

every 100 generations, and the first 25% of each of the sampled chains were discarded as 

burnin. Convergence was assumed once posterior probability effective sample size (ESS) 

values exceeded 200. 

 

Evolutionary and Demographic History  

To test for historical demographic changes in population size, the neutrality 

estimators R2 (Ramos-Onsins & Rozas 2002) and Fu’s Fs (Fu 1996) were generated for 

Dataset I using the software DNAsp and Arlequin, respectively.   

 Time to Most Recent Common Ancester (TMRCA) of all C. maximus 

haplotypes was estimated using the Bayesian software BEAST 1.8 (Drummond et al. 

2012). Analyses were performed using a partitioned dataset comprising unique C. 

maximus concatenated protein-coding gene haplotypes (Dataset II, n = 22) as well as 

mitogenomic concatenated 13 protein-coding sequences derived from three additional 

lamniform taxa [Carcharias taurus (KF_569943), Carcharodon carcharias 

(NC_022415), and Isurus oxyrinchus (NC_022691)]. Three nodes were utilized to 

perform temporal calibration of molecular evolution rates based on previously published 

phylogenetic relationships among extant lamniforms (Heinicke et al. 2009) and C. 
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maximus fossil evidence (Schultze 2012). The TMRCA of the basking shark was 

estimated assuming a lognormal prior distribution for the Cetorhinidae node, with a mean 

of 0.5 million years ago (Mya) and a standard deviation of 3.0 Mya. Such broad priors 

were employed to accommodate: (i) the potential of a recent coalescent event, and (ii) 

fossil evidence suggesting a Pliocene species origin (2.5- 5.3 Mya) (Schultze 2012). As 

per Heinicke et al. (2009), priors for the TMRCA of extant members of the family 

Lamnidae (herein: C. carcharias, I. oxyrinchus) were set assuming a normal distribution 

with a mean of 109 million years ago (Mya) and a standard deviation of 17.0 Mya. Priors 

for the TMRCA for all analyzed sequences (coalescence of the basal C. taurus with all 

other lamniform sequences derived) were set assuming a normal distribution with a mean 

of 119 Mya and a standard deviation of 17.0 Mya (Heinicke et al. 2009). Analyses were 

performed implementing a random starting tree, and assuming the following settings: the 

SRD06 nucleotide substitution model (Shapiro et al. 2006), a Bayesian relaxed clock, 

uncorrelated lognormal rate heterogeneity across branches, unlinked substitution models 

between data partitions, and a birth-death process speciation tree prior. Posterior 

distributions were estimated via 100, 000, 000 MCMC iterations, sampled every 10, 000 

iterations. The first 25% of all samples were discarded as burn-in. Convergence was 

assessed using the software Tracer 1.6 (Rambaut & Drummond 2007) and was assumed 

to have occurred once ESS values exceeded 200. 

Bayesian skyline plots (BSP) were generated in BEAST for Dataset II 

(concatenated protein-coding genes, n = 34) to detect any historical demographic changes 

in mean female population size (NEf x generation time). Analyses were performed 

assuming the SRD06 nucleotide substitution model and a strict molecular clock. The 
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mutation rate was fixed using the estimated mutation rate derived from the above 

Bayesian TMRCA analyses. Skyline plots were generated with a MCMC chain consisting 

of 100, 000, 000 iterations with sampling occurring every 10, 000 iterations. The first 

25% of the total iterations were discarded as burn-in. Convergence was assessed using 

the software Tracer and assumed to have occurred once ESS values exceeded 200. 

 

Results 

Genetic variation and population structure analyses 

Sequencing of 34 C. maximus individuals provided genome sizes of 16, 664 - 16, 

670 bp. The data revealed 22 distinct haplotypes and a GC-content (guanine-cytosine 

content) of 40.65%. A total of 130 single nucleotide variations were detected, including 

seven insertion or deletions (indels) and 123 single nucleotide polymorphisms (SNPs) 

(Appendix C). Overall mitogenome haplotype and nucleotide diversities were 0.970 ± 

0.014 and 0.0014 ± 0.000, respectively (Table 1).  

Concatenation of all 13 protein-coding genes generated an alignment of 11, 429 

bp and yielded 22 unique haplotypes. An identical haplotype diversity of 0.970 ± 0.14 

was estimated along with a comparably low nucleotide diversity of 0.0018 ± 0.000 (Table 

1).  Single nucleotide variations (n = 114) for all protein-coding loci included: six indels 

and 108 SNPs (Appendix D). 

Haplotype diversities for all individual genes [protein-coding (n = 13) and non-

protein coding regions (n = 3)] ranged from a low of 0.266 ± 0.092 [ATP synthase F0 

subunit 6 (ATP6); 684 bp] to high of 0.845 ± 0.047 [NADH dehydrogenase 5 (ND5); 1, 
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830 bp]. Estimates of nucleotide diversity spanned 0.0004 ± 0.000 (16S rRNA; 1, 666 bp) 

to 0.0081 ± 0.002 (ATP8; 168 bp) (Table 1).  

Results from the C. maximus whole mitogenome AMOVA produced an overall 

non-significant ΦST of  -0.047 (P = 0.786) and non-significant FST value of 0.013 (P 

=0.226), suggesting an absence of geographic partitioning of molecular variance (Table 

1). AMOVAs generated for datasets II - IV demonstrated a similar lack of genetic 

population structure (Table 1, Appendix E). Estimated pairwise values of ΦST among the 

three global collections also revealed no significant differences (P > 0.05) upon analysis 

of datasets I - III (Table 2, Appendix F).  
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Table 1. Global summary statistics for C. maximus mitogenome survey including: number of individuals (n), sequence length in base 

pairs (bp), number of haplotypes (h), haplotype diversity (hd), nucleotide diversity (π), and overall ϕST (Exocoffier 1992) and FST  

(Weir & Cockerham 1984) values. 

 Data set (n = 34) bp h hd ± SD π ± SD ϕST FST 

Whole Mitogenome 16 669 22 0.970 ± 0.014 0.0014 ± 0.000 -0.047 0.013 

Concatenated Protein-Coding Genes 11 429 22 0.970 ± 0.014 0.0018 ± 0.000 -0.050 0.013 

CR 1 048 5 0.710 ± 0.052 0.0013 ± 0.000 -0.027 -0.015 

Cyt b 1 144 5 0.321 ± 0.100 0.0016 ± 0.001 -0.030 -0.017 

ND2 1 044 3 0.399 ± 0.151 0.0012 ± 0.000 -0.022 -0.049 

ND4 1 381 7 0.734 ± 0.063 0.0016 ± 0.000 0.008 0.019 

ATP8 168 4 0.540 ± 0.820 0.0081 ± 0.002 -0.072 -0.040 

CO2 691 9 0.676 ± 0.083 0.0026 ± 0.000 -0.056 -0.014 

ND5 1 830 11 0.845 ± 0.047 0.0024 ± 0.000 -0.030  0.001 

ATP6 684 3 0.266 ± 0.092 0.0016 ± 0.001 -0.072 -0.067 

CO1 1 554 3 0.399 ± 0.001 0.0012 ± 0.000 -0.070 -0.020 

CO3 786 7 0.458 ± 0.104 0.0018 ± 0.000 -0.053 -0.017 

ND1 975 4 0.549 ± 0.085 0.0016 ± 0.000 -0.069 -0.022 

ND3 349 3 0.551 ± 0.085 0.0006 ± 0.000 -0.075 0.009 

ND4L 297 3 0.308 ± 0.092 0.0012 ± 0.000 -0.038 0.007 

ND6 526 7 0.635 ± 0.085 0.0016 ± 0.000 -0.059 -0.025 

12S 954 5 0.551 ± 0.086 0.0011 ± 0.000 -0.030 -0.010 

16S 1 666 4 0.362 ± 0.099 0.00036 ± 0.000 -0.033 -0.021 
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Table 2. C. maximus population-level pairwise values of ФST for the whole mitogenome 

data set (upper triangular matrix) and for the concatenated protein-coding gene data set 

only (lower triangular matrix). 

Location WNA NZ ENA 

WNA - -0.06689 -0.04705 

NZ -0.04893 - -0.03166 

ENA -0.06790 -0.03567 - 

WNA = western North Atlantic, NZ= New Zealand, ENA= eastern North Atlantic 

 

 

Phylogenetic analyses 

The TCS generated statistical parsimony network for the whole mitogenome 

dataset failed to connect all C. maximus mitogenomic haplotypes at the 95% probability 

level; however, all were successfully joined when the statistical probability level was 

lowered to 90% (Figure 2). At the 90% probability level, analyses resolved two 

evolutionarily distinct mitogenome clades separated by 75 unsampled haplotypes. Clade I 

(Figure 2) was composed of three unique haplotypes generated from sequencing four 

individuals obtained from across the species sampling distribution (WNA, n = 1; NZ, n = 

2; ENA, n = 1); clade II consisted of all other resolved haplotypes (n = 19). Despite the 

presence of the two evolutionarily distinct lineages, no geographic association of specific 

haplotypes was detected, with both lineages being sympatric in all three geographic 

locations sampled. 
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Figure 2. TCS 1.21 (Clement et al. 2000)  statistical parsimony network depecting the 

relationships among whole mitogenome haplotypes joined at the 90% probability level. 

Circle size is proportional to haplotype frequency, black connecting lines represent single 

mutational steps, and small black circles (●) represent hypothetical unsampled 

haplotypes. 

 

The pairwise genetic distance values (p, K2P) estimated among whole 

mitogenome haplotypes ranged from 0 – 0.5%. Individual gene/region genetic distance 

estimates range from 0 – 3.6 %, with ATP8 possessing the highest levels of divergence 

(3.6 %) and ND3 (NADH dehydrogenase 3) demonstrating the lowest level of 
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differentiation (0.3 %) (Data not shown). Maximum estimates of divergence (p) among 

resolved haplotypes at the four most commonly surveyed mitochondrial protein-coding 

loci in elasmobranchs (see Hoelzel 2001; Quattro et al. 2006; Naylor et al. 2012) were as 

follows: (i) CR (0.4 %), COI (0.6 %), ND2 (0.5 %), and Cyt b (0.7 %). 

 The most suitable model of nucleotide evolution chosen for the concatenated 

protein-coding gene dataset (II) was identified as the general time-reversible model with 

invariable sites (GTR + I), according to AIC method as implemented in jModeltest. The 

resultant ML tree (incorporating the GTR + I model) resolved two distinct and strongly 

supported (1000 bootstraps) monophyletic lineages (Figure 3), consisting of the same two 

clades identified with whole mitogenome TCS analysis. 

 

 
Figure 3. Unrooted Maximum Likelihood phylogenetic analysis of C. maximus 

concatenated protein-coding gene haplotypes. Bootstrap values over 50% are indicated 

for each node. 
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According to jModeltest’s BIC model selection criteria, the Tamura-Nei (Trn) 

model of evolution was identified as the most appropriate for Dataset II. Similar to the 

ML analysis, the resultant BI tree showed no evidence of geographic genetic population 

structure (Appendix G).  

 

Nuclear DNA Sequencing 

As two discrete and highly divergent sympatric mitochondrial lineages were 

identified via TCS, ML and BI analyses (see Figures 2 and 3; Appendix G), post-hoc 

analyses were performed to investigate the potential for concordant nuclear 

differentiation between lineages. A 494 bp region of the nuclear ribosomal internal 

transcribed spacer II region (ITS2) was sequenced from a subset of four individuals from 

each of the two lineages. Amplification and sequencing was performed as described in 

Pank et al. (2001). Nuclear DNA sequencing resolved only a single haplotype, as all 

individuals possessed 100% sequence identity.   

 

Evolutionary and Demographic History 

 Mean coalescence time to TMRCA for all basking shark Dataset II haplotypes 

was estimated by BEAST to be 2.46 Mya (CI: 0.8636 – 3.6038 Mya). Additionally, this 

TMRCA corresponded to the coalescence of the two distinct mitochondrial clades. Mean 

estimates of the TMRCA for all temporally calibrated nodes was consistent with priors 

(Data not shown) and a mutation rate of 1.74 x 10
-9

 substitutions per site per year was 

estimated by BEAST for all included individuals.  
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BSPs revealed a largely stable historical effective population size (Figure 4); 

however, an increase in the mean female population size (NEf x generation time) was 

detected starting around 116, 000 years before present (ybp) with a max peak at 33, 100 

ybp, and followed by a population decline occurring just prior to the start of the Holocene 

at ~ 16, 000 ybp. The final decline in female population size continues on to ~ time 0 or 

present day. It is important to note, however, that confidence intervals (95% Highest 

Posterior Density) surrounding the mean female population size were quite large (Figure 

4). 

 

 
 

Figure 4. Bayesian skyline plot (BSP) of the C. maximus concatenated protein-coding 

data set. The y-axis indicates the female effective population size x generation time and 

the x-axis depicts time in years before present (ybp).  The solid black line indicates the 

mean Nef estimate and shading depicts the 95% highest posterior density limits. 
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In contrast to the BSPs, the neutrality tests, Fu’s FS (Fu 1996) and R2 (Ramos-

Onsins & Rozas 2002) failed to identify a population expansion (P > 0.05) for any of the 

surveyed locations (Appendix H).  

 

Discussion  

Global Population Structure 

The vast majority of globally distributed pelagic fishes are genetically delineated 

into multiple distinct populations, rather than a single panmictic unit, despite the innate 

ability to migrate substantial oceanic distances (Viñas et al. 2004a, 2007; Boustany et al. 

2008; Bradman et al. 2011). Pelagic sharks appear no exception to this paradigm; 

population genetic surveys of pelagic sharks have demonstrated considerable levels of 

genetic heterogeneity among distinct portions of their global distribution (Heist et al. 

1996; Castro et al. 2010; Benavides et al. 2011) suggesting that factors other than 

dispersal ability may shape their genetic connectivity. Most notably, a mitochondrial CR 

survey of the whale shark (Rhincodon typus), the largest extant fish species, found 

significant differentiation between western Atlantic and Indo-Pacific ocean basins, 

despite data documenting the migration of whale sharks across wide tracts of open ocean 

(Sequeira et al. 2013). Nevertheless, in contrast to the majority of other surveyed globally 

distributed and highly migratory pelagic fishes, all three mitochondrial genetic surveys of 

the basking shark to date have shown no evidence of genetic population structure across 

its global range (Hoelzel 2001; Hoelzel et al. 2006; this study) 
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 The two previous population genetic studies of the basking shark analyzed two 

separate mitochondrial loci, the protein coding gene Cyt b (550 bp; n = 17) (Hoelzel 

2001) and the non-protein coding CR (1,085 bp; n = 62) (Hoelzel et al. 2006), and both 

studies found no evidence of significant genetic differences among globally distributed 

sampling locations. Both these studies, however, sequenced only a small number of 

individuals and each study independently analyzed only a single mitochondrial region, 

suggesting that these previous studies may have suffered from limited power to detect a 

low level of population structure. In contrast, the present study employed a whole 

mitogenome approach to explore the global genetic population structure of the basking 

shark, and additionally employed an enhanced sample set (n = 100), utilizing a 

concatenated subset of three of the most variable mitochondrial protein-coding genes, to 

resolve genetic structure. Interestingly, whole mitogenome results confirmed previous 

findings suggesting extremely low levels of genetic diversity (π = 0.0014 ± 0.00036) as 

well as non-significant genetic population structure (ΦST = -0.047, P > 0.05; FST = 

0.01317, P > 0.05). Furthermore, when tested independently, individual protein-coding 

genes (n = 13), rRNA genes (n = 2), the non-coding CR, and both concatenated datasets 

(II and IV), similarly demonstrated an absence of population genetic structure (ΦST = -

0.075 to ΦST = 0.008, P > 0.05; FST = -0.067 to FST = 0.019; P > 0.05). Two genetic 

differentiation estimators (ΦST and FST) were utilized in this survey because ΦST values 

calculate molecular distance between haplotypes (Excoffier et al. 1992) while FST 

analyses provide a measure of the haplotype frequency distribution among surveyed 

genetic populations (Weir & Cockerham 1984). Non-significant values (across multiple 



 28 

estimators) exhibited by all datasets, suggest high levels of global matrilineal genetic 

connectivity. 

While global panmixia is rare, a limited number of marine pelagic species have 

also demonstrated a similar absence of genetic population structure. The teleost, wahoo 

(Acanthocybium solandri), an oceanic species that occupies waters ranging from warm 

temperate to tropical (Collette & Nauen 1983), has shown high genetic connectivity 

across its global range. Wahoo genetic surveys found no significant genetic population 

structure (nuclear FST = 0.0125; mtDNA ΦST ≤ 0.0025) across its distribution using three 

separate loci, including two well-studied maternally inherited mtDNA makers (Cyt b, and 

CR) and a single bi-parentally inherited nuclear DNA marker (Lactate dehydrogenase 

Subunit A intron 6) (Garber et al. 2005; Theisen et al. 2008). This genetic homogeneity 

among global collections was attributed to the extensive dispersal capacity of this 

species, across both juvenile and adult life stages. Studies have shown that wahoo often 

spawn near open-ocean currents, which likely facilitates transport and dispersal of their 

pelagic larvae (Iversen & Yoshida 1957; Matsumot 1968; Wollam 1969). Adults are also 

known to undertake long seasonal migrations (>1,000 km) (Franks 1998; Oxenford et al. 

2003) and conventional tag-recapture data have recorded movement of individuals up to 

~ 2, 750 km (NMFS 1999). More recently, Winkelmann et al. (2013) completed a global 

phylogenetic study of the giant squid (Architeuthis spp.) employing the entire 

mitogenome (20, 331 bp); however, despite a whole mitogenomic approach, results 

revealed high connectivity across this species’ entire distribution, as well as low levels of 

genetic diversity (π = 0.0066 ± 0.0005).The authors hypothesized that the giant squid’s 

global genetic connectivity was likely a result of dispersal occurring across many life 
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stages, including, passive drift of the giant squid’s small pelagic paralarvae via oceanic 

currents and widespread migration by adults (Winkelmann et al. 2013).  

Identifying the potential mechanisms responsible for the basking shark’s global 

matrilineally-based panmixia and associated low levels of genetic diversity remains 

challenging. Unlike marine teleosts or invertebrates, elasmobranchs do not possess a 

larval life stage (Hamlett 1999) eliminating the potential for passive gene flow or 

dispersal of early life stages via currents. Similar to other lamnoids, basking sharks are 

ovoviviparous (Kunzlik 1988) undergoing internal fertilization with young born fully 

formed, and approximately 1.8 m in length (Sund 1943). Thus, active dispersal by 

juveniles and/or adults must be largely responsible for the high genetic connectivity of 

this species; however, it is important to note that to date, little if anything is known about 

the behavior and movements of juvenile basking sharks. Tracking datasets comprised of 

mostly adult basking sharks have demonstrated that their movements appear to be largely 

unhindered by recognized biogeographic barriers, some of which have been previously 

suggested to inhibit gene flow of other smaller shark species (Keeney & Heist 2006; 

Schultz et al. 2008). For instance, cold ocean temperatures are believed to be largely 

limiting to some shark species, including the nurse (Ginglymostoma cirratum) and great 

hammerhead sharks (Sphyrna mokarran) (Rosa et al. 2006; Denham et al. 2007). 

Movement data for basking sharks, however, indicate that they are capable of 

withstanding a wide range of water temperatures (Sims et al. 1998, 2006; Gore et al. 

2008), including extremely cold waters (5° C) found at mesopelagic depths (200 - 1000 

m) (Skomal et al. 2009). In fact, deep- and cold-water seasonal migrations by basking 

sharks are believed to occur regularly and may be linked to their feeding behavior, as 
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areas of high prey abundance (zoo- and phytoplankton blooms) occur seasonally in 

temperate waters (Sims et al. 2006). The ability to withstand temperate ocean conditions, 

combined with a capacity for both deep- and long-distance migrations, may be a factor 

facilitating the inter-ocean movements of basking sharks.  

 

Markers for Population Genetics Studies 

 The adoption of a whole mitogenomic approach to infer genetic connectivity, 

allowed for the unique opportunity to survey the genetic variability present within 

individual mitochondrial regions (rRNA genes, protein-coding genes and noncoding CR) 

and thus to identify the most variable parts within the basking shark mitogenome. 

Currently, the overwhelming majority of research evaluating the phylogeography, genetic 

diversity, and population genetic structure of elasmobranchs have relied heavily upon 

utilizing the protein-coding genes Cyt b (1, 144bp) and ND2 (1, 044 bp), as well as the 

non-coding CR (1, 048 bp) (Duncan et al. 2006; Keeney & Heist 2006; Stow et al. 2006; 

Castro et al. 2007; Chabot & Allen 2009; Lim et al. 2010; Pereyra et al. 2010; Karl et al. 

2011; Veríssimo et al. 2012). These three mitochondrial regions are typically selected for 

a number of key mutational and evolutionarily significant reasons: (i) Cyt b is a stable, 

constantly evolving marker and is also one of the most well studied vertebrate protein-

coding mitochondrial genes (Johns & Avise 1998); (ii) ND2 is one of the fastest evolving 

protein-coding genes (Broughton & Reneau 2006) allowing for small variations between 

closely related species, sub-species, and cryptic species to be detected (Naylor et al. 

2012); and (iii) CR is the only non-coding region present in the vertebrate mitogenome, 

and is therefore theoretically under less mutational constraints than coding genes, 
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allowing for much higher rates of substitution (Saccone et al. 1987; Wan et al. 2004; 

Diniz et al. 2005). Hoezel et al. (2006) reported a CR basking shark haplotype diversity 

of 0.720 ± 0.028 as well as the lowest nucleotide diversity (0.0013 ± 0.0009) in any shark 

species to date.  Interestingly, the CR diversity indices in the present study are nearly 

identical  (h = 0.710 ± 0.052 and π = 0.0013 ± 0.000) to those of Hoezel et al. (2006). 

Such low levels of CR diversity are surprising, and beg the question of whether another 

mitochondrial region may be a more suitable (i.e. more variable) marker to resolve the 

genetic population structure of basking sharks and/or other elasmobranchs. 

The mitochondrial regions exhibiting the highest levels of nucleotide diversity 

after sequencing 34 individuals were unexpectedly three protein-coding genes: ATP8 

(168 bp), CO2 (691 bp), and ND5 (1, 830 bp). Interestingly, these three loci comprised 

48 (36.9%) of all 130 identified mitogenomic polymorphisms. Furthermore, analysis 

revealed that the protein-coding gene, ND2, possessed the second lowest level of 

nucleotide diversity (0.00117 ± 0.00038) among all coding and non-coding mitochondrial 

region. In fact, the ND2 nucleotide diversity was lower than that of Cytochrome oxidase I 

(COI) (π = 0.00124 ± 0.00043), the universal animal DNA barcoding gene, elected as a 

universal species identifier due to its slow rate of evolution and low intra-species 

variability (Hebert et al. 2003). Based on such unexpected findings, additional fine-scale 

research surveying the variability present across the elasmobranch mitogenome is 

suggested to determine which mitochondrial genetic markers possess the highest power 

to determine population genetic connectivity. 
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Sympatric Lineages  

Unexpectedly, two distinct and globally sympatric matrilineages were identified 

via phylogenetic analysis (TCS, ML and BI) of the basking shark mitogenomic data set. 

Bayesian analysis suggested that the two lineages were highly evolutionarily divergent, 

possessing a coalescence time of ~2.46 Mya. While the presence of two sympatric (and 

highly divergent) lineages could indicate the existence of a second, cryptic basking shark 

species, this hypothesis was dismissed for two reasons. First, 100% sequence identity was 

found between the two sympatric lineages upon sequencing a subset of individuals at the 

nuclear locus ITS2, which suggested a lack of reproductive isolation between the two 

lineages (Haine et al. 2006). Previous research on elasmobranchs has successfully 

uncovered reproductively isolated lineages when utilizing mitochondrial DNA analyses 

in conjunction with ITS2 sequences (Richards et al. 2009; Pinhal et al. 2012). Second, 

the maximum pairwise genetic distance (p) between the whole mitogenome haplotypes of 

the two divergent matrilineal lineages (0.5%) is much smaller than the (whole 

mitogenome) distance between other established lamnid sister-species, such as the 

pelagic (Alopias pelagicus) and big eye thresher sharks (Alopias superciliosus) (9.6%) 

and the shortfin mako (Isurus oxyrinchus) and longfin mako sharks (Isurus paucus) 

(9.8%). In addition, COI sequences exhibited a maximum pairwise genetic distance of 

0.6% among all basking sharks haplotypes, which is again, much smaller than the 

sequence divergence between other established elasmobranch sister taxa (Serra-Pereira et 

al. 2011; Karl et al. 2012a) including between the newly discovered Atlantic cryptic 

hammerhead shark (Sphyrna gilberti sp. nov) and the globally distributed scalloped 
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hammerhead shark (Sphyrna lewini) (3.0-3.6 % sequence divergence) (Quattro et al. 

2006).  

Aside from cryptic speciation, several key evolutionary or demographic 

mechanisms may be employed to explain the occurrence of the two globally distributed 

and sympatric basking shark maternal lineages. First, some pelagic teleosts  exhibit 

highly divergent, yet sympatric matrilineal lineages across parts of their range, including: 

wahoo (Acanthocybium solandri), swordfish (Xiphias gladius), Atlantic bluefin tuna 

(Thunnus thynnuss), and Atlantic bonito (Sarda sarda); however, within these fishes their 

sympatric lineage presence is restricted to within a single ocean basin (Viñas et al. 2004b, 

2007; Alvarado Bremer et al. 2005; Garber et al. 2005; Boustany et al. 2008). In these 

cases, the presence of the two sympatric clades was hypothesized to be the outcome of 

historical separation (allopatric divergence) followed by secondary contact, through 

unidirectional gene flow of individuals from the Indo-Pacific into the Atlantic. A similar 

hypothesis may be invoked to explain the presence of the two matrilineal basking shark 

sympatric lineages; however, for the sympatric lineages to occur globally, gene flow must 

have been historically or contemporarily bi-directional.  

A second, and perhaps more likely explanation for the presence of sympatric 

matrilines, may be the historical occurrence of demographic population changes. In some 

instances, such events can lead to the presence of unusual patterns of genetic variation, 

including the coexistence of evolutionary distinct lineages, as seen here. Such a pattern 

can arise through the random loss of diversity (i.e. intermediate or connecting 

haplotypes), caused by large reduction in population size, thereby creating the 

opportunity for highly divergent haplotypes (lineages) to coexist within a single 
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population and/or species (Vincek et al. 1997; Li & Roossinck 2004; Broughton & 

Reneau 2006; Johnson et al. 2007). These types of large population declines can also lead 

to low levels of genetic variability across the entire genome, which is consistent with the 

extremely low diversity indices found in the present study. In fact, to explain the low 

levels of CR genetic diversity found in their basking shark study, Hoelzel et al. (2006) 

suggested that a historical population bottleneck may be responsible.    

The population history revealed by the basking shark BSP (of Dataset II; 11, 429 

bp) was also largely consistent with the hypothesis of historical demographic changes. 

However, such changes were subtle and credibility intervals were quite wide. The BSP 

suggests that basking sharks underwent a population expansion ~ 116, 000 ybp, followed 

by a very recent decline (~16, 500 ybp).  Interestingly, the bulk of the BSP (> 165, 000 

ybp) showed that this species endured a long period of population stability, which 

preceded the more recent demographic flux. However, Karl et al. (2012) suggested that 

such a pattern could simply be an artifact of the coalescent analysis itself, and that the 

more recent population size changes may have been sufficient to eliminate evidence of 

historical changes, thereby creating the false illusion of historical stability. Nevertheless, 

the BSP generated herein supports the hypothesis that demographic changes (including 

declines) have occurred, which may have resulted in the random loss genetic diversity, 

and ultimately could be responsible for the presence of the two sympatric and 

evolutionarily divergent matrilines. Admittedly, however, the BSP possessed wide 

credibility intervals and noted the occurrence of only subtle changes (Figure 4).  

Furthermore, BSPs possess numerous potential sources of error, including sample size, 

mutation rates, and molecular clocks; thus, any demographic findings revealed by the 
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BSP can only be considered inferences of historical events affecting basking shark 

population structure.  

With respect to the above inferences, it is important to consider several key 

caveats. Despite the presence of numerous, presumably functionally independent, regions 

within the mitogenome, this genome behaves as only a single maternally-inherited locus, 

and represents the coalescent genealogy or history of only one genetic marker for this 

species (Ho & Shapiro 2011). Additionally, when performing demographic history 

analyses, inferences on the timing of historical events are wholly dependent upon the 

input of the generational mutation rate (μ) of any marker employed (Palsbøll et al. 2012). 

In the present study, a lineage-specific mutation rate was estimated using divergence 

times from previous molecular analysis and dated fossils to estimate minimum 

divergence times between lineages. Recurrent mutations in mitochondrial genes and the 

utilization of multiple species during calculation may lower mutation rates in 

phylogenetic studies (Santos et al. 2005; Phillips et al. 2009); thus, the estimated 

mutation rate of 1.74 x 10 
-3

 per site/million years may be lower than the true value.  

 

Conservation implications   

Several key findings from this work highlight the need for strong conservation 

and management actions for basking sharks, especially in light of the continued 

exploitation of this enigmatic species (Clarke 2004; Compagno et al. 2005). Low 

mitogenome-wide genetic diversity, globally sympatric, yet evolutionary divergent 

matrilineages, and the likely occurrence of historical demographic changes, all suggest 

that basking sharks may have irreversibly lost substantial mitochondrial genetic diversity, 
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which ultimately may render this species more susceptible to disease and less likely to 

adapt to future environmental or anthropogenic changes (Reusch & Wood 2007). 

Furthermore, as exploitation continues, this species will become increasingly vulnerable 

through the additional loss of genetic diversity.  

Future work is needed to investigate the global genetic connectivity and 

demographic history of this species using additional nuclear (bi-parentally inherited) 

genetic markers, and much larger sample sizes to investigate the potential for fine-scale 

genetic geographic heterogeneity and population structure in this seemingly panmictic 

marine species. Given the basking shark’s ability to travel large ocean distances across 

numerous biogeographic and political boundaries, and its seemingly panmictic genetic 

population structure, a cooperative multiagency and global approach to its conservation 

and management is required in order to ensure the persistence of this highly vulnerable 

and ecologically important species.  
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Appendix A. List of PCR and sequencing primers used herein. Headings include gene/region name (Gene), primer name, primer 

sequence (5’-3’), and notes on primer origin, including citation where available (Description) origin (J. Hester unpublished). 

Gene Primer Name Primer Sequence (5’-3’) Description 

 

12S Cmax 12SF1 CGTCTATATACCGCCGTCGT C. maximus species-specific  

 Cmax12SF2 TGTCCCAAACCCACCTAGAG C. maximus species-specific  

 Cmax12SR1 GAGCCAGTTTCAGAAAAGCTC C. maximus species-specific  

 Cmax12SR2 CTCAAGCTTACGCTTATGTGTC C. maximus species-specific  

    

16S Elasmo16S-F3 TCGGCAAACACAAACTCCGCC Elasmobranch 16S forward 

 Elasmo16S-R2 TGTTTTTGGTAAACAGGCGGAG Elasmobranch 16S reverse 

 Elasmo16S-R3 GAGTTTGTGTTTGCCGAGTTCC Elasmobranch 16S reverse 

 16Sarl(F) CGCCTGTTTATCAAAAACAT Palumbi 1996 

 16Srlh(R) CCGGTCTGAACTCAGATCACGT Palumbi 1996 

 Lam16SF3 TCTTTTAAATGAAGACCCGTATGAAAGGCATCACG Lamniform 16S forward 

 Cmax16SF4 ACCGGAGAAATCCAGGTCAGTTTCTATCTATG C. maximus species-specific  

 Cmax16SF5 GGAGCCAATACCCAAGGCACGCTCCATTTTC C. maximus species-specific  

 Cmax16SF6 GGAGGCAAGTCGTAACATGGT C. maximus species-specific  

 Cmax16SF7 GTGGCAAAAGAGTGGGAAGACT C. maximus species-specific  

 Cmax16SF8 AACTCGGCAAACACAAACTCCGCC C. maximus species-specific  

 Cmax16SR2 CACGAGTAGATCAATTTCATTGATTAGAAAATAG C. maximus species-specific  

 Cmax16SR3 GACCTTAATAAGGTGGACTTATTGGTGATG C. maximus species-specific  

 Cmax16SR4 CAATGTTGGGGCCTTTGAGGAGT C. maximus species-specific  
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Appendix A continued. 
    

ND1 CmaxND1F1 

CmaxND1R1 

CTTACGAAGTGAGCCTTG 

GGATTATCCAAGGCTCACTTCG 

C. maximus species-specific 

C. maximus species-specific  

 CmaxND1R2 CATATTAAGGCTAGGGGTC C. maximus species-specific  

 CmaxND1R3 GGTACAGGTTCAAGTCCTG C. maximus species-specific  

    

ND2 CmaxND2F1 CTATCTACCATTGCTCTTATAACCCTCCTTTCC C. maximus species-specific  

 CmaxND2F2 TAATCGTTGACTATTTTCTACAAACCATAA C. maximus species-specific  

 CmaxND2F3 CTGTCCGCGGANCTACAACCCGCTACTTAATTC C. maximus species-specific  

 CmaxND2F4 GAAGATTATTACAAATGCATGAGCTGTCAC C. maximus species-specific  

 CmaxND2F5 CACCACAGGACTCATCCTATCT C. maximus species-specific  

 CmaxND2F6 GGACCACTTTGATAGAGTGGG C. maximus species-specific  

 CmaxND2F7 TTTCCCTCGGAGGATTACCT C. maximus species-specific  

 CmaxND2F8 CTTTTACCTGCGCCTATGCT C. maximus species-specific  

 CmaxND2R2 GTAAAAGAATAGACTGAGGAGGGTTATTATAG C. maximus species-specific  

 CmaxND2R3 GGTTAATGTTGTGGCATAGCATAGGCGCAGG C. maximus species-specific  

 CmaxND2R4 CCAAGATGTGCAATAGAGGAAT C. maximus species-specific  

 CmaxND2R5 GTAGGATCGAGGCCTATTTGTC C. maximus species-specific  

 CmaxND2R6 CGGCTCGAATTAGGAGGCTTA C. maximus species-specific  

 CmaxND2R7 GGAGTCAGTGTGAACTGATG C. maximus species-specific  

    

ASN CmaxASNF1 CAATCCAGCGAACTTTTACC C. maximus species-specific  

    

CO1 CmaxCOIF1 TAATATAAGCTTTTGACTCCTCCCTCCTTC C. maximus species-specific  

 CmaxCOIF2 GCTGGAGCCGGAACTGGCTGAACAGTATACCCT C. maximus species-specific  

 CmaxCOIF3 GGTCACCCAGAAGTTTA C. maximus species-specific  

 CmaxCOIF4 CCAGCCATCTCCCAGTATCA C. maximus species-specific  

 CmaxCOIF5 CGTGTGATCAATTCTAGTCAC C. maximus species-specific  

 CmaxCOIF6 ATGAAGCCACCAGCCTCT C. maximus species-specific  

 CmaxCOIF7 CTGATTCCCCTTAATATCTGGC C. maximus species-specific  
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Appendix A continued. 

  

 CmaxCOIF8 CATCCTCTGAGAAGCATTTGCC C. maximus species-specific 

 CmaxCOIF9 ACTCCATGGCTGCCCCCCACCC C. maximus species-specific 

 CmaxCOIR1 GAAGGAGGGAGGAGTCAAAAGCTTTATTA C. maximus species-specific  

 CmaxCOIR2 GGTTCCGATCGGTAAGCAATATTGTGATGCCGGCT C. maximus species-specific  

 CmaxCOIR4 CTCCCGCCTTTGTTCTTACGGCGGGAGAAAG C. maximus species-specific  

 CmaxCOIR5 GTTCGCTGGATTGAACAC C. maximus species-specific  

 CmaxCOIR6 CTGGGTGACCGAAGAATCAG C. maximus species-specific  

 CmaxCOIR7 CCAAGAAGTGATCCGGGTTGGCC C. maximus species-specific  

 CmaxCOIR10 CCTCCATGAAGGGTTGCTAA C. maximus species-specific  

 CmaxCOIR11 TCCCAGCAAGACCTAGGAAA C. maximus species-specific  

 CmaxCOIR12 GTCGTGGTATCCCAGCAAGA C. maximus species-specific  

    

CO2 MowsCO2F1 ATGGCACACCCCTCACAATTAGG M. owstoni forward primer 

 CmaxCO2R4 ATTGGCCTGGGGTTAAGTCT C. maximus species-specific  

 CmaxCO2R6 AGAATAATGGCGGGGAGAAT C. maximus species-specific  

 CmaxCO2R8 GGGCATAAAACTGTGGTTGG C. maximus species-specific  

    

LYS CmaxLysF1 GAAGCTAAATTGGGCCTAGCG C. maximus species-specific 

    

ATP8 MowsATP8F1 CCTGAAACTGACCATGATCA M. owstoni forward primer 

    

ATP6 CmaxATP6F2 GCCGTAGCAATAATTCAAGC C. maximus species-specific 

 CmaxATP6R2 TGATAAATCAACCTTGGAGGGC C. maximus species-specific 

 CmaxATP6R3 GGGATTCCAAGGAAAGAGGGGCTT C. maximus species-specific 

 CmaxATP6R6 GCTACGGCAACTTCTAGGGTTG C. maximus species-specific 

 CmaxATP6R7 TGCAATTGTTGGTCGGTTTA C. maximus species-specific 

 CmaxATP6R8 GTTGGGTTGTGGGCGTAAAGGTA C. maximus species-specific 
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CO3 ElasmoCO3F1 CCTTTATGTATCCATCTATTGATGAGGCTC Elasmobranch CO3 forward 

 ElasmoCO3F2 CCATCTATTGATGAGGCTCATA Elasmobranch CO3 forward 

 CmaxCO3F5 AGCCCTCCAAGCCATAGAAT C. maximus species-specific 

 CmaxCO3R3 CAGAAGACGTAATGAGGCTC C. maximus species-specific 

 CmaxCO3R7 GGCAAGGCTTGAGTGGTAAA C. maximus species-specific 

    

ND3 CmaxND3R1 AGGATTAGAGAAATCAGGGCCGTA C. maximus species-specific 

    

ND4L CmaxND4LF2 AGCCACTTCACGTTCTCA C. maximus species-specific 

 CmaxND4LR1 CACAGGCTGAGAATGTGAGG C. maximus species-specific 

    

ND4 CmaxND4F4 GGCCTAGTCGCAGGAGCGATCCT C. maximus species-specific 

 CmaxND4F5 CTATGATGACTAGCCTGCCT C. maximus species-specific 

 CmaxND4F8 TCACAGCCTCCTACTCCCTTT C. maximus species-specific 

 CmaxND4F9 GCCTCCACCTTATTCCAGTC C. maximus species-specific 

 CmaxND4R4 CTGTGGATTCGCTCGTAGTTAGTG C. maximus species-specific 

 CmaxND4R5 GGCTGTAGGTAGTAGTTATGGG C. maximus species-specific 

 CmaxND4R6 CATTTCGGTTGCGGAGAATGCC C. maximus species-specific 

 CmaxND4R7 AGGAGGCAGGCTAGTCATCA C. maximus species-specific 

 CmaxND4R8 GTTGCGGAGAATGCCATAAT C. maximus species-specific 

    

ND5 ElasmoND5F1 TCAAAAGACGCCATCATTGAA Elasmobranch ND5 forward 

 CmaxND5F2 CAATCATCCACCATCAGC C. maximus species-specific 

 CmaxND5F3 ACCCTAATTGATCCTCATCCCATG C. maximus species-specific 

 CmaxND5F4 TGGCTGATGACACAGCCGAA C. maximus species-specific 

 CmaxND5R6 TGTCAAATGGTCCAATGTTCA C. maximus species-specific 

 ElasmoND5R1 TCGGCTGTATCATCAACCAA Elasmobranch ND5 reverse 
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Appendix A continued. 

    

 CmaxND5R2 CTGGAATAAGGTGGAGGCT C. maximus species-specific 

 CmaxND5R3 TCGTGTCCTTGACCTCTCTCGG C. maximus species-specific 

 CmaxND5R4 GAGGAAAATAAGGCGGAGGC C. maximus species-specific 

 CmaxND5R5 GCTTCTGCTTGGAGTTGCATCA C. maximus species-specific 

 CmaxND5R6 TTGATGTTGAGAAGGCGATG C. maximus species-specific 

 CmaxND5intF2 AGGGGGACTCCACAAACTCT C. maximus species-specific 

 CmaxND5extR1 GCTGATGGTGGATGATTGTTGG C. maximus species-specific 

    

ND6 CmaxND6F1 CCCCACCAATAACCCACAC C. maximus species-specific 

 CmaxND6R1 TGCTGATGGTGGATGATTGT C. maximus species-specific 

 CmaxND6R2 GCTGCATTAGGTTTGGTCGT C. maximus species-specific 

    

Cyt b CmaxCytBF3 CTGAGTCCTAATAGCCGATATACTAATCCTAACCT C. maximus species-specific 

 CmaxCytBF5 CAAGCACATTACTCATCTCGACTACATCAC C. maximus species-specific 

 CmaxCytBF6 CATGAGTAACAATTGTCAAGTAGACCAACAC C. maximus species-specific 

 CmaxCytBF7 CACATTCTTCACTTTATCGGGCAT C. maximus species-specific 

 CmaxCytBF9 AGTTCCCCTCCTCCACACTT C. maximus species-specific 

 CmaxCytBF10 CAATGAATCTGAGGCGGTTT C. maximus species-specific 

 CmaxCytBR2 GAGTAGGGTTAGGATGCCTAGAAGGATGATTA C. maximus species-specific 

 CmaxCytBR3 GAACTAGTATGAGGATGAGAATGGAGAATAGCAGA C. maximus species-specific 

 CmaxCytBR4 GTGAGTGGGATCACAATGAGGAATAGAGAG C. maximus species-specific 

 CmaxCytBR5 GGCTTACAAGGCCGACGCTTTAAGTTAAGC C. maximus species-specific 

 CmaxCytBR6 GAGGCTCCATTGGCGTGG C. maximus species-specific 

 CmaxCytBR7 GAGCCTGTTTCATGTAGGAAGAG C. maximus species-specific 

 CmaxCytBR9 AGGAGAAGGCTAGGGAGACG C. maximus species-specific 
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Appendix A continued. 
    

PRO CmaxProF1(2) CCAAGATTCTGCCCAAACTG C. maximus species-specific 

    

CR CmaxCRF1 GACCTCGACATCTGTCTA C. maximus species-specific 

 CmaxCRF2 TCGTCCTTGACCGTCTCAAGAT C. maximus species-specific 

 CmaxCRF3 CCCCCTCCCCCTAATATACA C. maximus species-specific 

 CmaxCRF6 GGTCGAGGTGTAGCAAATGAA C. maximus species-specific 

 CmaxCRR1 GTCGAGATGAGTAATGTGCTTG C. maximus species-specific 

 CmaxCRR2 GTCAATTGGTGGGGATCAAC C. maximus species-specific 

 CmaxCRR3 ATATATGTCCGGCCCTCGTT C. maximus species-specific 

 CmaxCRR4 AATGTATGTGGGCCATGTCA C. maximus species-specific 

*All primers were designed by J. Hester for this study unless stated otherwise 
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Appendix B. Additional C. maximus-specific PCR primers (n = 28) created in Primer3 (Unterrasser et al. 2012; Koressaar et al. 2007) 

including gene/region, primer name, primer sequence (5’-3’), sequencing direction and description of origin. 

Gene Primer Name Primer Sequence (5’-3’)  Description 

 

ND1 CmaxND1F2 ACTCCGCAAAGGCCCCAACA C. maximus species-specific 

 CmaxND1R4 GGCGAATGAGCCTCCTGCGTA C. maximus species-specific 

 CmaxND1R5 GGCCTGCTGTAGCTGTGGGG C. maximus species-specific 

    

ND2 CmaxND2F9 CCAGGCTCTGCCACACTAGCC C. maximus species-specific 

 CmaxND2F10 AGGCTCTGCCACACTAGCCACA C. maximus species-specific 

 CmaxND2R8 TGGCTGGGGTGACTGGGAGG C. maximus species-specific 

 CmaxND2R9 GGCTGGGGTGACTGGGAGGA C. maximus species-specific 

    

CO1 CmaxCO1F10 ATTGCCATCCCCACGGGTGT C. maximus species-specific 

 CmaxCO1F11 TGCCATCCCCACGGGTGTAA C. maximus species-specific 

 CmaxCO1R13 GGGGCAGCCGTGGAGTCATT C. maximus species-specific 

 CmaxCO1R14 GGGCAGCCGTGGAGTCATTCG C. maximus species-specific 

    

CO2 CmaxCO2F2 TCCCATGGAGTCGCCTGTTCG C. maximus species-specific 

 CmaxCO2F3 CCCATGGAGTCGCCTGTTCG C. maximus species-specific 

 CmaxCO2F4 AGCTGTACCGGCCCTAGGAGT C. maximus species-specific 

 CmaxCO2R9 AGGGTGCGGATTAAGTTGAGGCA C. maximus species-specific 

 CmaxCO2R10 GGGTGCGGATTAAGTTGAGGCA C. maximus species-specific 

 CmaxCO2R11 TGGTCAGTTTCAGGGCTCAGGT C. maximus species-specific 
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Appendix B continued. 

 

  

ND5 CmaxND5F5 GTTGCCGGCGTCTTCCTGCT C. maximus species-specific 

 CmaxND5F6 AGTCGTTGCCGGCGTCTTCC C. maximus species-specific 

 CmaxND5F7 GTCGTTGCCGGCGTCTTCCT C. maximus species-specific 

 CmaxND5R7 GGTGAGGATTAGGGCTCAGGCGT C. maximus species-specific 

    

ND6 CmaxND6F2 ACCACACGCAAAGTCCCCCA C. maximus species-specific 

 CmaxND6F3 CCGCAGCATGCGCACTTACC C. maximus species-specific 

 CmaxND6F4 CGCAGCATGCGCACTTACCC C. maximus species-specific 

 CmaxND6R4 GGCGCTTGCTGCTGAGCCTT C. maximus species-specific 

 CmaxND6R5 GCTTATACGGCGGCGCTTGC C. maximus species-specific 

 CmaxND6R6 GCTGGGGTCGGGTGTGGGTT C. maximus species-specific 

 CmaxND6R7 AGGCCAGCAGGAGACCAGCA C. maximus species-specific 
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Appendix C. Sequence variation within C. maximus mitogenome haplotypes (n = 22). Relative sequence position (bp) and 

gene/region names are listed.  Indels are indicated by a dash (-). 

Locus 12S 12S 12S 12S 12S 12S 12S 16S 16S 16S 16S ND1 ND1 ND1 ND1 ND1 

                 

bp 137 192 327 410 433 498 652 1115 2394 2550 2725 2930 2979 2980 3044 3118 

                 

Hap1 C A T A G - T T G A A G G C A C 

Hap2 T G T G G C T C A A A G A T A T 

Hap3 T G T G G C T C A A A G A T A T 

Hap4 T G T G G C T C A A A G A T G T 

Hap5 T G T G G C T C A A A G A T A T 

Hap6 T G T G T C T C A A A A A T A T 

Hap7 T G T G T C T C A A A A A T A T 

Hap8 T G T G G C T C A A A G A T A T 

Hap9 T G T G G C T C A A A G A T A T 

Hap10 T G T G G C T C A A A G A T A T 

Hap11 T G T G T C T C A A A A A T A T 

Hap12 C A T A G - T T G A A G G C A C 

Hap13 T G A G G C T C A A G G A T A T 

Hap14 T G T G G C T C A A A G A T A T 

Hap15 T G T G G C C C A A A G A T A T 

Hap16 T G T G G C T C A A A G A T A T 

Hap17 T G T G G C T C A A A G A T A T 

Hap18 T G T G G C T C A G A G A T A T 

Hap19 T G T G T C T C A A A A A T A T 

Hap20 T G T G G C T C A A A G A T A T 

Hap21 C A T A G - T T G A A G G C A C 

Hap22 T G T G G C T C A A A G A T A T 
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Appendix C continued. 

 

Locus ND1 ND1 ND1 tRNA
Gln

 ND2 ND2 ND2 ND2 ND2 CO1 CO1 CO1 CO1 CO1 CO1 CO1 

                 

bp 3301 3424 3784 3901 4524 4638 4854 4899 5056 5713 5779 5980 6079 6286 6439 6763 

                 

Hap1 C A A C A T C A T G G A T T C C 

Hap2 T A G T G C T G C G A G C C A T 

Hap3 T A G T G C T G C A A G C C A T 

Hap4 T G G T G C T G C G A G C C A T 

Hap5 T A G T G C T G C G A G C C A T 

Hap6 T A G T G C T A C G A G C C A T 

Hap7 T A G T G C T G C G A G C C A T 

Hap8 T A G T G C T G C G A G C C A T 

Hap9 T A G T G C T G C G A G C C A T 

Hap10 T A G T G C T G C G A G C C A T 

Hap11 T A G T G C T A C G A G C C A T 

Hap12 C A A T A T C A T G G A T T C C 

Hap13 T A G T G C T G C G A G C C A T 

Hap14 T A G T G C T G C G A G C C A T 

Hap15 T A G T G C T G C G A G C C A T 

Hap16 T A G T G C T G C G A G C C A T 

Hap17 T A G T G C T G C G A G C C A T 

Hap18 T A G T G C T G C G A G C C A T 

Hap19 T A G T G C T G C G A G C C A T 

Hap20 T A G T G C T G C G A G C C A T 

Hap21 C A A C A T C A T G G A T T C C 

Hap22 T A G T G C T G C G A G C C A T 
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Appendix C continued. 
 

Locus CO1 CO1 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 

                 

bp 6907 6934 7295 7391 7403 7439 7520 7526 7591 7725 7766 7775 7834 7835 7836 7938 

                 

Hap1 A C A A T A A A T G C A T A G G 

Hap2 G T G A T A G G T G C G T A G A 

Hap3 G T G A T A G G T G C G T A G A 

Hap4 G T G A T A G G T G C G T A G A 

Hap5 G T G A T A G G T G C G T A G A 

Hap6 G T G A C A G G T G T G T A G A 

Hap7 G T G A C A G A T G C G T A G A 

Hap8 G T G A T A G G C G C G T A G A 

Hap9 G T G G T A G G T G C G T A G A 

Hap10 G T G G T A G G T G C G - - - A 

Hap11 G T G A C A G G T G C G T A G A 

Hap12 A C A A T A A A T G C A T A G G 

Hap13 G T G A C G G G T A C G T A G A 

Hap14 G T G A T A G G T G C G T A G A 

Hap15 G T G A T A G G T G C G T A G A 

Hap16 G T G A T A G G T G C G T A G A 

Hap17 G T G A T A G G T G C G T A G A 

Hap18 G T G A T A G G T G C G T A G A 

Hap19 G T G A C A G G T G C G T A G A 

Hap20 G T G A T A G G T G C G T A G A 

Hap21 A C A A T A A A T G C A T A G G 

Hap22 G T G A T A G G T G C G T A G A 
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Appendix C continued. 
 

Locus ATP8 ATP8 ATP8 ATP8 ATP8 ATP6 ATP6 ATP6 ATP6 ATP6 ATP6 CO3 CO3 CO3 CO3 CO3 

 

bp 7971 7973 8013 8040 8059 8195 8426 8458 8602 8620 8662 8800 8872 9004 9040 9136 

                 

Hap1 G T T A C C T G C C C C C T C C 

Hap2 A T C G T T C G T T T C T C T C 

Hap3 A T C G T T C G T T T C T C T C 

Hap4 A T C G T T C G T T T C T C T C 

Hap5 A T C G T T C G T T T T T C T C 

Hap6 A T C G C T C G T T T C T C T C 

Hap7 A T C G C T C C T T T C T C T C 

Hap8 A T C G T T C G T T T T T C T C 

Hap9 A T C G T T C G T T T C T C T C 

Hap10 A T C G T T C G T T T C T C T C 

Hap11 A T C G C T C G T T T C T C T C 

Hap12 G T T A C C T G C C C C C T C T 

Hap13 A T C G C T C G T T T C T C T C 

Hap14 A T C G T T C G T T T C T C T C 

Hap15 A C C G T T C G T T T C T C T C 

Hap16 A T C G T T C G T T T C T C T C 

Hap17 A T C G T T C G T T T T T C T C 

Hap18 A T C G T T C G T T T C T C T C 

Hap19 A T C G C T C G T T T C T C T C 

Hap20 A T C G T T C G T T T C T C T C 

Hap21 G T T A C C T G C C C C C T C C 

Hap22 A T C G T T C G T T T T T C T C 
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Appendix C continued. 
 

Locus CO3 CO3 CO3 CO3 ND3 ND3 ND3 ND3 ND4L ND4 ND4 ND4 ND4 ND4 

               

bp 9205 9236 9415 9427 9811 9866 9867 9868 10133 10235 10339 10375 10433 10591 

Hap1 T G T G G C T A T T C A C G 

Hap2 T G C A A C T A T T T G T A 

Hap3 T G C A A - - - T T T G T A 

Hap4 T G C A A C T A T T T G T A 

Hap5 T G C A A C T A T C T G T A 

Hap6 T G C A A C T A T T T G T A 

Hap7 T G C A A C T A T T T G T A 

Hap8 C G C A A C T A C C T G T A 

Hap9 T G C A A - - - T T T G T A 

Hap10 T G C A A - - - T T T G T A 

Hap11 T G C A A C T A T T T G T A 

Hap12 T G C G G C T A T T C A C G 

Hap13 T G C A A C T A T T T G T A 

Hap14 T G C A A - - - T T T G T A 

Hap15 T G C A A C T A T T T G T A 

Hap16 T G C A A - - - T T T G T A 

Hap17 T G C A A C T A T C T G T A 

Hap18 T G C A A C T A T T T G T A 

Hap19 T G C A A C T A T T T G T A 

Hap20 T G C A A C T A T C T G T A 

Hap21 T G C G G C T A T T C A C G 

Hap22 T A C A A C T A T C T G T A 
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Appendix C continued. 
 

Locus ND4 ND4 ND4 ND4 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 

               

bp 10738 10753 10786 11170 11227 11614 11690 11965 11968 12102 12172 12279 12354 12361 

               

Hap1 A A C A G T A A T G C G G G 

Hap2 G A C G A T A A C A T A A G 

Hap3 G G C G A T A A T A T A A G 

Hap4 G A C G A T A A T A T A A G 

Hap5 G A C G A T A A T A T A A A 

Hap6 G A C G G T A G T A T A A G 

Hap7 G A C G G T A G T A T A A G 

Hap8 G A C G A T A A T A T A A A 

Hap9 G A C G A T A A T A T A A G 

Hap10 G A C G A T A A T A T A A G 

Hap11 G A C G G T A G T A T A A G 

Hap12 A A C A G T A A T G C G G G 

Hap13 G A C G A T A A T A T A A G 

Hap14 G A C G A T A A T A T A A G 

Hap15 G A C G A T A A T A T A A G 

Hap16 G G C G A T A A T A T A A G 

Hap17 G A C G A T A A T A T A A G 

Hap18 G A C G A T G A T A T A A G 

Hap19 G A C G G T A G T A T A A G 

Hap20 G A C G A C A A T A T A A G 

Hap21 A A T A G T A A T G C G G G 

Hap22 G A C G A T A A T A T A A G 
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Appendix C continued. 
               

Locus ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 

               

bp 12490 12507 12543 12545 12648 12739 12762 12804 13047 13077 13233 13299 13534 13566 

               

Hap1 G G C C G C T T T G A T C G 

Hap2 G C T T A T T C C A G T C A 

Hap3 G C T C A T T C C A A T C A 

Hap4 G C T C A T T C C A A T C A 

Hap5 G C T C A T T C C A A T C A 

Hap6 G C T C A T T C C A A T C A 

Hap7 G C T C A T T C C A A T C A 

Hap8 G C T C A T T C C A A T C A 

Hap9 G C T C A T T C C A A T C A 

Hap10 G C T C A T T C C A A T T A 

Hap11 G C T C A T T C C A A T C A 

Hap12 G G C C G C T T T A A T C G 

Hap13 G C T C A T T C C A A A C A 

Hap14 G C T C A T T C C A A T C A 

Hap15 G C T C A T C C C A A T C A 

Hap16 G C T C A T T C C A A T C A 

Hap17 G C T C A T T C C A A T C A 

Hap18 G C T C A T T C C A A T C A 

Hap19 C C T C A T T C C A A T C A 

Hap20 G C T C A T T C C A A T C A 

Hap21 G G C C G C T T T A A T C G 

Hap22 G C T C A T T C C A A T C A 
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Appendix C continued. 
 

Locus ND5 ND5 ND5 ND6 ND6 ND6 ND6 ND6 ND6 Cyt b Cyt b Cyt b Cyt b Cyt b 

               

bp 13584 13654 13728 13851 13895 13982 14102 14174 14227 14447 14557 14596 14638 14758 

               

Hap1 G T G G C G G C C T T G T T 

Hap2 A C G G C G G T C T C A C C 

Hap3 A C G G C G G T C T C A C C 

Hap4 A C G G C G G T C T C A C C 

Hap5 A C C G C G G T T T C A C C 

Hap6 A C G G C G G T C T C A C C 

Hap7 A C G G C G G T C T C A C C 

Hap8 A C C G C G G T T T C A C C 

Hap9 A C G G C G A T C T C A C C 

Hap10 A C G G C G A T C T C A C C 

Hap11 A C G G C A G T C T C A C C 

Hap12 G T G G T G G C C T T G T C 

Hap13 A C G G C G G T C T C A C C 

Hap14 A C G G C G G T C T C A C C 

Hap15 A C G A C G G T C T C A C C 

Hap16 A C G G C G G T C T C A C C 

Hap17 A C C G C G G T T C C A C C 

Hap18 A C G G C G G T C T C A C C 

Hap19 A C G G C G G T C T C A C C 

Hap20 A C G G C G G T C T C A C C 

Hap21 G T G G C G G C C T T G T C 

Hap22 A C C G C G G T T T C A C C 
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Appendix C continued. 

 

Locus Cyt b Cyt b Cyt b Cyt b Cyt b Cyt b CR CR CR CR 

           

bp 14839 14879 15071 15163 15245 15316 15753 16021 16210 16365 

Hap1 C C C G C A C G A G 

Hap2 T T T G T G T A G A 

Hap3 T T T G T G C A G G 

Hap4 T T T G T G T A G A 

Hap5 T T T G T G T A G A 

Hap6 T T T G T G T A G G 

Hap7 T T T G T G T A G A 

Hap8 T T T G T G T A G A 

Hap9 T T T G T G T A G G 

Hap10 T T T G T G T A G G 

Hap11 T T T G T G T A G G 

Hap12 C C C G C A C G A G 

Hap13 T T T G T G T A G G 

Hap14 T T T G T G T A G A 

Hap15 T T T G T G T A G A 

Hap16 T T T G T G C A G G 

Hap17 T T T G T G T A G A 

Hap18 T T T G T G T A G A 

Hap19 T T T G T G T A G G 

Hap20 T T T A T G T A G A 

Hap21 C C C G C A C G A G 

Hap22 T T T G T G T A G A 

Hap1 C C C G C A C G A G 
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Appendix D. Sequence variation within C. maximus concatenated protein-coding gene haplotypes (n = 22). Relative sequence 

position (bp) and gene name are listed.  Indels are indicated by a dash (-). 

Gene ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND2 ND2 ND2 ND2 ND2 CO1 CO1 

                

bp 2930 2979 2980 3044 3118 3301 3424 3784 4524 4638 4854 4899 5056 5713 5779 

                

Hap1 G G C A C C A A A T C A T G G 

Hap2 G A T A T T A G G C T G C G A 

Hap3 G A T A T T A G G C T G C A A 

Hap4 G A T G T T G G G C T G C G A 

Hap5 G A T A T T A G G C T G C G A 

Hap6 A A T A T T A G G C T A C G A 

Hap7 A A T A T T A G G C T G C G A 

Hap8 G A T A T T A G G C T G C G A 

Hap9 G A T A T T A G G C T G C G A 

Hap10 G A T A T T A G G C T G C G A 

Hap11 A A T A T T A G G C T A C G A 

Hap12 G G C A C C A A A T C A T G G 

Hap13 G A T A T T A G G C T G C G A 

Hap14 G A T A T T A G G C T G C G A 

Hap15 G A T A T T A G G C T G C G A 

Hap16 G A T A T T A G G C T G C G A 

Hap17 G A T A T T A G G C T G C G A 

Hap18 G A T A T T A G G C T G C G A 

Hap19 A A T A T T A G G C T G C G A 

Hap20 G A T A T T A G G C T G C G A 

Hap21 G G C A C C A A A T C A T G G 

Hap22 G A T A T T A G G C T G C G A 
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Appendix D continued. 

 

Gene CO1 CO1 CO1 CO1 CO1 CO1 CO1 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 

                 

bp 5980 6079 6286 6439 6763 6907 6934 7295 7391 7403 7439 7520 7526 7591 7725 7766 

                 

Hap1 A T T C C A C A A T A A A T G C 

Hap2 G C C A T G T G A T A G G T G C 

Hap3 G C C A T G T G A T A G G T G C 

Hap4 G C C A T G T G A T A G G T G C 

Hap5 G C C A T G T G A T A G G T G C 

Hap6 G C C A T G T G A C A G G T G T 

Hap7 G C C A T G T G A C A G A T G C 

Hap8 G C C A T G T G A T A G G C G C 

Hap9 G C C A T G T G G T A G G T G C 

Hap10 G C C A T G T G G T A G G T G C 

Hap11 G C C A T G T G A C A G G T G C 

Hap12 A T T C C A C A A T A A A T G C 

Hap13 G C C A T G T G A C G G G T A C 

Hap14 G C C A T G T G A T A G G T G C 

Hap15 G C C A T G T G A T A G G T G C 

Hap16 G C C A T G T G A T A G G T G C 

Hap17 G C C A T G T G A T A G G T G C 

Hap18 G C C A T G T G A T A G G T G C 

Hap19 G C C A T G T G A C A G G T G C 

Hap20 G C C A T G T G A T A G G T G C 

Hap21 A T T C C A C A A T A A A T G C 

Hap22 G C C A T G T G A T A G G T G C 
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Appendix D continued. 

 

Gene CO2 CO2 CO2 CO2 CO2 ATP8 ATP8 ATP8 ATP8 ATP8 ATP6 ATP6 ATP6 ATP6 ATP6 ATP6 

      

7971 7973 8013 8040 8059 8195 8426 8458 8602 8620 8662 bp 7775 7834 7835 7836 7938 

Hap1 A T A G G G T T A C C T G C C C 

Hap2 G T A G A A T C G T T C G T T T 

Hap3 G T A G A A T C G T T C G T T T 

Hap4 G T A G A A T C G T T C G T T T 

Hap5 G T A G A A T C G T T C G T T T 

Hap6 G T A G A A T C G C T C G T T T 

Hap7 G T A G A A T C G C T C C T T T 

Hap8 G T A G A A T C G T T C G T T T 

Hap9 G T A G A A T C G T T C G T T T 

Hap10 G - - - A A T C G T T C G T T T 

Hap11 G T A G A A T C G C T C G T T T 

Hap12 A T A G G G T T A C C T G C C C 

Hap13 G T A G A A T C G C T C G T T T 

Hap14 G T A G A A T C G T T C G T T T 

Hap15 G T A G A A C C G T T C G T T T 

Hap16 G T A G A A T C G T T C G T T T 

Hap17 G T A G A A T C G T T C G T T T 

Hap18 G T A G A A T C G T T C G T T T 

Hap19 G T A G A A T C G C T C G T T T 

Hap20 G T A G A A T C G T T C G T T T 

Hap21 A T A G G G T T A C C T G C C C 

Hap22 G T A G A A T C G T T C G T T T 
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Appendix D continued. 

 

Gene CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 ND3 ND3 ND3 ND3 ND4L ND4 ND4 

 

8800 8872 9004 9040 9136 

 

9205 

 

9236 

 

9415 

 

9427 

 

9811 

 

9866 

 

9867 

 

9868 

 

10133 

 

10235 

 

10339 bp 

Hap1 C C T C C T G T G G C T A T T C 

Hap2 C T C T C T G C A A C T A T T T 

Hap3 C T C T C T G C A A - - - T T T 

Hap4 C T C T C T G C A A C T A T T T 

Hap5 T T C T C T G C A A C T A T C T 

Hap6 C T C T C T G C A A C T A T T T 

Hap7 C T C T C T G C A A C T A T T T 

Hap8 T T C T C C G C A A C T A C C T 

Hap9 C T C T C T G C A A - - - T T T 

Hap10 C T C T C T G C A A - - - T T T 

Hap11 C T C T C T G C A A C T A T T T 

Hap12 C C T C T T G C G G C T A T T C 

Hap13 C T C T C T G C A A C T A T T T 

Hap14 C T C T C T G C A A - - - T T T 

Hap15 C T C T C T G C A A C T A T T T 

Hap16 C T C T C T G C A A - - - T T T 

Hap17 T T C T C T G C A A C T A T C T 

Hap18 C T C T C T G C A A C T A T T T 

Hap19 C T C T C T G C A A C T A T T T 

Hap20 C T C T C T G C A A C T A T C T 

Hap21 C C T C C T G C G G C T A T T C 

Hap22 T T C T C T A C A A C T A T C T 
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Appendix D continued. 

 

Gene ND4 ND4 ND4 ND4 ND4 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 

      

11227 11614 11690 11965 11968 12102 12172 12279 

 

bp 10375 10433 10591 10738 11170 12354 

Hap1 A C G A A C A G T A A T G G 

Hap2 G T A G A C G A T A A C A A 

Hap3 G T A G G C G A T A A T A A 

Hap4 G T A G A C G A T A A T A A 

Hap5 G T A G A C G A T A A T A A 

Hap6 G T A G A C G G T A G T A A 

Hap7 G T A G A C G G T A G T A A 

Hap8 G T A G A C G A T A A T A A 

Hap9 G T A G A C G A T A A T A A 

Hap10 G T A G A C G A T A A T A A 

Hap11 G T A G A C G G T A G T A A 

Hap12 A C G A A C A G T A A T G G 

Hap13 G T A G A C G A T A A T A A 

Hap14 G T A G A C G A T A A T A A 

Hap15 G T A G A C G A T A A T A A 

Hap16 G T A G G C G A T A A T A A 

Hap17 G T A G A C G A T A A T A A 

Hap18 G T A G A C G A T G A T A A 

Hap19 G T A G A C G G T A G T A A 

Hap20 G T A G A C G A C A A T A A 

Hap21 A C G A A T A G T A A T G G 

Hap22 G T A G A C G A T A A T A A 
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Appendix D continued. 

 

               

Gene ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 

               

bp 12361 12490 12507 12543 12545 12648 12739 12762 12804 13047 13077 13233 13299 13534 

               

Hap1 G G G C C G C T T T G A T C 

Hap2 G G C T T A T T C C A G T C 

Hap3 G G C T C A T T C C A A T C 

Hap4 G G C T C A T T C C A A T C 

Hap5 A G C T C A T T C C A A T C 

Hap6 G G C T C A T T C C A A T C 

Hap7 G G C T C A T T C C A A T C 

Hap8 A G C T C A T T C C A A T C 

Hap9 G G C T C A T T C C A A T C 

Hap10 G G C T C A T T C C A A T T 

Hap11 G G C T C A T T C C A A T C 

Hap12 G G G C C G C T T T A A T C 

Hap13 G G C T C A T T C C A A A C 

Hap14 G G C T C A T T C C A A T C 

Hap15 G G C T C A T C C C A A T C 

Hap16 G G C T C A T T C C A A T C 

Hap17 G G C T C A T T C C A A T C 

Hap18 G G C T C A T T C C A A T C 

Hap19 G C C T C A T T C C A A T C 

Hap20 G G C T C A T T C C A A T C 

Hap21 G G G C C G C T T T A A T C 

Hap22 G G C T C A T T C C A A T C 
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Appendix D continued. 

 

Locus ND5 ND5 ND5 ND5 ND6 ND6 ND6 ND6 ND6 ND6 Cyt b Cyt b Cyt b Cyt b 

               

bp 13566 13584 13654 13728 13851 13895 13982 14102 14174 14227 14447 14557 14596 14638 

               

Hap1 G G T G G C G G C C T T G T 

Hap2 A A C G G C G G T C T C A C 

Hap3 A A C G G C G G T C T C A C 

Hap4 A A C G G C G G T C T C A C 

Hap5 A A C C G C G G T T T C A C 

Hap6 A A C G G C G G T C T C A C 

Hap7 A A C G G C G G T C T C A C 

Hap8 A A C C G C G G T T T C A C 

Hap9 A A C G G C G A T C T C A C 

Hap10 A A C G G C G A T C T C A C 

Hap11 A A C G G C A G T C T C A C 

Hap12 G G T G G T G G C C T T G T 

Hap13 A A C G G C G G T C T C A C 

Hap14 A A C G G C G G T C T C A C 

Hap15 A A C G A C G G T C T C A C 

Hap16 A A C G G C G G T C T C A C 

Hap17 A A C C G C G G T T C C A C 

Hap18 A A C G G C G G T C T C A C 

Hap19 A A C G G C G G T C T C A C 

Hap20 A A C G G C G G T C T C A C 

Hap21 G G T G G C G G C C T T G T 

Hap22 A A C C G C G G T T T C A C 
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Appendix D continued. 

Locus Cyt b Cyt b Cyt b Cyt b Cyt b Cytb CR CR CR CR 

           

bp 14758 14839 14879 15071 15163 15245 15316 15753 16021 16210 

Hap1 T C C C G C A C G A 

Hap2 C T T T G T G T A G 

Hap3 C T T T G T G C A G 

Hap4 C T T T G T G T A G 

Hap5 C T T T G T G T A G 

Hap6 C T T T G T G T A G 

Hap7 C T T T G T G T A G 

Hap8 C T T T G T G T A G 

Hap9 C T T T G T G T A G 

Hap10 C T T T G T G T A G 

Hap11 C T T T G T G T A G 

Hap12 C C C C G C A C G A 

Hap13 C T T T G T G T A G 

Hap14 C T T T G T G T A G 

Hap15 C T T T G T G T A G 

Hap16 C T T T G T G C A G 

Hap17 C T T T G T G T A G 

Hap18 C T T T G T G T A G 

Hap19 C T T T G T G T A G 

Hap20 C T T T A T G T A G 

Hap21 C C C C G C A C G A 

Hap22 C T T T G T G T A G 
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Appendix E. Global summary statistics for C. maximus Dataset IV ((concatenated 

protein-coding genes ATP8, CO2, ND3) including: number of individuals (n), sequence 

length in base pairs (bp), number of haplotypes (h), haplotype diversity (hd), nucleotide 

diversity (π), and overall ϕST (Exocoffier 1992) and FST  (Weir & Cockerham 1984) 

values. 

 

 

n bp h hd ± SD π ± SD ϕST FST 

100 1 208 15 0.852 ± 0.041 0.0023 ± 0.000 0.025 0.020 
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Appendix F. C. maximus population-level pairwise values of ФST (upper triangular 

matrix) and statistical probability values, p-values  (lower triangular matrix) for Dataset 

III (individual protein coding genes, individual rRNA genes, and non-coding control 

region). 

 

12S rRNA 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0046 -0.0921 

NZ 0.3253 - -0.0055 

ENA 0.9909 0.3063 - 

 

 

16S rRNA 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0585 -0.0290 

NZ 0.9909 - -0.0173 

ENA 0.6847 0.4505 - 

 

 

ATP synthase F0 subunit 6 (ATP6) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0901 -0.0627 

NZ 0.9909 - -0.0697 

ENA 0.8108 0.9909 - 

 

 

ATP synthase F0 subunit 8 (ATP8) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0618 -0.0925 

NZ 0.8018 - -0.0663 

ENA 0.9909 0.8378 - 
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Appendix F continued. 

 

 

Cytochrome c oxidase I (CO1) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0717 -0.0758 

NZ 0.9909 - -0.0552 

ENA 0.7117 0.7928 - 

 

 

Cytochrome c oxidase II (CO2) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0475 -0.0835 

NZ 0.8108 - -0.0403 

ENA 0.9909 0.7117 - 

 

 

Cytochrome c oxidase III (CO3) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0420 -0.0690 

NZ 0.5315 - -0.0512 

ENA 0.9909 0.6487 - 

 

 

Cytochrome b (Cyt b) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0646 -0.0829 

NZ 0.7117 - -0.0614 

ENA 0.9909 0.7297 - 

 

 

NADH dehydrogenase 1 (ND1) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - 0.0034 -0.1000 

NZ 0.3423 - 0.0034 

ENA 0.9909 0.3874 - 
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Appendix F continued. 

 

 

NADH dehydrogenase 2 (ND2) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0658 -0.1000 

NZ 0.8198 - -0.0658 

ENA 0.9909 0.7389 - 

 

 

NADH dehydrogenase 3 (ND3) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0896 0.0845 

NZ 0.9909 - 0.0535 

ENA 0.3514 0.3333 - 

 

 

NADH dehydrogenase 4 (ND4) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0553 -0.0545 

NZ 0.6937 - -0.0105 

ENA 0.7387 0.3153 - 

 

 

NADH dehydrogenase 4L (ND4L) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0470 0.0122 

NZ 0.7568 - -0.0598 

ENA 0.5225 0.5856 - 

 

 

NADH dehydrogenase 5 (ND5) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0490 -0.0881 

NZ 0.7117 - -0.0460 

ENA 0.9909 0.6937 - 
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Appendix F continued. 

 

 

NADH dehydrogenase 6 (ND6) 

Location  

WNA 

 

NZ 

 

ENA 

WNA - 0.0037 -0.0560 

NZ 0.3694 - -0.0362 

ENA 0.9909 0.6847 - 

 

 

Control Region 

Location  

WNA 

 

NZ 

 

ENA 

WNA - -0.0564 -0.0344 

NZ 0.6487 - -0.0011 

ENA 0.7027 0.3784 - 

 

WNA = western North Atlantic, NZ= New Zealand, ENA= eastern North Atlantic 
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Appendix G. Bayesian inference of C. maximus concatenated protein-coding gene 

haplotypes. 
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Appendix H. C. maximus neutrality statistics for the whole mitochondrial genome 

(Dataset I): Fu’s FS (Fu 1996) and R2 (Ramierez-Soriano & Rozas 2002). 

Sample Collection Location Fu’s (Fs) R2 

WNA (n = 11) -0.18627 0.1959 

NZ (n = 12) 3.99158 0.1421 

ENA (n = 11) 0.94529 0.1214 

WNA = western North Atlantic, NZ= New Zealand, ENA= eastern North Atlantic  
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