
Nova Southeastern University Nova Southeastern University 

NSUWorks NSUWorks 

CCE Faculty Articles College of Computing and Engineering 

12-1-1999 

Disclosure Detection in Multivariate Categorical Databases: Disclosure Detection in Multivariate Categorical Databases: 

Auditing Confidentiality Protection Through Two New Matrix Auditing Confidentiality Protection Through Two New Matrix 

Operators Operators 

Sumit Dutta Chowdhury 

George T. Duncan 
Carnegie Mellon University 

Ramayya Krishnan 
Carnegie Mellon University 

Stephen F. Roehrig 
Carnegie Mellon University 

Sumitra Mukherjee 
Nova Southeastern University, sumitra@nova.edu 

Follow this and additional works at: https://nsuworks.nova.edu/gscis_facarticles 

 Part of the Computer Sciences Commons 

NSUWorks Citation NSUWorks Citation 
Dutta Chowdhury, Sumit; Duncan, George T.; Krishnan, Ramayya; Roehrig, Stephen F.; and Mukherjee, 
Sumitra, "Disclosure Detection in Multivariate Categorical Databases: Auditing Confidentiality Protection 
Through Two New Matrix Operators" (1999). CCE Faculty Articles. 13. 
https://nsuworks.nova.edu/gscis_facarticles/13 

This Article is brought to you for free and open access by the College of Computing and Engineering at NSUWorks. 
It has been accepted for inclusion in CCE Faculty Articles by an authorized administrator of NSUWorks. For more 
information, please contact nsuworks@nova.edu. 

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_facarticles
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_facarticles?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_facarticles/13?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nsuworks@nova.edu


This article was downloaded by: [137.52.77.80] On: 17 December 2014, At: 08:22
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Management Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Disclosure Detection in Multivariate Categorical
Databases: Auditing Confidentiality Protection Through
Two New Matrix Operators
Sumit Dutta Chowdhury, George T. Duncan, Ramayya Krishnan, Stephen F. Roehrig, Sumitra
Mukherjee,

To cite this article:
Sumit Dutta Chowdhury, George T. Duncan, Ramayya Krishnan, Stephen F. Roehrig, Sumitra Mukherjee,  (1999) Disclosure
Detection in Multivariate Categorical Databases: Auditing Confidentiality Protection Through Two New Matrix Operators.
Management Science 45(12):1710-1723. http://dx.doi.org/10.1287/mnsc.45.12.1710

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 1999 INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/mnsc.45.12.1710
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


Disclosure Detection in Multivariate
Categorical Databases: Auditing

Confidentiality Protection Through Two
New Matrix Operators

Sumit Dutta Chowdhury • George T. Duncan • Ramayya Krishnan • Stephen F. Roehrig
• Sumitra Mukherjee

605 West View Terrace, Alexandria, Virginia 22301
The H. John Heinz III School of Public Policy and Management, Carnegie Mellon University,

Pittsburgh, Pennsylvania 15213
The H. John Heinz III School of Public Policy and Management, Carnegie Mellon University,

Pittsburgh, Pennsylvania 15213
The H. John Heinz III School of Public Policy and Management, Carnegie Mellon University,

Pittsburgh, Pennsylvania 15213
School of Computer and Information Systems, Nova University, Fort Lauderdale, Florida 33315

schowdhury@kpmg.com • gd17@andrew.cmu.edu • rk2x@andrew.cmu.edu • roehrig@andrew.cmu.edu
• sumitra@scis.acast.nova.edu

As databases grow more prevalent and comprehensive, database administrators seek
to limit disclosure of confidential information while still providing access to data.

Practical databases accommodate users with heterogeneous needs for access. Each class of
data user is accorded access to only certain views. Other views are considered confiden-
tial, and hence to be protected. Using illustrations from health care and education, this
article addresses inferential disclosure of confidential views in multidimensional categor-
ical databases. It demonstrates that any structural, so data-value-independent method for
detecting disclosure can fail. Consistent with previous work for two-way tables, it
presents a data-value-dependent method to obtain tight lower and upper bounds for
confidential data values. For two-dimensional projections of categorical databases, it
exploits the network structure of a linear programming (LP) formulation to develop two
transportation flow algorithms that are both computationally efficient and insightful.
These algorithms can be easily implemented through two new matrix operators, cell-
maxima and cell-minima. Collectively, this method is called matrix comparative assignment
(MCA). Finally, it extends both the LP and MCA approaches to inferential disclosure
when accessible views have been masked.
(Confidentiality; Data Access; Linear Programming; Matrix Methods; Disclosure Risk; Network
Models; Disclosure Limitation)
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1. Introduction
Database administrators implement policies and tech-
nologies to limit disclosure of confidential information
while providing access to legitimate information
(Schlörer 1975, Duncan and Lambert 1986, Adam and
Wortman 1989). A “data snooper” must not obtain,
directly or through inference, knowledge of the confi-
dential data. Direct disclosure occurs with unauthorized
access, as through password breaking or communication
eavesdropping. Methods such as multilevel authoriza-
tion control, password protection, and encryption help
prevent direct disclosure and are not our concern here.
Rather we seek to protect against inferential disclosure
(Denning 1980), thereby providing disclosure protection
against data snoopers who have access to the database,
but lack authorization to every aspect of it.

Inferential disclosure is harder to control than direct
disclosure. In inferential disclosure the data snooper
uses legitimately accessible information to infer confi-
dential information. To guard against inferential dis-
closure, the database administrator must assess the
vulnerability of a database. Disclosure detection tech-
niques can be applied both to a database in its original
form or to a database that has been transformed to
limit disclosure. Thus disclosure detection—“to distin-
guish safe from unsafe data” (Willenborg and de Waal
1996, p. vii)—is an essential component of any strategy
for database security.

For research and statistical purposes, the most com-
mon products disseminated from databases are tables.
Previous works have addressed the case of disclosure
detection and protection in two-dimensional tables
(Cox 1980, Carvalho et al. 1994, Muralidhar et al.
1995). We focus on multidimensional categorical da-
tabases, which are N-dimensional tables with each
dimension categorical. Cell entries may be counts or
other numerical values. Motivated by U.S. Census
Bureau surveys such as the Census of Wholesale
Trade and the Census of Construction Industries,
which release three-dimensional tables, Cox (1992)
argues for the need to examine disclosure issues in
higher-dimensional tables. In the commercial sector, a
variety of tools provide multidimensional views of
relational data in data warehousing (Barquin and
Edelstein 1997, p. 174). With the increasing use of data

warehousing, security concerns in multidimensional
tables have become significant.

Our concern is disclosure detection for linked tables
(i.e., tables that share a common attribute), as dis-
cussed in Willenborg and de Waal (1996, pp. 108–111,
130–134) and De Vries (1993). We show that disclosure
detection by a purely structural approach, i.e., based
on database design alone, can give a false sense of
security for linked tables. As proof, we give a method,
based on linear programming, to infer bounds on the
values of confidential views. Inference is based solely
on the actual contents of the accessible views of the
database. Beyond showing the inadequacies of a struc-
tural approach, this technique provides a systematic
method that the database administrator can use for
disclosure detection. Linear programming methods
have been used in various aspects of confidentiality
research, for instance by Kelly et al. (1990), Sande
(1984), Cox (1987), and Zayatz (1992).

LP methods are flexible in their application to
disclosure detection problems, since additional, possi-
bly external, information can be accommodated in the
form of constraints. They do, however, have two
general shortcomings. First, LP methods are compu-
tationally intensive. This is evidently a problem for a
large database. It is also a problem for a dynamic
database. With increasingly sophisticated real-time
data capture methods, more and more databases are
dynamic. Disclosure detection methods must depend
on the actual contents of the database, and so disclo-
sure detection must be implemented each time the
database changes. As a related point, Gusfield (1988)
noted that in actual systems concerned with statistical
security, a disclosure detection algorithm is typically
part of the inner loop of a larger program that repeat-
edly modifies tables in attempts to eliminate disclo-
sure. Thus any inefficiencies in the detection stage are
magnified many times. The outer loop typically works
through imposition of a variety of heuristic proce-
dures. Their efficacy is then checked through the
disclosure detection inner loop. The second shortcom-
ing of an LP algorithm is that it yields little insight into
the causes of a potential disclosure, and hence does
not suggest how to transform a database to limit
disclosure.
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To address these two shortcomings of the LP
method, we derive a simple and efficient matrix
method that gives identical results in an important
special case. This method, which we call matrix com-
parative assignment (MCA), exploits the network struc-
ture of the LP model when the accessible tables share
a common attribute. MCA is fast enough to be used
with large and dynamic databases (it can become the
fast inner loop of a comprehensive statistical data
security system), and its structure suggests efficient
disclosure limitation transformations.

An Example From Health Care Management. The
rapid introduction of information technology into
health care management has raised sensitivities to
confidentiality issues (Duncan 1997). Figure 1, a pro-
totypical three-dimensional categorical database of
medical data shows the thrust of our work. The table
records the number of patients visiting physicians to
receive treatments. The Patient-Doctor and Doctor-
Treatment tables, which can be obtained by additive
projection, are not sensitive and are publicly accessi-
ble. The Patient-Treatment table is sensitive and, so,
confidential. Disclosure detection addresses to what
extent a data snooper can infer cell entry values for the
Patient-Treatment table.

2. A Structural Approach for
Disclosure Detection

In a structural approach, a database administrator
attempts to detect disclosure potential at the time of
database design. Any structural method must be valid

irrespective of the specific numerical values in the
database. Fellegi (1972) gave a general method for
determining whether a published table (or set of
tables) will admit inferential disclosure. He derived a
set of equations that, if solvable, yield the value of a
confidential datum in terms of the data contained in
the released table(s). The following results follow
directly from Fellegi’s work and the fact that the
nonconfidential projections give linear equations that
underconstrain the cell values in the underlying table.

Proposition 1. Let T � X � Y � Z be a table with
three dimensions X, Y, and Z. It is not possible in general
to determine the cell entries in the projection X � Z given
only entries in the projections X � Y and Y � Z.

Corollary 1. It is not possible, in general, to uniquely
identify an N-dimensional table given any collection of
projections of dimension N � 1 or lower.

This proposition and its corollary show that no
algorithm exists that is guaranteed to yield exact
values of confidential data from related projections.
This might seem reassuring to the database adminis-
trator. We next provide methods, however, by which
a data snooper can get exact or bounded information
about restricted views given the contents of accessible
views of the database. The bounds depend on the cell
values of the accessible tables. In many situations the
bounds obtained are such that sensitive information
would be disclosed. Thus the structural test would not
alert a database administrator to the possibility of
inferential disclosure.

Figure 1 Information Structure of the Health Care Example
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3. Content-Based Approaches for
Disclosure Detection

In contrast to structural approaches, content-based
approaches for disclosure detection depend on the
actual data values of the accessible tables. We model
how inferential disclosure can take place when data
are combined from a set of accessible tables. To do this
we find the maximum and minimum values that can
be assumed by each individual cell of the restricted
view.

The well-known method of Fréchet bounds (Fréchet
1940) may be used to find weak minimum and maxi-
mum values for sensitive cells. These bounds depend
only on the marginal totals, and thus do not take
advantage of the information available to the data
snooper. Some refinements of this approach are given
by Fienberg (1998). As we show next, tight bounds are
achieved when the full two-dimensional tables X � Y
and Y � Z are used. This improvement also extends to
the case where the underlying database is an N-
dimensional categorical database.

Linear Programming Formulation
Given the contents of the accessible tables, linear pro-
gramming can be used to calculate the maximum and
minimum values possible for the entries in the confiden-
tial table. Mathematical optimization methods are used
to assess upper and lower possible values in confidential
two-way tables by Cox (1987) and Sande (1984). The
upper and lower bounds for a sensitive cell are called the
ambiguity width by Robertson (1994) and feasibility interval
by Willenborg and de Waal (1996, p. 101). Some prob-
lems in three-dimensional tables are addressed by linear
programming methodology in Lougee-Heimer (1989).
We extend this approach to an N-dimensional problem.
We view each cell value in each accessible table as the
right-hand side of a linear programming equality
constraint. As suggested by Figure 1, each projection
cell is a sum of cell values in the underlying, full-
dimensional table. Thus, the left-hand side of the corre-
sponding constraint is just that sum. Similarly, a cell in
the confidential table is a sum of cell values in the
full-dimensional table. We take this sum for the confi-
dential cell to be an objective function. The idea is to both
maximize and minimize this objective function subject to

the constraints generated by the values of the accessible
tables. This two-sided optimization procedure produces
bounds for each cell in the confidential table. By the
optimality of LP solution procedures, these bounds are
tight and so cannot be improved without additional
information.

If the maximum and minimum values of some entry
in the confidential table are equal, then that table entry
is uniquely identified. Such a result evidences a dis-
closure. Even with different upper and lower bounds,
the bounds themselves might suggest unacceptable
disclosure. For example, the nonzero lower bounds in
our medical care example may constitute disclosure.

Suppose a Patient-Doctor table and a Doctor-
Treatment table are available as in Figure 2. Using the
LP approach we obtain the (lower, upper) bounds
shown in Figure 3. In the Patient-Treatment (PT) table,
a disclosure has taken place for four out of the nine
entries, since the minimum is greater than 0. Thus a
snooper might get considerable information from
these accessible tables. Note that the solutions ob-

Figure 2 An Example of Nonsensitive Tables

D1 D2 D3

P1 14 1 8 23
P2 2 7 1 10
P3 5 2 4 11

21 10 13 44

T1 T2 T3

D1 8 12 1 21
D2 0 9 1 10
D3 4 7 2 13

12 28 4 44

Figure 3 Results of LP Analysis

PT(j, k) T1 T2 T3

P1 (1, 12) (7, 20) (0, 4)

P2 (0, 3) (6, 10) (0, 3)

P3 (0, 9) (1, 11) (0, 4)
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tained by the model are integer. This is not happen-
stance, as we demonstrate in §4.

4. Two-Dimensional Views:
Networks and Matrices

In the common case where two-dimensional views of
a three-dimensional table are made accessible, the
linear programming formulation has a network struc-
ture that can be exploited to develop a simple and
efficient procedure. Cox (1992, 1995) has exploited a
network structure for a two-dimensional problem.
Ernst (1989) demonstrated some general problems
with network formulations when N � 3. (See also Cox
1980, 1987, Cox et al. 1986, Gusfield 1988, Sullivan and
Zayatz 1991, Rowe 1991.) Cox (1992) identifies the case
of N � 3 as an important research problem. We use
the health care management example introduced in §1
with N � 3 to illustrate the network structure of the
problem where two-dimensional views are made ac-
cessible.

Network Formulation of the Health Care Example.
The health care example can be recast as a collection of
smaller problems, each with a special network struc-
ture. Using this insight, we develop simple solution
procedures that are compactly expressed as matrix
operators on the two-dimensional, accessible views.

Denote the underlying three-dimensional table by
T ijk where i � 1, . . . , I, j � 1, . . . , J, k � 1, . . . , K.
The public Patient-Doctor table is the projection T ij�

and the public Doctor-Treatment table is the projec-
tion T�jk, while the confidential Patient-Treatment
table is the projection T i�k. Each of the J constraint
pairs of the first and second projections is a node-arc
incidence matrix, and all variables are integer-valued.
Hence the optimization problem may be decomposed
into J independent transportation problems (Chvátal
1983), where for each j,

1. there are K source nodes with supply T�jk;
2. there are I destination nodes with demand T ij�;

and
3. each variable T ijk represents an arc from source

node k to destination node i.
Figure 4 depicts the resulting network for the 3 � 3

� 3 health care example. It consists of three ( J)

separate, bipartite, fully connected subnetworks. Each
of these subnetworks is associated with a different
doctor ( j), and can be thought of as representing the
“flows” of treatments from a particular doctor to each
of the patients (i). Each subnetwork has three (K)
source nodes and three (I) destination nodes. These
correspond to the three rows of the Doctor-Treatment
table and the three columns of the Patient-Doctor table
as shown in §3. Finally, in each subnetwork the sum of
the “supplies” available at each source node is equal
to the sum of the “demands” at each destination node.
This follows from the fact that the row sums of the
Doctor-Treatment table equal the column sums of the
Patient-Doctor table. The following definitions and
observations generalize this insight.

Definition 1. A network is densely connected (DC)
iff (a) it is a directed, bipartite graph; (b) the source
nodes are in one partition and the destination nodes
are in the other; (c) each source node is connected to
every destination node; and (d) the sum of the sup-
plies in the source partition is equal to the sum of the
demands in the destination partition.

Figure 4 Network Structure of the LP

Note. Example cell entries in parentheses.
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Observation 1. Suppose the constraint equations
arising from the projection T�jk are multiplied by �1.
Then the constraints of our problem can be represented
by a collection of DC subnetworks. Specifically, (a) each
constraint in the LP is a node in a subnetwork, (b) if the
right-hand side of the constraint is positive then it is a
source node and if it is negative then it is a destination
node; (c) each variable is represented by an arc whose
source is a constraint in which its coefficient in the LP
matrix is �1 and whose destination is a constraint in
which its coefficient is �1. Since each variable is present
in only two constraints, each arc has a unique source and
unique destination in the subnetwork.

Observation 2. The objective function of the linear
programming formulation is a linear combination of as
many variables as there are subnetworks. Further, since
each variable in the objective function appears in only
one subnetwork, the linear program can be decomposed
into separate single variable optimization problems.

This is illustrated in Figure 4, where each doctor
defines an optimization problem.

Observation 3. The optimal objective function
value of the linear program is the sum of the optimal
values of each subnetwork.

We next present two procedures, VAP-1 and VAP-2
(VAP stands for value assignment procedure), that
compute the maximum and minimum flows in a
densely connected network; then we prove the opti-
mality of these procedures.

Procedure VAP-1(arc, network)��compute max flow on arc in a
DC network

S :� supply(arc, network)
D :� demand(arc, network)
MaxV :� min(S, D)
return MaxV

End VAP-1

To illustrate VAP-1, consider the subnetwork for
Doctor 1 at the top of Figure 4. VAP-1 gives the
maximum flow on the arc joining D 1T 1 and D 1P 1 as
the minimum of D 1T 1 and D 1P 1.

Proposition 2. VAP-1 computes the maximum flow on
an arc in a densely connected network.

Proof. Follows directly from the bipartite and fully

connected nature of the network. If the supply S exceeds
the demand D, the maximum possible flow is D, since no
arc leaves the destination node. A flow of D is feasible
since the sum of the network supplies equals the sum of
the demands. If D � S, a flow of S is the maximum
possible, and is feasible, once again because the sum of
supplies equals the sum of demands. �

Corollary 2. Let S 1, . . . , S J be the J densely con-
nected networks equivalent to the constraint matrix of the
linear programming formulation. Applying VAP-1 to each of
these J instances and summing the result gives the maxi-
mum value of the objective function of the LP.

Proof. This follows directly from the decompos-
ability of the overall network. �

Similarly, we define an algorithm that determines
the minimum flow on an arc in a densely connected
network.

Procedure VAP-2(arc, network) �� compute min flow on an arc in
a DC network

i :� index of destination node of arc
S :� supply(arc, network)
D[j] :� demand of destination node j
minV :� S
for j � i

minV :� minV � D[j]
if minV � 0

return minV
else

return 0
End VAP-2

Referring again to Figure 4, the minimum flow along
the arc joining D 1T 1 and D 1P 1 can be determined by
VAP-2. Since the supply at D 1T 1 cannot be completely
consumed by destination nodes D 1P 2 and D 1P 3, the
minimum flow is 8 � (2 � 5) � 1.

Proposition 3. VAP-2 computes the minimum flow on
an arc in a densely connected network.

Proof. The flow given by the procedure is clearly
feasible, since all the remaining source nodes are free to
supply the sink node of the given arc. It is also the
minimum flow, since if the demands of all other nodes
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have been met, the remainder must be directed to the
arc’s sink node. �

Corollary 3. Let S 1
. . . S J be the J densely connected

networks equivalent to the constraint matrix of the linear
programming formulation P. Applying VAP-2 to each of
these J instances and summing gives the minimum value of
the objective function of the LP.

Proof. Again, this follows directly from the de-
composability of the network. �

In this section, we have shown that the linear
programming formulation can be interpreted as a
collection of network flow problems, each having an
especially simple solution. While disclosure detection
via linear programming can, at least theoretically, be
done in polynomial time, the new algorithms given
here are attractive because they eliminate the need for
translation of the detection problem to LP format, and
can, as we will demonstrate further, considerably
reduce the computational burden.

The Matrix Comparative Assignment Approach.
The logic embedded in procedures VAP-1 and VAP-2 can
be recast as simple, but original, matrix operations.
Consider the basic operation used in the VAP-1 proce-
dure. In each subnetwork the minimum of the supply
value and demand value associated respectively with
the source and destination of the variable being max-
imized is computed. The value of the objective func-
tion for the LP (by Corollary 2) that determines the
maximum value of a cell in the confidential table is the
sum of the values returned by VAP-1 applied to each
subnetwork structure. The maximum value that a cell
in the confidential table can take is the sum of the
minima of “supplies” and “demands” of subnetwork
structures. These supplies and demands are simply
cell values of the accessible tables. This insight (and a
complementary one for VAP-2) suggests two new ma-
trix operators, Cell-Maxima �V and Cell-Minima �V.
They encode the logic embedded in VAP-1 and VAP-2.
These matrix operations are not only straightforward
and intuitively appealing, but they are fast to compute
and yield insights to disclosure limitation through cell
suppression.

Definition 2. Let A � [a ij] be an I � J matrix and
B � [b jk] be a J � K matrix. The Cell-Maxima operator

�V is a binary operator on ( A, B) that yields an I � K
matrix C U defined by ik entries

C ik
U � �

j

min�aij, bjk�,

for i � 1, . . . , I, k � 1, . . . , K.

Note the analogy with ordinary matrix multiplica-
tion: For the cell-maxima operator we use the sum of
the minima rather than the sum of the products. Note
also that the cell values a ij, b jk, which are arguments to
the minima operator, are just those supplies and
demands referred to in the VAP-1 procedure.

Definition 3. With the same conditions as in Def-
inition 2, the Cell-Minima operator �V is a binary
operator on ( A, B) that yields a matrix C L of dimen-
sion I � K defined by ik entries

C ik
L � �

j
� aij � �

p�k

bjp� �

for i � 1, . . . , I, k � 1, . . . , K, where [ � ]� is the
maximum of zero and the argument.

The cell-minima operation is the logic encoded in
VAP-2 to compute the surplus supply, if any, at the
source node of the variable being minimized. Since the
cell-max operation is the same as VAP-1 and the cell-
min operation is the same as VAP-2, they yield the same
bounds as the LP approach.

Applying the two matrix operators defined above to
the medical example, we find

PT U � PD �� DT

� � 14 1 8
2 7 1
5 2 4

� �� � 8 12 1
0 9 1
4 7 2

�
� � 12 20 4

3 10 3
9 11 4

� ,

PT L � PD �� DT

� � 14 1 8
2 7 1
5 2 4

� �� � 8 12 1
0 9 1
4 7 2

�
� � 1 7 0

0 6 0
0 1 0

� .
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We note that the cell-minima operator can be
expressed in terms of the cell-maxima operator and
standard matrix operators. Specifically,

A �� B � AE � A �� �B�E � I��, (1)

where E is a matrix of all ones and I is the identity
matrix, each of appropriate dimensionality.

Using these operators we develop the matrix com-
parative assignment (MCA) algorithm to find the
bounding matrices for a confidential table. This algo-
rithm is given for two-dimensional accessible tables,
but may be extended to higher dimensions under
certain conditions.

Algorithm MCA.
1. Identify two jointly confidential attributes, i and

k, for example (Patient and Treatment). Identify all
accessible tables which have one or the other of these
attributes (Patient-Doctor and Doctor-Treatment).
From that set, choose a pair of tables which have a
nonconfidential attribute in common, for example,
R(i, j) and R( j, k).

2. Find x j
U(i, k) � R(i, j) �V R( j, k) and x j

L(i, j)
� R(i, j) �V R( j, k). These are the upper and lower
bounds for x(i, k) obtained through j.

3. Repeat Step 2 for each available j.
4. The tightest MCA bounds for x(i, k), denoted

x U(i, k) and x L(i, k), are given by

x U�i, k� � min
j

x j
U�i, k�, x L�i, k� � max

j
x j

L�i, k�.

Note that the MCA approach is not limited to
inference over a single pair of tables. It is possible to
use sequences of pairs of tables to discover bounds.
For example, if the Patient-Doctor table is not avail-
able, but a Patient-Condition table and Condition-
Doctor table are, a snooper can use the latter two to
arrive at bounds for the Patient-Doctor table. This,
coupled with a Doctor-Treatment table, give bounds
for the Patient-Treatment table. However, the result-
ant bounds for this indirect approach may be consid-
erably looser than can be achieved by more direct
means. That there can be no improvement by the
indirect method is substantiated by Proposition 4,
whose proof is straightforward given that (PD �V DC)

�V CT � PC �V CT for any CT of appropriate
dimensionality.

Proposition 4. MCA implemented indirectly through
an intermediate table cannot produce tighter bounds than
direct MCA.

Computational Complexity and Execution Time.
Let A � [a ij] be an I � J matrix and B � [b jk], a J � K
matrix. Then, by the definition of the operator �V, the
calculation of each cell of A �V B requires J compari-
sons and J � 1 additions. Because A �V B is of
dimension I � K, a total of IJK comparisons and I( J
� 1) K additions are needed for computing the upper
bounds on all cells of the sensitive table. A similar
analysis shows that the operation A �V B requires J(K
� 1) additions/subtractions and J comparisons for
each sensitive cell, giving a total of IJ(K � 1) K
additions/subtractions and IJK comparisons for the
entire sensitive table.

As a concrete example, using a 300 MHz Pentium II
and code written in C��, MCA requires less than a
second to compute all 62,500 upper bounds for a 250
� 250 sensitive table. Less than a minute is required to
compute the same number of lower bounds, using the
algorithm in Definition 3. Depending on the speed of
multiplication relative to addition/subtraction (which
is hardware dependent), the formulation in Equation
(1) may be considerably faster. This shows that the
matrix operators are quite fast, suitable in fact for most
dynamic database applications with very large tables.

Extensions to Higher Dimensions. The MCA ap-
proach is extensible to higher dimensions under cer-
tain conditions. For example, if the two tables, Patient-
Doctor-Symptom and Doctor-Symptom-Treatment,
were available, then a three-dimensional analog of
MCA could compute bounds on the confidential
Patient-Treatment table. Intuitively, the maximum
number of treatments T 1 that patient P 1 could have
had, for example, is the sum over all doctors and
symptoms of the minimum of the number of times P 1

visited a doctor with that symptom and the number of
times that doctor prescribed T 1 for that symptom.
Since in this case we have that the number of patients
seen by doctor j with symptom k must equal the
number of treatments given by doctor j for symptom
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k, this upper bound is feasible. Similar reasoning
yields a higher-dimensional version of the lower-
bounding operator.

More generally, we can define the following.
Definition 4. Let A � [a ijk] be an I � J � K array

and B � [b jkl] be a J � K � L array. The Cell-Maxima
operator �V is a binary operator on ( A, B) that yields
an I � L matrix C U defined by il entries

C il
U � �

j,k

min�aijk, bjkl�,

for i � 1, . . . , I, l � 1, . . . , L.
Definition 5. With the same conditions as in Def-

inition 4, the Cell-Minima operator �V is a binary
operator on ( A, B) that yields a matrix C L of dimen-
sion I � L defined by il entries

C il
L � �

j,k
� aijk � �

p�l

bjkp� �

,

for i � 1, . . . , I, l � 1, . . . , L.
These definitions clearly extend to higher dimen-

sions, and allow us to characterize those situations in
which MCA is applicable. Let T be an N-dimensional
table with two attributes i and l which, if appearing
together in any projection, constitute a disclosure.
Then we may apply the MCA algorithm to any two
projections A and B (of dimension N � 1 or lower) of
T provided i is in A but not B, l is in B but not A, and
all other attributes appearing in A also appear in B.

Likelihood of Disclosure. The Matrix Compara-
tive Assignment (MCA) approach also gives insight
into how often a database [T ijk] is vulnerable to
inferential disclosure from related, but accessible, ta-
bles. In principle, this question is unanswerable since
millions of databases exist, each with different char-
acteristics. Access to a meaningful number of these
databases is impractical, for confidentiality reasons
among others. However, we can use plausible proba-
bility models for database entries T ijk and derive
suggestive results. Broadly, the models we consider
are sparse-table models and mixture models. We focus our
attention on one type of disclosure: lower bounds
greater than zero for cell entries in the sensitive table
[T i�k], based on the released tables [T ij�] and [T�jk].

The MCA approach provides direct evidence of
when a cell lower bound is greater than zero. From the
structure of the cell-minima operator �V as given in
Definition 3, we can deduce that a nonzero disclosure
will occur for cell ik when

X � Tijk � Y � �
r�i

�
p�k

Trjp, for any j � 1, . . . , m.

For simplicity, take {T ijk} to be exchangeable, and let p
be the probability that X � Y. Further assume that the
T ijk are mutually independent random variables. Now
j is different for each of the events defined by the
above inequality so the left- and right-hand side
variables are independent. Therefore the m events
over j are independent. Disclosure occurs if any one of
the events occur. Hence the probability of a disclosure
in the ik cell is 1 minus the probability of no disclosure
for any of the events, or q � 1 � (1 � p) m.

Sparse-Table Models. The original database [T ijk]
is sparse if many of the cell values are 0 and values
greater than 1 never or very rarely occur. It might
seem that with generally small entries, a disclosure
because of a lower bound on a cell entry above zero
would rarely occur. This intuition overstates. To es-
tablish this, we model T ijk as independent and identi-
cally distributed Bernoulli random variables with pa-
rameter �. A cell is then 0 with probability 1 � �. For
simplicity, we take I � J � m, say. In this case, X 	
Bernoulli(�) and Y 	 Binomial((m � 1) 2, �). Then

P�X � Y� � P�X � 1, Y � 0� � ��1 � �� �m�1� 2.

In general, the probability of disclosure is maximized
for �* � 1/((m � 1) 2 � 1). For this �, the probability
of nonzero disclosure for a cell and the expected
number of nonzero disclosures in the table can be
relatively high. As the size of the table m increases, the
expected number of nonzero disclosures decreases,
approaching a limiting value of 1

e (where e
� 2.718 . . .). Figure 5 presents results for different
values of m.

Mixture Models
For tables that are not sparse, a reasonable and com-
mon probability model for the cell entries is that of
independent Poisson distributions where the mean �
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varies from cell to cell. We take the variation in cell
means to have a probability distribution F(�). A
standard and useful approach is to take F to be a
gamma distribution with parameters � and 	, for
example. With � then having mean �	 and variance
�	2, the mean and variance of X are �	 and �	(	 � 1),
while the mean and variance of Y are (m � 1) 2�	 and
(m � 1) 2�	(	 � 1). The difference Y � X has mean
m(m � 2)�	 and variance (m 2 � 2m � 2)�	(	 � 1).
A disclosure occurs when Y � X 
 0. Based on this
model, Figure 6 gives the expected number of disclo-
sures, based on a normal approximation for Y � X, in
the sensitive table, for some combinations of � and 	,
and m between 2 and 10. In general, the expected
number of disclosures is high with small values of m
and with a small value of �, corresponding to a large
coefficient of variation (1/��) of the gamma distribu-
tion, and is relatively insensitive to 	.

5. Disclosure Detection for Linear
Combinations

In this section, we show that bounds on linear combi-
nations of sensitive cells can be obtained that are
tighter than those obtained using aggregations of
single-cell optimizations. In our previous develop-
ment, determinations of upper and lower bounds
were done univariately, i.e., by considering only one
confidential cell at a time. In this section we extend
this development to bounds on functions of more than
one cell value. We show by way of an example that
this more efficient estimation is indeed possible. We
find bounds on linear combinations of sensitive data
that are tighter than those obtainable from a univariate
analysis.

The data for this example were obtained from a
Carnegie Mellon University student database. Using
aggregation operations which would typically be con-
sidered nonrevealing of sensitive data, this relatively
large database was condensed to the tables presented
here in Figure 7. Thus it is a practical example of what
a serious data snooper might be able to achieve.

Two tables were generated—a Professor-Student
(PS) table showing the number of times a student had
taken courses with a professor and a Professor-Grade
(PG) table showing the grading patterns of the profes-
sors. These tables were public information.

We calculated univariate upper and lower bounds
on the grades each student could have received. From
these bounds, we used a counting scheme to obtainFigure 6 Expected Number of Disclosures in Tables of Size m � m

� m Under Gamma Mixture of Poisson Model

� 	

m

2 3 5 10

0.1 1 2 3.4 5.2 2.4
0.2 1 2 3.0 3.1 0.3
0.5 1 2 2.3 0.9 0.0
1.0 1 2 1.5 0.1 0.0
0.1 5 2 3.0 3.2 0.3
0.2 5 2 2.5 1.4 0.0
0.5 5 2 1.6 0.2 0.0
1.0 5 2 0.9 0.0 0.0
0.1 100 2 3.0 3.1 0.3
0.2 100 2 2.5 1.3 0.0
0.5 100 2 1.5 0.1 0.0
1.0 100 2 0.8 0.0 0.0

Figure 7 Professor-Student and Professor-Grade Tables

PS S1 S2 S3 S4 S5 S6

P1 1 2 1 2 1 1
P2 2 0 2 0 0 0
P3 0 1 0 1 1 1
P4 0 1 0 1 2 2

PG B B� A� A A�

P1 0 0 5 3 0
P2 0 0 0 2 2
P3 1 3 0 0 0
P4 0 4 0 2 0

Figure 5 Probability of Disclosure in Tables of Size m � m � m Under
Sparse-Table Model

m 2 3 5 10

� maximizing P(disclosure) 0.50 0.20 0.059 0.012
Maximum P(disclosure) 0.25 0.082 0.022 0.005
Expected number of disclosures 1.00 0.74 0.56 0.45
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upper and lower bounds on students’ grade point
averages (GPA). Specifically, a student’s univariate
maximum GPA was calculated by assuming that she
actually received the number of A� grades equal to
the univariate maximum for A�, the number of A
grades equal to that maximum, and so forth until her
grade total equaled her course total. The univariate
minimum was computed analogously, starting in-
stead from B.

A multivariate estimation of GPA was calculated
using the LP approach with all accessible cell values as
constraints. An expression representing student GPA
was used as the objective function. A comparison of
the bounds in Figure 8 shows that the multivariate
approach can give tighter bounds than the univariate
approach.

6. Disclosure Limitation
When disclosure detection methods flag a confidenti-
ality risk problem, data can only be released after the
application of appropriate disclosure limitation meth-
ods. For any proposed limitation method, a disclosure
audit should be performed. This section shows the
advantages of the LP method and the MCA method in
a disclosure audit of the tables protected through
disclosure limitation.

Disclosure limitation methods for tabular data in-
clude rounding, random rounding (Nargundkar and
Saveland 1972), controlled rounding (Fellegi 1972,
Kelly et al. 1990), cell suppression (Carvalho et al.
1994), interval protection (Gopal et al. 1998), and
perturbation (Duncan and Fienberg 1998). In most of
these procedures, marginal totals are maintained or
nearly maintained. Consider rounding to base b (ev-
ery cell entry is rounded to the nearest integer multi-

ple of b). In the LP formulation, instead of equality
constraints, inequalities would be introduced. These
inequalities reflect the imprecision in the snooper’s
knowledge of the actual values. The goal in disclosure
limitation is to increase the size of the base b until all
bounds on confidential cell entries are adequately
wide. The LP approach permits a disclosure audit for
each base b.

If the projection tables have been modified by cell
suppression, the MCA method, with its inherent com-
putational advantages, can be used. To see this, recall
that in obtaining bounds for a given cell in the
confidential table, pairs of values in the accessible
projections are compared by either the cell-min or
cell-max operators. Suppose that one of such a pair is
suppressed. Then for the upper bound, which uses the
cell-min operator, simply take the value in the sup-
pressed cell to be indefinitely large. The minimum of
this pair is then the value of the unsuppressed cell.
Clearly the upper bound may only be increased as a
result. If both cells in a min comparison are sup-
pressed, the minimum is taken as infinite. In this case
the overall upper bound will also be infinite. Similar
remarks apply for the lower bound, substituting a
value of zero for the suppressed cell or cells if it is in
the A matrix (supply node) and infinity if it is in the B
matrix (demand node). Note the lower bounds may
only decrease when suppressions occur. These exten-
sions are easily incorporated into the overall algo-
rithm.

As further illustration, consider suppression to en-
sure a lower bound of zero for a sensitive cell. The
cell-min operator yields a lower bound of zero for
entry c ik if and only if

aij 
 �
p�k

bjp, � j.

For illustration, in the medical example in §4 the
current lower bound is 7 for entry c 12. This value could
be reduced to zero if a cell suppression pattern would
allow that

a1j 
 bj1 � bj3, j � 1, 2, 3.

For j � 1, this suggests suppressing cell a 11 or (cell b 11

or cell b 13); for j � 2, no cell need be suppressed; and

Figure 8 Grade Point Average Range

Multivariate GPA Univariate GPA

S1 3.40–3.85 3.40–3.85
S2 2.77–3.33 2.66–3.44
S3 3.40–3.85 3.40–3.85
S4 2.77–3.33 2.66–3.44
S5 2.66–3.33 2.55–3.44
S6 2.66–3.33 2.55–3.44
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for j � 3, this suggests suppressing cell a 13 or (cell b 31

or b 33). Since all three of the above inequalities must
hold, there are nine possible cell suppression patterns
suggested.

Any one of these cell suppression patterns are
candidates as cell suppressions. Any of them would be
adequate to drive the lower bound to zero for the
sensitive cell entry if the suppressed cell entries in the
A matrix could be taken to be small enough, zero, for
example, or the cell entries in the B matrix large
enough. However, they cannot be so taken because of
certain other constraints on the tables. First, even
though we assume that neither the row and column
marginals, nor the grand total, are explicitly released,
the grand total of the cell counts is known (by simple
summation) if either original released table is left
totally unsuppressed. Thus the cell suppression pat-
tern (a 11, a 13) may not be adequate because both
entries cannot be taken to be zero. Indeed their sum
must be 22. But in order to have a lower bound on c 12

of zero,

a11 
 9 and a13 
 6.

Since this is impossible, the cell suppression pattern is
inadequate. Second, the column totals of table (matrix)
A must equal the row totals of table (matrix) B. A
similar analysis shows that the other identified cell
suppression patterns are also inadequate. To deal with
this problem, we suggest considering the identified
cell suppression patterns as primary cell suppressions.
Complementary cells need to be suppressed to mitigate
the information gain to the data snooper of implicit
knowledge of the marginal totals.

One approach to finding the complementary cells to
suppress is to treat tables A and B separately, and use
mixed integer programming methods (see, e.g., Kelly
et al. 1992). Such methods typically use binary vari-
ables to flag whether a cell is a suppression or not.
Then the sum of the binary variables is minimized
under the constraints imposed by the unsuppressed
cells. Although this would work, the procedure will
identify more cells to suppress than necessary. To
illustrate this, note that with (a 11, b 31) as primary cells
to suppress, we can use as complementary suppres-
sion cells a 13, a 31, b 11, and b 13. Thus the task can be

accomplished by suppressing a total of six cells. We do
not need to suppress either cell a 33 or cell b 33, cells
which would in the two-way table framework have to
be suppressed to complete a cycle of suppressed cells
in each table (Willenborg and de Waal 1996, p. 92).
Developing computationally efficient disclosure limi-
tation methods in this context is a challenging prob-
lem. Some initial efforts in this direction are in Duncan
et al. (1997).

7. The Relative Merits of MCA
and LP

The MCA approach has two major advantages over
the LP approach. The first advantage is computa-
tional; the second, conceptual. MCA assures optimal
results with very fast computation when applied to
tightly-linked projections of the original N-way table.
Working through a maximum of N � 2 such proce-
dures, the MCA algorithm converges on the tightest
bounds. The MCA algorithm is a remarkably simple
means for detecting disclosure potential in tables.
Therefore it can be easily implemented for standard
disclosure audits. As we have seen in §§5 and 6, MCA
has the conceptual advantage that it identifies pre-
cisely how cell entries in the released tables influence
the upper and lower bounds of the confidential table.
This is useful in seeing how disclosures arise and in
developing disclosure limitation procedures.

The LP approach works directly on the N-dimen-
sional data and generates the tightest bounds in one
pass, but with substantially more computation. On the
other hand, the LP approach is more flexible in
modeling new situations. If the data snooper knows
about one of the entries of the confidential table, then
this knowledge can be captured in the LP approach by
simply adding a new constraint to the problem. Also,
as we saw in the previous section, the LP approach
readily deals with disclosure audits of tables protected
through rounding methods. Further, multivariate op-
timization is easily implemented using the LP ap-
proach, since it requires only a simple change in the
objective function.
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8. Conclusions
It is broadly understood that there can be no quick and
easy solution to confidentiality and data access prob-
lems. Although design-time disclosure limitation
methods do apply to direct disclosure, we have shown
that there is no design-time or structural approach
which comprehensively addresses the problem of in-
ferential disclosure.

We have considered disclosure risk when multiple
projections or views of an underlying database are
published. Using linear programming to arrive at
bounds on sensitive information is not new; however,
the LP bounding procedure has been applied only to a
single table, rather than multiple views. Our results
establish that an additional level of disclosure check-
ing is warranted. An organization collecting sensitive
information must not only check each individual table
it publishes; it must also look at the cumulative infor-
mation contained in multiple published tables. This
article provides an analysis of the probability of dis-
closure for tables.

A second contribution of this article is to the special
and important case of published two-dimensional
views of the higher-dimensional table. We have devel-
oped a fast detection algorithm (MCA) based on new
matrix operations. We have also explained how this
method relates to the general area of statistical data-
base protection.

Future work in this area could focus on disclosure
limitation for suites of published tables. Conventional
single-table measures (cell suppression, rounding, and
noise masking) can be expanded to cover the entire
suite. For large datasets, the computational burden
may be large; heuristics of the type now used in cell
suppression, for instance, might be adapted to the
multiple-table case. In any event, with increasing
availability of data in numerous forms, defensive
measures considered prudent yesterday need rethink-
ing today to provide confidentiality tomorrow.1

1 This research was supported in part by the National Science
Foundation grant NSF IRI-9312143 and by the U.S. Army Research
Office under grant DAAH04-94-6-0239. The authors thank Mark
Kamlet for his suggestions leading to §5. They also thank the
referees and the associate editor for their insightful comments.
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