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Abstract: 

Harmful algae blooms (HABs) have caused millions dollars in annual losses to the 
aquaculture industry, inhibited beach recreation, and have threatened marine and human 
health.  HABs and red tides can develop suddenly and their frequency, geographic range, 
and intensity have increased over the past decade.  A possible source for spreading and 
seeding new areas expanding the geographic range of HABs is ballast water.  The process 
of ballast water discharge has been identified as a primary vector for the translocation of 
non-indigenous species (NIS) and invasive species.  National and international efforts are 
currently underway to address the impact of NIS and invasive species.  Policy is being 
developed detailing stringent rules to kill, remove, or otherwise inactive organisms in 
ballast water prior to or upon discharge.  Currently, vendors are developing technologies 
to treat ballast water and U.S. and international facilities are testing these technologies to 
verify their efficacy.  Ultraviolet (UV) radiation is commonly employed in ballast water 
treatment technologies.  Previous studies have shown that UV light is effective for 
disinfecting drinking water, but the response of non-pathogenic and marine organisms is 
largely unknown.   

The purpose of this research was to measure the viability of the durable red-tide forming 
dinoflagellate, Lingulodinium polyedra following UV treatment.  Two methods were 
used to measure the viability signal; manual epifluorescence microscopy with correlated 
viability stains and Pulse Amplitude Modulated (PAM) fluorometry to measure the 
physiological state of the organism following UV treatment. The number of cysts was 
also enumerated.  The results showed that there was a significant decrease in the number 
of living L. polyedra cells following a UV treatment of more than 100 mWs cm-2.  The 
results also have showed a significant increase in the number of L. polyedra cysts 
following UV treatment as low as 50 mWs cm-2. 

Keywords: Ballast water, Pulse Amplitude Modulated (PAM) fluorometry, fluence, cysts   
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I. Introduction	
Harmful algae blooms (HABs, e.g. ‘red tides’) are natural phytoplankton blooms that 

cause millions of dollars in annual losses to the aquaculture industry (Alonso-Rodriguez 
R. and F. Paez-Osuna 2003), threaten marine mammals and human health (Anderson 
1997), and inhibit beach recreation (Backer et al. 2003).  HABs are triggered in localized 
areas that are rich in inorganic nutrients and occur more frequently in the summer months 
when days are longer and water temperatures are the highest (Omand et al. 2011).  
Coastal advection (tidal currents and stirring, internal tides, and internal wave induced 
circulation) has also been linked to triggering phytoplankton blooms, which can make 
predicting their occurrence extremely difficult (Cloren J. E. and R. Dufford. 2003; 
Lennert-Cody C.E. and P.J.S. Franks 1999).   

HABs can develop suddenly.  Most of the red tide dinoflagellates form dormant 
cysts that can survive in the oceans sediment for numerous years (Pfiester L.A. and D.M. 
Anderson 1987). Under appropriate environmental conditions, the resuspended cysts 
germinate to produce red tides and HABs.  The process of encystment is characterized as 
a mode of escaping unfavorable or adverse conditions.   

  The frequency of HABs, geographic range and intensity have increased since the 
1970s and appear to be stimulated by nutrient discharges in domestic, industrial, and 
agricultural wastes (Lam C.W.Y and K.C. Ho 1989). Climate changes combined with 
nutrient runoff could further increase the frequency of HABs in years to come (Camacho 
et al. 2007).  A possible source for seeding new areas expanding the geographic range of 
HABs is ballast water.     

Nearly all commercial and military ships and some leisure vessels carry ballast water 
onboard. The ballast water is stored in tanks aboard a ship and serves a variety of 
purposes: management of the ship’s trim and list, providing stability during transit, and 
maintaining draft during the on-loading and off-loading of cargo or during changing 
weather conditions.  The ballast water volume for any given ship can be tremendous at 
times with volumes reaching thousands of metric tons.  Frequently, ship’s tanks will be 
ballasted in one port and de-ballasted in another.  This process has been identified as a 
primary vector for the translocation of non-indigenous species (NIS) and invasive 
species.  This transporting process of NIS and invasive species has not only caused 
significant ecological and financial problems in the United States (US) and worldwide, 
but it may be contributing to the spread of toxic dinoflagellates and their cysts to 
nonnative regions (Camacho et al. 2007).    

National and International efforts are currently underway to mitigate the movement 
and impact of NIS and Invasive species.  The International Maritime Organization 
(IMO), which governs international maritime law, ratified the International Convention 
for the Control and Management of Ships’ Ballast Water and Sediments (IMO 2004), 
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which sets limits on concentrations of viable organisms in order to reduce the transport 
and transfer of NIS by ships' ballast water.   The US Environmental Protection Agency 
(EPA) in collaboration with US Coast Guard (USCG) (Environmental Standards 
Division, Washington DC) and US Naval Research Laboratory (Center for Corrosion 
Science and Engineering, Washington DC) developed similar standards by creating the 
Generic Protocol for the Verification of Ballast Water Treatment Technology through the 
Environmental Technology Verification (ETV) program.  Both documents outline 
stringent standards specifying the maximum number of viable organisms allowed in a 
vessel’s discharged ballast water resulting in the need for on-board ballast water 
management systems (BMWS).  These BMWS must kill, remove or otherwise inactive 
organisms prior to or upon discharge of ballast water.  Commercial vendors are currently 
developing technologies to treat ballast water to concur with the set standards.  These 
BMWS must also undergo verification testing outlined by the IMO and EPA/USCG prior 
to being employed on a vessel.  The verification of BWMS is currently taking place at 
multiple US facilities and international sites around the world.  

Ultraviolet (UV) light radiation is commonly employed in BWMS as a treatment 
approach to kill or otherwise inactivate organisms suspended in a fluid prior to discharge 
of ballast water (Tsolaki E. and E. Diamadopoulos 2010).  The mechanics of inactivation 
involves UV light being absorbed by DNA or RNA pyrimidine bases (thymine or 
cytosine in DNA and uracil or cytosine in RNA) resulting in a photochemical reaction 
where a chemical dimer forms between the two bases.  This dimer inhibits the formation 
of new DNA (or RNA) chains during the process of mitosis and gene expression thus 
resulting in an inability to replicate (Bolton J.R. and K.G. Linden 2003).  Studies have 
shown that UV light is very effective for disinfection of drinking water and wastewater 
(Meulemans 1987; Von Sonntag C. and H.P. Schuchmann 1992; Jacangelo et al. 1995), 
however, the response of non-pathogenic and marine organisms to UV light is largely 
unknown.  IMO and EPA/USCG guidelines categorize organisms by size classes based 
on minimum dimensions: ≥ 50 μm (nominally zooplankton), ≥ 10 μm and < 50 μm 
(nominally protists), and < 10 μm (nominally microalgae and bacteria).  Facilities that 
perform verification testing of BWMS examine the respond of the assemblage of 
organisms in each size class, and the organisms that are tested are indigenous to region of 
the test facility.        

Lingulodinium polyedrum (Stein) Dodge is a red-tide forming dinoflagellate that has 
been linked to the production of yessotoxin (Yasumoto T. and A. Takizawa 1997).  
Mussels, scallops, clams, and gastropods contain this toxin, which can lead to Diarrhetic 
shellfish poison (DSP) (Camacho et al. 2007).  Lingulodinium polyedra is a sophisticated 
organism with three main processes that comprise its life cycle:  vegetative reproduction, 
formation of ecdysal stages, and sexual reproduction (Lewis, J. and R. Hallet 1997).  L. 
polyedra can morphologically transition from a motile planozygate to a mature 
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hypnozygote within 10-20 minutes (Kokinos J. P. and D.M. Anderson 1995) triggered by 
an ambient change or adverse conditions.  When favorable conditions return, cysts can 
germinate within 24 hours (Balzer 1996).  L. polyedra also produces concentrations of 
melatonin, which functions as a mediator regulating the organism’s circadian rhythm 
(Balzer 1996).  Research has shown that the formation of cysts by L. polyedra is not only 
a protective mechanism, but also a photoperiodic response as melatonin provides the 
internal signal for darkness as encystment occurs with shortening of days associated the 
decrease in temperature resulting in resting cyst formation during winter months (Balzer 
I. and R. Hardeland 1991; Balzer 1996).  Finally, L. polyedra has the ability to excrete 
ultraviolet-absorbing compounds known as mycosporine-like amino acids (MAA).  
Experiments have shown that excreted metabolites by the organism contributed to both 
the particulate and dissolved organic pools with maximum ultraviolet (UV) absorption at 
360 nm allowing the organism to protect itself from UV-B radiation (M. Vernet and K. 
Whitehead 1996). The complexity of L. polyedra life cycle, rapidity of encystment and 
excystment, sensitivity to ambient conditions mediated by internal signal, and use 
defense mechanisms characterizes L. polyedra as durable organism with the ability to 
survive. 

The purpose of this research was to test the hypothesis that increased exposure to UV 
treatment will kill or inactivate the durable organism, L. polyedra.  The viability of the 
organism was measured using multiple techniques (epifluorescence microscopy with 
viable stains and Pulse Amplitude Modulated [PAM] fluorometry) and the number of 
cysts was enumerated at set time points.  Two UV instruments were used to treat samples 
allowing for a wide range of UV doses to be evaluated.  The research was conducted at 
the Naval Research Laboratory in Key West, Florida (NRL-KW).  NRL-KW is a 
laboratory that conducts corrosion research for the United States Navy as well as 
biological research on ballast water and biofouling.  The facility provided all of the 
necessary tools and equipment (e.g., incubators, microscopes, biological safety cabinets, 
etc.) to complete this research project.  

II. Objectives 

The objective of this research was to examine the response of Lingulodinium 
polyedra to UV treatment at various dose treatments.  Viability was measured using 
multiple techniques at set times following treatment.  Cysts were enumerated at each of 
the set time points to further assess the organism response.  Collected data from each 
experimental trial was generated and assessed to test the stated hypothesis.    

III. Hypothesis  

To compare the viability of Lingulodinium polyedra among UV treatments, the following 
hypotheses were evaluated: 
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• Ho: There is no significant difference in measured viability of L. polyedra between UV 
treatments. 

• Ha: There is a significant difference in measured viability of L.polyedra between the 
UV treatments. 

IV. Methods and Materials 

1. Experimental Location 

  Experiments were performed from July of 2013 until February of 2014 at the 
Naval Research Laboratory (NRL-KW) located on Fleming Key on Trumbo Point 
Annex, United States Naval base, adjacent to the island of Key West.  Corrosion science 
and biological research on ballast water and biofouling are examples of topics 
investigated at the laboratory.  Experiments were conducted in a biological laboratory, 
following standard protocols.  Permission to conduct this research was granted by the 
NRL-KW Section Head, Diane Lysogorski, at the facility during non-working hours.   

2. Cultured Lingulodinium polyedra  

Cultures of the obligate autotrophic dinoflagellate Lingulodinium polyedra were 
purchased from the National Center for Marine Algae and Microbiota, Bigelow 
Laboratory for Ocean Sciences (NCMA, Bigelow, ME).  Cultures were incubated in a 
Percival Incubator (Model # I-66LL, Perry, Iowa) at a 12:12 light: dark regime with a 
light intensity of 5000 lux. The cultures were kept at 20°C and were monitored weekly 
using the PAM fluorometer (see below for PAM fluorometer methods; data not shown).  
Cultures of L. polyedra were initially maintained by a removing 2 mL aliquot from a 
well-mixed culture tube and dispensing into 8 mL of autoclaved (121°C and 18 psi for 45 
min) 0.22 µm filtered seawater enriched with nutrients (i.e. sterile medium; Guillard 
R.R.L. and Ryther J.H. 1962); cultures were transferred every 3 weeks using sterile 
techniques.  For the purpose of increasing culture volume, large stock cultures were 
created and maintained by removing 50 mL of well mixed culture and dispensing into 
350 mL of sterile medium.  These large stock culture transfers occurred every 4 weeks 
using sterile techniques.   

3. Ultraviolet (UV) Radiation Instrumentation 

Two types of instrumentation were used to deliver UV radiation to samples of 
Lingulodinium polyedra: UV Crosslinker and UV Collimated Beam.  Standardized 
methods were developed for each bench-top apparatus which allowed for reliable and 
repeatable UV treatments during experimentation.   
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3.1. UV Crosslinker   

The Ultraviolet Products (UVP) CL-1000 Ultraviolet Crosslinker (product # 
UVP95017401; Fisher Scientific, Suwannee, GA.) is a tabletop chamber unit which uses 
a 254 nm wavelength, low-pressure mercury blub (Figure 1).  The control system has a 
maximum UV energy exposure setting of 999,900 micro-joules per cm2 (µJ cm-2), which 
relates to a maximum UV time exposure setting of 999.9 minutes.  This is controlled by a 
touch screen interface.  Even though the Crosslinker has an internal sensor that 
continually measures the fluence, a radiometer (Ultraviolet Products (UVP) Inc., product 
# UVP97001601: Fisher Scientific, Suwannee, GA.) was used to verify and record the 
fluence prior to each experiment (Figure 1; see Appendix A for UV conversions using 
radiometer to measure fluence of crosslinker).  Well-mixed suspensions of L. polyedra 
samples (30 mL) were dispensed into sterile, plastic Petri dishes (10 cm diameter; 1.5 cm 
deep) with the lids removed.  The water depth was low (5 mm) to minimize the 
attenuation of UV radiation, and an opaque cylinder cut from polyvinyl chloride piping (5 
cm in height) was placed on the rim of the Petri dish so the incident light upon the sample 
was directed only from above to avoid the scattering of the light source.  Because fluence 
is constant, the pre-determined dose was controlled by exposure time. See Table 1 for the 
required exposure times for each UV treatment.  This exposure time was controlled by 
the touch screen interface of the crosslinker and was also monitored using a stopwatch.  
The experiments using the crosslinker account for the high end treatments (0, 100, 300, 
and 500 mWs cm-2) as a low dose could not be attained due to the parameters of the 
instrument apparatus (i.e. low measureable exposure times).  

Table 1: Required exposure time for each dose of UV treatment using the crosslinker.  

UV Treatment Dose (mWs cm-2) Exposure Time (sec) 
500 124 
300 75 
100 25 
0 124* 

* The control sample was placed within UV crosslinker chamber and the exposure 
time was measured for 500 mWs cm-2, but the bulb was not ignited and the sample 
did not receive UV treatment. 
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‐ Reflection Factor - When the UV light passes through one medium (air) to another 
(the sample water) where the refractive index changes, a small fraction of the beam is 
reflected off the interface between the two media.  For a standard incident beam, the 
fraction reflected R is provided by the Frensel Law.  For air and water, the mean 
refraction indices for 200 to 300 nm range are 1.000 and 1.372.  So for air and water 
R = 0.025, and the reflection factor is 1 – R which equals 0.975. The value represents 
the fraction of the UV beam that enters the sample water and was accounted for in 
calculating the exposure time. 
  

‐ Petri Factor - Because the fluence is slightly varied over the surface of the sample, 
the Petri factor had to be determined.  The Petri factor is the ratio of the average 
fluence over the area of the Petri dish to the fluence at the center of the Petri dish.  
This ratio is used to correct the fluence reading at the center of the Petri dish to 
accurately reflect the average incident fluence over the surface of the sample.  The 
Petri factor was determined by using a radiometer to measure the fluence values at 
each specified locations using a coordinate map.  This map is displayed in Figure 3.  
The fluence readings at each grey dot were divided by the center fluence reading and 
the average of these ratios was used in the final calculations.   

 

 

  Figure 3: Gridded map used to determine the Petri factor.  
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‐ Water Factor (absorption) – Because the sample water absorbs UV light, there is a 
decrease in fluence as the beam passes through the sample water.  The Water Factor 
is defined as  

Water	Factor ൌ
1 െ 10ିୟ୪

al	lnሺ10ሻ
 

Where α =decadic absorption coefficient (cm-1) and l = vertical path length (cm) of 
the sample water in the Petri dish.  

‐ Divergence Factor – Because there is a distance of the UV light to the sample water, 
the beam is not perfectly collimated and diverges to some extent.  This Divergence 
Factor had to be accounted for and  is defined as  

Divergence Factor = 


ሺାሻ
 

L = the distance of the UV lamp to the surface of the sample and l = path length 
between collimator the surface of the sample.   

‐ Average Germicidal Fluence - Finally, the average germicidal fluence rate E’avg (W 
cm-2) to the sample water is defined as 

 E’avg = E0  x Petri Factor x Reflection Factor x Water Factor x Divergence Factor 

where E0 equals the fluence reading by the radiometer at the center of the Petri dish 
and at the same vertical position as the surface of the sample water within the Petri 
dish.  Thus, the given value of E’avg  = 15.4 mW cm-2 is used to deliver the exact dose 
control by exposure time (sec).  

4. UV Crosslinker Trials – Experimental Approach 

An overview of the experimental approach for the UV crosslinker trials is 
presented in Figure 4.  The original sample (150 mL) of Lingulodinium polyedra was 
analyzed to verify the target concentration (1000 – 3000 mL-1) and to check the stability 
and health of the organism within the sample.  This data is not presented.  The original 
sample was then split into 4 well-mixed aliquots (30 mL), each receiving the specified 
UV treatment; low UV (100 mWs cm-2), medium UV (300 mWs cm-2), high UV (500 
mWs cm-2), and control (0 mWs cm-2).  Following UV treatment, samples were dispensed 
into designated Falcon tubes to await analysis.  Sample analysis occurred immediately 
after treatment (T1), at 24 hours (T2), and at 3 days (T3) to measure the change in the 
viability signal.  The samples were incubated under standard light conditions (12:12 
Light: Dark), and temperature of 20°C allowing for photo-repair in optimal conditions.     

The analysis suite for the UV crosslinker trials required a minimum volume of 10 
mL of sample at each analysis time point necessitating 30 mL in the treated sample.  An 
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temperature for 30 min.  Labeled samples of L. polyedra were analyzed within 30 min 
from the start of the incubation.   

6.2.  Preparing the Sedgewick Rafter counting slide 

Upon completion of the incubation, the 1 mL labeled sample of L. polyedra was 
dispensed into the chamber of a gridded Sedgewick Rafter (SR) counting slide.  The size 
of the SR slide is 50 x 20 x 1 mm (after the cover glass is placed upon the chamber) and 
contains exactly 1 mL of sample.  The bottom surface of the SR slide chamber is gridded 
with 1000 squares, each 1 x 1 mm.  Because the depth of the water column is exactly 1 
mm, the sample volume can be determined based upon the area counted; 1 x 1mm square 
contains 1 µL of sample.  

6.3.  Counting L. polyedra 

Labeled samples of L. polyedra were counted by examining the SR counting slide 
(containing 1 mL of sample) on an epifluorescence microscope at 100x magnification 
(Nikon AZ100, Nikon U.S.A., Melville, NY). The microscope was equipped with both 
brightfield and epifluorescence illumination.  The microscope also had an 8:1 variable 
zoom used to further assess cells and cysts.  Both FDA and CMFDA have similar 
excitation and emission wavelength parameters, and a standard green fluorescence light 
filter set was used to detect FDA and CMFDA fluorescence (excitation: 465-496 nm; 
dichroic mirror: 505, emission 515 – 555).   

For each analyzed sample, 7 rows of the SR counting slide were randomly 
selected and counted (each row is 50 µL) (See Appendix D).  L. polyedra cells and cyst 
were first detected in brightfield illumination.  Once a L. polyedra cell(s) was identified, 
the brightfield was blocked and the epifluorescence illumination was used to detect the 
FDA/CMFDA in L. polyedra cell(s).  If the organism displayed green fluorescence, the L. 
polyedra cell was classified as living (e.g. active).   If the cell was non-fluorescing, then 
the L. polyedra cell was classified as dead (e.g. inactive).  Cysts were identified during 
the initial scan using the brightfield illumination and were classified according to 
morphological criteria (e.g. formation of cyst wall; theca has been shed).  Collected data 
was recorded on data sheets for each sample type (See Appendix C).  Cells of L. polyedra 
in brightfield and epifluorescence illumination and a L. polyedra cyst in brightfield 
illumination are displayed in Figure 8.  The final concentration of live, dead, and cysts of 
L. polyedra (P = individuals mL-1) were calculated using the following equation, 

P = 
ூ

ௌ
 

where I is the sum of individual organisms/cysts, A is the volume of sample analyzed, 
and S is the total sample volume.  Manual epifluorescence microscopy was performed at 
each set time period and significant differences among treatments were identified using a 
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WinControl software (Walz, GmbH, Effeltrich, Germany).  Individual well-mixed 
samples of Lingulodinium polyedra (3 mL) were dispensed into a quartz cuvette and then 
placed in the WATER-ED Emitter –Detector.  After 10 sec to allow the initial 
fluorescence (F0) to stabilize, the analysis was started using the WinControl automated 
software. Three measurements of the initial fluorescence (F0), maximum fluorescence 
(Fm), and photochemical yield (Y) were collected every 10 sec for each analytical 
replicate sample.  The data collected from the WinControl software was extracted using a 
MATLAB routine and used to generate final results.  PAM fluorometry was performed at 
set time periods and significant differences among treatments were identified using a one-
way ANOVA (UV crosslinker trials: n=3, α = 0.05; UV collimated beam trials: n=5, 
a=0.05).   

V. Results  

1. UV Crosslinker Trials 

Three trials were performed to compare the viability signal and organism 
response of Lingulodinium polyedra following UV treatment at multiple UV doses: low 
UV (100 mWs cm-2), medium UV (300 mWs cm-2), high UV (500 mWs cm-2), and 
control (0 mWs cm-2). The experiments using the crosslinker account for the high end 
treatments.  The concentration of live, dead, and L. polyedra cysts as well PAM 
fluorometry results are described in the following sections.   

1.1. Live L. polyedra - Manual epifluorescence microscopy 
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Figure 9: Concentration of Living L. polyedra (living org. mL-1) determined by 
epifluorescence microscopy for each UV treatment using the UV crosslinker.  The letters 
represent significant differences and the bars show the mean concentration (± 1 SD) of 3 
replicates over three set analysis time periods (Day 0, Day 1,and Day 3) (ANOVA, p > 
0.05). 

All treated samples of L. polyedra were significantly less than the control (961 ± 
128 living org. mL-1) as shown in Figure 9.  Due to the significant difference in living 
concentrations of L. polyedra between the control and the UV treated samples, the null 
hypothesis is rejected.  

   

Figure 10: Concentration of living L. polyedra (living org. mL-1) at different UV 
treatments using the crosslinker over the epifluorescence microscopy sample analysis 
time.  The bars show the mean concentration (± 1 SD) of 3 replicates for each treatment 
over time.  The letters represent significant differences among sample (ANOVA, p > 
0.05).  

There is no significant difference in living concentration of L. polyedra in the 
control sample over the manual epifluorescence microscopy sample analysis time period 
(ANOVA, p = 0.154) as presented in Figure 10. This is also true for the samples treated 
at 100 mWs cm-2 (ANOVA, p = 0.86). The living concentration of L. polyedra decreased 
from Day 0 (161 ± 51 living org. mL-1) to Day 1 (73 ± 31 living org. mL-1) and were 
significantly different when treated at 300 mWs cm-2, but the concentration did not 
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1.2. Dead L. polyedra - Manual epifluorescence Microscopy 

 

 

Figure 12: Concentration of dead L. polyedra (dead org. mL-1) determined by 
epifluorescence microscopy for each UV treatment using the UV crosslinker.  The letters 
represent significant differences and the bars show the mean concentration (± 1 SD) of 3 
replicates over three set analysis time periods (Day 0, Day 1, and Day 3) (ANOVA, p > 
0.05).  

 Shown in Figure 12, the concentration of dead L. polyedra in the control sample 
(267 ± 16 dead org. mL-1) is significantly less than each of the treated samples (ANOVA, 
p > 0.05).  Regarding the UV treated samples (100, 300, and 500 mWs cm-2) there is no 
significant difference in the concentration of dead L. polyedra between each treatment.  
The increase in dead concentration of L. polyedra of treated samples correlates to the 
decrease in live concentrations treated by UV radiation as seen in Figure 9. 
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Figure 13:  Concentration of dead L. polyedra (dead org. mL-1) at different UV treatments 
using the crosslinker over the epifluorescence microscopy sample analysis time.  The 
bars show the mean concentration (± 1 SD) of 3 replicates for each treatment over time.  
The letters represent significant differences (ANOVA, p > 0.05). 

  As displayed in Figure 13, there was a significant increase in the concentration of 
dead L. polyedra from Day 0 (182 ± 13 dead org. mL-1) to Day 1 (407 ± 103 dead org. 
mL-1) in the control sample, but the dead concentration of L. polyedra decreased by Day 
3 (212 ± 100 dead org. mL-1), as there was no significant difference between Day 0 and 
Day 3.  Viewing the treated samples in Figure 13, there was no significance difference 
over the sample analysis time period (Day 0, Day 1, and Day 3) of dead L. polyedra 
concentration in samples treated at 100 mWs cm-2 (ANOVA, p= 0.528), 300 mWs cm-2 
(ANOVA, p= 0.100), and the 500 mWs cm-2 (ANOVA, p= 0.064).  
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1.3. L. polyedra cysts - Manual epifluorescence microscopy 

 

 

Figure 15: Concentration L. polyedra cysts (cysts mL-1) determined by epifluorescence 
microscopy for each UV treatment using the UV crosslinker.  The letters represent 
significant differences and the bars show the mean concentration (± 1 SD) of 3 replicates 
over three set analysis time periods (Day 0, Day 1, and Day 3) (ANOVA, p > 0.05).  

Each analyzed sample of L. polyedra had a significantly different concentration of 
L. polyedra cysts (ANOVA, p > 0.05) and the treated samples were significantly higher 
than the control (Figure 15).  The samples treated at 300 mWs cm-2 had the highest 
concentration of cysts at 389 (± 4) cysts mL-1 followed by the samples treated at 500 
mWs cm-2 with 274 (± 19) cysts mL-1 and then 100 mWs cm-2 having a concentration 134 
(± 40) L. polyedra  cysts mL-1.  The control samples had a L. polyedra cyst concentration 
of 14 (± 1) cysts mL-1.    
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Figure 16: Concentration of L. polyedra cysts (cysts mL-1) at different UV treatments 
using the crosslinker over the epifluorescence microscopy sample analysis time.  The 
bars show the mean concentration (± 1 SD) of 3 replicates for each treatment over time.  
The letters represent significant differences (ANOVA, p > 0.05). 

Shown Figure 16, the concentration of L. polyedra cysts in the control samples 
did not increase or decrease during the sample analysis time period (ANOVA, p = 0.901).  
The concentration of L. polyedra cysts in the samples treated at 100 mWs cm-2 also did 
not change significantly over the manual epifluorescence microscopy sample analysis 
time period (ANOVA, p= 0.254).  Viewing the cyst concentrations in the samples treated 
at 300 mWs cm-2, the concentration did not significantly increase from Day 0 (310 ± 58 
cysts mL-1) to Day 1 (364 ± 54 cysts mL-1), but the cyst concentration were significantly 
different from Day 0 to Day 3 (493 ± 62 cysts mL-1).  The results for the L. polyedra 
samples treated at 500 mWs cm-2 were similar to those at treated at 300 mWs cm-2, as 
there was no significant difference in cyst concentration from Day 0 (182 ± 59 cysts mL-

1) to Day 1 (270 ± 21 cysts mL-1), but a significant difference in cyst concentration from 
Day 0 to Day 3 (369 ± 81 cysts mL-1).  For samples treated at 300 and 500 mWs cm-2, the 
concentration of L. polyedra cysts increased over the sample analysis time period.      

 

 

 

0

100

200

300

400

500

600

Day 0 Day 1 (24) Day 3

Li
n
g
u
lo
d
in
iu
m
 p
o
ly
e
d
ra
 c
ys
t
( 
m
L‐
1
)

Sampling Time

0 mWcm‐2

100 mWcm‐2

300 mWcm‐2

500 mWcm‐2

A A A

B

B

B

C

C D

D

E

E F

F



  

31 
 

1.4. PAM Fluorometry - Photochemical Yield (Y)  

 

 

Figure 17: The photochemical yield (Y) of L. polyedra determined by PAM fluorometry 
for each UV treatment using the UV crosslinker.  The letters represent significant 
differences and the bars show the mean concentration (± 1 SD) of 3 replicates over three 
set analysis time periods (Day 0, Day 1, and Day 3).   

The photochemical yield (Y) results of each analyzed L. polyedra sample are 
presented in Figure 17.  Each measured sample of L. polyedra is significantly different 
and there is a significant decline in the photochemical yield from the control to the 
treated samples (ANOVA, p > 0.05).  Observing the viability signal of L. polyedra 
measured by PAM fluorometry, the null hypothesis is rejected as the photochemical yield 
significantly decreases with the increase in UV radiation. 
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Figure 18: The photochemical yield (Y) of L. polyedra samples determined by PAM 
fluorometry over the sample analysis time.  The bars show the mean concentration (± 1 
SD) of 3 replicates for each treatment over time.   The letters represent significant 
differences (ANOVA, p > 0.05). 

 There was no significant difference in the photochemical yield of the control 
samples over the 3 analysis time periods (ANOVA, p = 0.727) (Figure 18).  Viewing the 
samples treated at 100 mWs cm-2, there was a significant decline in photochemical yield 
from Day 0 (662 ± 17 Y value) to Day 1 (603 ± 18 Y value), but no further significant 
decline from Day 1 to Day 3 (590 ± 28 Y value).  Observing the L. polyedra samples 
treated at 300 mWs cm-2, there was no significant difference from Day 0 (492 ± 47 Y 
value) to Day 1 (382 ± 104) in measured photochemical yield, but there was a significant 
decline from Day 1 to Day 3 (209 ± 99).  There was no significant change in measured 
photochemical yield of L. polyedra samples treated at 500 mWs cm-2 (ANOVA, p = 
0.065), as all measure samples were below a Y value of 300 over the entire analysis time 
period.       
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well as the collimated beam trials.  The results also show a decrease in live concentration 
of L. polyedra over time when treated above 100 mWs cm-2 particular after 5 days. There 
were no identified live L. polyedra concentrations in 200 mWs cm-2 treated samples after 
10 days when samples were analyzed by manual epifluorescence microscopy.  The 
photo-chemical yield results at 10 days following UV treatment of 200 mWs cm-2 was 
also below a Y value of 250, indicating chlorophyll a fluorescence originating from dead 
or moribund cells.      

2. Lingulodinium polyedra cyst concentrations following UV treatment 

A UV treatment as low as 50 mWs cm-2 will induce cells of Lingulodinium 
polyedra to encyst.  The concentration of cysts also increased overtime for treated 
samples at 50, 100, 200, 300, and 500 mWs cm-2.  In regards to the collimated beam 
trials, the cyst concentrations decreased at 10 days for the 100 and 200 mWs cm-2 treated 
samples, which likely indicates that these enumerated cysts were not viable.  
Additionally, the live concentrations did not increase at Days 3, 5, or Day 10 of the 
collimated beam trials, which assumes that excystment, did not occur.    

To further assess this anomaly and determine if UV treatment induces cysts and 
that these cysts are viable, additional methods to measure viability are suggested (e.g., 
Most Probable Number [MPN] and cyst isolation). In addition to manual epifluorescence 
microscopy and PAM fluorometry methods, an MPN technique using initial high 
concentrations of L.polyedra prior to treatment could provide a further indication if cells 
are inactivate and unable to replicate.  Monitoring isolated cysts in sterile medium in 
optimal conditions over an extended period of time (i.e., weeks) could assist in determine 
if the induce cysts are viable.  This will be identified by excystment of live cells from the 
isolated cyst.     

3. Shipping Industry and Technology Vendors  

Due to the presented results in this document, it is suggested that detail be 
accounted for in the design and specifications of a UV treatment technology employed on 
BWMS.  The system should provide an exact and measureable UV dose at a minimum of 
100 mWs cm-2 treating the entire water column.  Numerous factors will contribute to 
acquiring this exact/known dose, which include flow rate (e.g. exposure time), pipe 
diameter (e.g. water depth) and continuous flow (e.g. mixing).  The technology will also 
have to be adaptable to accommodate for differences in parameters (e.g. pipe diameter, 
etc.) found among vessels.   

UV treatment technologies need to be vigorously tested following the ETV and 
IMO land-based testing protocols as well as shipboard protocols prior to being installed 
and used aboard a functioning ship.  Test facilities should measure the viability signal 
using a variety of techniques to accredit the possible differences in organism response 
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among organisms, as some organisms may respond differently from others.  It is also 
suggested that national and international facilities as well academia should examine the 
response of other HABs and red tide forming organisms (Karenia brevis) in their 
experimental approach.  Experiments should include standard cell concentrations (~1000 
mL-1) as well as blooming concentrations (100,000 – 1,000,000 mL-1) as the response 
may be different.  Currently, ballast water test facilities only examine indigenous 
assemblages in different size classes and their response to treatment with BWMS.  HABs 
and red tides should be included in this matrix to further assess the efficacy of a 
technology.        

VII. Conclusions 

When viability was measured using epifluorescence microscopy with associated 
viability stains (FDA/CMFDA), samples treated at 100 mWs cm-2 decreased living 
concentrations of Lingulodinium polyedra rejecting the null hypothesis.  When samples 
of L. polyedra were treated above 100 mWs cm-2, dead concentrations increased as the 
live concentrations decreased over time. 

When viability was measured using PAM fluorometry, physiological state of the 
organism decreased when samples were treated at 100 mWs cm-2.  The photochemical 
yield for samples treated at 200 mWs cm-2 drop below a Y value of 300 following a 5 day 
and 10 day hold times.  
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IX. Appendices 

Appendix A – UV conversion µJ cm-2 to mW cm-2 

Because UVX the radiometer measures in ܹ݉ܿ݉ିଶ, intensity conversions were 
needed to determine if the fluence treatment of the crosslinker (displayed in µJ cm-2) was 
at the desired levels prior to treatment.  The follow conversions were used below. 

ሺܹ݉ܿ݉ିଶሻ	ݕݐ݅ݏ݊݁ݐ݊ܫ ൌ  		ሻݏ݀݊ܿ݁ݏሺ	ଶሻሻ/ܶ݅݉݁ି݉ܿܬሺ݉	ݕ݃ݎ݁݊ܧ

ሺμܹܿ݉ିଶሻ	ݕݐ݅ݏ݊݁ݐ݊ܫ ൌ  		ሻݏ݀݊ܿ݁ݏሺ	ଶሻ/ܶ݅݉݁ି݉ܿܬሺμ	ݕ݃ݎ݁݊ܧ

ሻ	ଶି݉ܿܬሺ݉	ݕ݃ݎ݁݊ܧ ൌ  ሻݏ݀݊ܿ݁ݏሺ	ܶ݅݉݁	ܺ	ሺܹ݉ܿ݉ିଶሻ	ݕݐ݅ݏ݊݁ݐ݊ܫ	

 Example: 

ଶି݉ܿܬ݉	1,000 ൌ  ଶି݉ܿܬ	1

1,000	ܹ݉ܿ݉ିଶ ൌ 1	ܹܿ݉ିሻ 
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Appendix B – Collimated beam correction factors – Excel Spreadsheet 

Table 3 shows the Excel spreadsheet used to integrate the correction factors to determine 
an exact and measureable incident irradiation/fluence using the UV collimated beam. 

Table 3: Excel spreadsheet used to incorporated correction factors to attain exact fluence 
using the UV collimated beam.  

 

Correction Factors

Petri Factor

Petri dish diameter (cm) 5.6

Petri dish area (cm
2
) 24.63

Each cm is equal to (in mL) 24.63009

Target volume (mL) 25

Height (cm) 1.015019

Reflectance Factor 0.975

Absorption

% Transmittance 95

Absorption Coefficient 0.022276

Path length (cm) 1.015019

Total absorbance 0.022611

Water Quality Factor

Total Absorbance (A) 0.022611

Water Quality Factor 0.974414

Divergent Factor

Length from surface to light (cm) 33

Sample Pathlength (cm) 1.015019

Divergence 0.97016

True irradiance

Reading at the center (mW) 2.20E+02

Petri factor 0.95

True irradiance (Ti) 2.09E+02

Germicidal irradiance

True irradiance (Ti) 209.00000

Reflectance Factor 0.98

Water Quality Factor 0.97

Divergence Factor 0.97

Germicidal irradiance (Gi) 192.64



  

48 
 

Appendix C – Data Sheets  

During UV treatment of samples of Lingulodinium polyedra using the UV crosslinker 
and UV collimated beam, all necessary parameters were recorded. See data sheets below 
(Figure 29 Figure 30).  Live, dead and cyst counts when conducting the epifluorescence 
microscopy analysis were recorded on individual data sheets for each sample type (Figure 
31).  

Figure 29: Data sheet used for the UV crosslinker trials. 

 

 

 

 

 

 

 

 

Sampling

Trial #

Trial Date

Sample Source

Sample Prep. Start Time

Sample Prep. Complete

Sample Vol. (mL)

Sample Prep. Notes

Quality Control 
Checks

High UV 
Treatment

Med. UV
Treatment

Low UV 
Treatment

Control 
Treatment

Treatment Volume

Dosage (mWs cm‐2)

Treatment Start Time

Treatment Complete Time

Treatment Time (seconds)

Treatment Notes

UV Exposure Experiment ‐ Lingulodinium polyedrum: Treatment Data Sheet

PVC Sleeve Used?:

Radiometer Calibrated?:

10 min. warm‐up?:

UV power (mW cm‐2):
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Figure 30: Data sheet used for the UV collimated beam trials. 

 

 

 

 

 

 

 

 

 

 

 

 

Data Collected:

Data Entry Reviewed:

mWs cm‐2 is equivalent to mJ cm‐2

Treatment:HOCl‐ (hypochlorite) or UV and concentration:
Control, Low, Med, or High)

Subject:PWS FY13\5.3 Treatment effects
File: 5.3_CLUV_DataSheets.pptx
Rev. 00 (04‐DEC‐2013) 

Sample Prep. Notes
Trial ID

Trial Date

Treatment Day

Sample Prep. Start

Sample Prep Complete

Extreme UV 
Treatment

High UV 
Treatment

Med. UV 
Treatment

Low UV
Treatment

Treatment Volume

Dosage (mWs cm‐2)

Treatment Start Time

Treatment Complete Time

Treatment Time (seconds)

Treatment

UV system On:

UV System Off:

Petri Factor (Y/N)

Radiometer Reading 
(Center)

UV Exposure Experiment ‐ Lingulodinium polyedrum: Treatment Data Sheet – collimated beam

Control
Treatment
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Figure 31: Data sheet used when perform the manual epifluorescence microscopy 
analysis. 

 
 

Appendix D – Random Number Generator 

Random row order assignments were created using spreadsheet software with a random 
number generator (Microsoft Excel 2007, Microsoft, Redfield, WA).  The examples in 
this section are specific to Excel. 

‐ Generating Random Numbers 
A table of random numbers was generated by using the Excel function, rand().  The 
number of columns (n) was determined by the number of SR counting slide (each column 
will yield row assignments for SR slide).  There should be exactly 20 rows in the table 
and all of the cells should have the following: = rand().  A secondary table was created 
with n columns and 20 rows (Table 4, random numbers). 

 

 

UV Exposure Experiment ‐ Lingulodinium polyedrum: FDACMFDA Count 

Sample ID

Time Point

Start Time

Complete Time

Trial ID

Trial Date

SR Row: Live: Cyst:Dead:

Sample Prep. Notes

Treatment Type Treatment Notes:
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‐ Ranking the Rows to Determine Counting Order 
Once a series of random numbers was generated, a ranking function was used to 
determine the counting order.  The Microsoft Excel spreadsheet includes the ranking 
function, rank (r1c1, range), where r1c1 is the row number and column number and range 
is the data range (Table 4, Ranked Row Order).  In the table below, the data range is 
r1:r20 in column 1. 

Table 4:  Example table generated in Microsoft Excel demonstrating the routine for 
generating random row counting orders.  The first two rows in the first column (Slide 1) 
show the Excel formula. 

Random numbers (each slide = 20)  Ranked Row Order 

Slide 1 Slide 2 Slide 3 
 Counting 

Order 
Row No. 
Slide 1 

Row No. 
Slide 2 

Row No. 
Slide 3 

=rand() 0.76 0.15 
 

1st 
=rank(r1c1, 

range) 3 14 

=rand() 0.96 0.24 
 

2nd 
=rank(r2c1, 

range) 1 11 
0.45 0.22 0.39  3rd  10 17 9 
0.90 0.75 0.09  4th  4 4 18 
0.66 0.71 0.13  5th  7 6 16 
0.19 0.21 0.18  6th  17 18 13 
0.96 0.28 0.44  6th  2 13 6 
0.97 0.43 0.27  8th  1 10 10 
0.26 0.61 0.14  9th  15 8 15 
0.26 0.22 0.39  10th  14 16 8 
0.61 0.30 0.18  11th  8 12 12 
0.40 0.24 0.80  12th  12 15 1 
0.09 0.74 0.68  13th  19 5 2 
0.74 0.27 0.60  14th  5 14 3 
0.14 0.01 0.09  15th  18 20 17 
0.68 0.50 0.48  16th  6 9 5 
0.43 0.62 0.03  17th  11 7 19 
0.22 0.42 0.00  18th  16 11 20 
0.94 0.81 0.40  19th  3 2 7 
0.36 0.16 0.60  20th  13 19 4 
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