
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2014

Improving the Selection of Surrogates During the
Cold-Start Phase of a Cyber Foraging Application
to Increase Application Performance
Brian Kowalczk
Nova Southeastern University, bkowalczk@hotmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Brian Kowalczk. 2014. Improving the Selection of Surrogates During the Cold-Start Phase of a Cyber Foraging Application to Increase
Application Performance. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of
Computer and Information Sciences. (5)
https://nsuworks.nova.edu/gscis_etd/5.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu


 
 

 
 

Improving the Selection of Surrogates During the Cold-Start Phase of a Cyber Foraging 

Application to Increase Application Performance 

 

 

 

 

by 

 

Brian A. Kowalczk  

 

 

 

 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

in 

Computer Information Systems 

 

 

 

 

 

 

 

 

 

 

 

Graduate School of Computer and Information Sciences 

Nova Southeastern University 

2014 

  



 

 

 
 
 
We hereby certify that this dissertation, submitted by Brian Kowalczk, conforms to acceptable  

standards and is fully adequate in scope and quality to fulfill the dissertation requirements  

for the degree of Doctor of Philosophy. 

 

 

 

_____________________________________________   ________________ 

Gregory E. Simco, Ph.D.                       Date 

Chairperson of Dissertation Committee 

 

 

 

_____________________________________________   ________________ 

Francisco J. Mitropoulos, Ph.D.     Date 

Dissertation Committee Member 

 

 

 

_____________________________________________   ________________ 

Sumitra Mukherjee, Ph.D                 Date 

Dissertation Committee Member 

 

 

 

 

Approved: 

 

 

 

_____________________________________________  ________________ 

Eric S. Ackerman, Ph.D.                                                              Date    

Dean, Graduate School of Computer and Information Sciences 

 

 

 

 

Graduate School of Computer and Information Sciences 

Nova Southeastern University 

 

 

2014 

 



 
 

 
 

An Abstract of a Dissertation Submitted to Nova Southeastern University 

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

 

Improving the Selection of Surrogates During the Cold-Start Phase of a Cyber Foraging 

Application to Increase Application Performance 

 

by 

Brian A. Kowalczk 

July 2014 

 

Mobile devices are generally less powerful and more resource constrained than their 

desktop counterparts are, yet many of the applications that are of the most value to users 

of mobile devices are resource intensive and difficult to support on a mobile device.  

Applications such as games, video playback, image processing, voice recognition, and 

facial recognition are resource intensive and often exceed the limits of mobile devices. 

 

Cyber foraging is an approach that allows a mobile device to discover and utilize 

surrogate devices present in the local environment to augment the capabilities of the 

mobile device.  Cyber foraging has been shown to be beneficial in augmenting the 

capabilities of mobile devices to conserve power, increase performance, and increase the 

fidelity of applications.   

 

The cyber foraging scheduler determines what operation to execute remotely and what 

surrogate to use to execute the operation.  Virtually all cyber foraging schedulers in use 

today utilize historical data in the scheduling algorithm.  If historical data about a 

surrogate is unavailable, execution history must be generated before the scheduler’s 

algorithm can utilize the surrogate.  The period between the arrival time of a surrogate 

and when historical data become available is called the cold-start state.  The cold-start 

state delays the utilization of potentially beneficial surrogates and can degrade system 

performance. 

 

The major contribution of this research was the extension of a historical-based prediction 

algorithm into a low-overhead estimation-enhanced algorithm that eliminated the cold-

start state.  This new algorithm performed better than the historical and random 

scheduling algorithms in every operational scenario. 

 

The four operational scenarios simulated typical use-cases for a mobile device.  The 

scenarios simulated an unconnected environment, an environment where every surrogate 

was available, an environment where all surrogates were initially unavailable and 

surrogates joined the system slowly over time, and an environment where surrogates 

randomly and quickly joined and departed the system.  

 



 
 

 
 

 

Brian A. Kowalczk 

 

 

One future research possibility is to extend the heuristic to include storage system I/O 

performance.  Additional extensions include accounting for architectural differences 

between CPUs and the utilization of Bayesian estimates to provide metrics based upon 

performance specifications rather than direct observations.  

 

  



 
 

 
 

Acknowledgements 

 

First, I would like to thank my family for their endless support, encouragement, patience, 

and understanding throughout the dissertation process.  To my children, Erik, Andrew, 

and Abigail, for their support and patience while I worked on homework when they did 

not have any schoolwork.   

Next, I would like to thank Dr. Simco for his encouragement and guidance as chair of my 

dissertation committee.  I would also like to extend my thanks to my dissertation 

committee members, Dr. Mitropoulos and Dr. Mukherjee for their guidance and support. 

Finally, I would like to extend my thanks and gratitude to everyone that provided 

encouragement, advice, and support throughout my doctoral work.   



 
 

vi 
 

Table of Contents 

 

Abstract           ii 

List of Tables         viii 

List of Figures         ix 

 

Chapters 

1. Introduction          10 

Problem Statement        16 

Dissertation Goal        19 

Relevance and Significance       21 

Barriers and Issues        24 

Assumptions, Limitations and Delimitations     28 

Definition of Terms        28 

Summary         31 

2. Review of the Literature       33 

Introduction         33 

The Cold-Start Problem       33 

Default-Based Algorithms       34 

Historical-Based Algorithms       36 

Heuristic-Based Algorithms       38 

3. Methodology/Approach       44 

Introduction         44 

jScavenger Overview        44 

The jScavenger Foraging Application Server     47 

The Interface Between jScavenger and a Cyber Foraging Application 47 

The jScavenger Execution Scheduler      49 

Remote Execution        56 

The Execution Log File       58 

Surrogate Discovery        60 

The Application Tactics File        61 

The jScavenger Surrogate       63 

The Presence Subsystem       64 

The Remote Execution Environment      65 

The Executable Code Store       66 

The Parameter Data Repository      66 

The Surrogate Execution Log File      66 

The jScavenger Cyber Foraging Application     67 

Operation Profiling        69 

Device Profiling        71 



 
 

vii 
 

The Testing Environment       73 

Performance Evaluation       74 

The Data Collection Process       77 

The Data Analysis Process       78 

Data Verification        79 

Resources         80 

Summary         80 

4. Results         83 

Introduction         83 

Overview         83 

Experiment 1 – Historical Scheduling Algorithm    86 

Experiment 2 – Experimental Scheduling Algorithm    91 

Experiment 3 – Random Scheduling Algorithm    97 

A Performance Comparison of the Experiments    97 

Scheduling Algorithm Overhead      100 

Summary of Results        101 

5. Conclusions, Implications, Recommendations, and Summary  104 

Conclusions         104 

Implications         105 

Recommendations        106 

Summary         107 

6. Appendices         111 

A.  Sample Java Program       112 

B.  Sample Java Program Bytecode Representation    113 

C.  Sample Execution Log File Data      115 

D.  Sample Driver File – Saturated Scenario     116 

E.  Sample Driver File – Slowly Churning Scenario    118 

F.  Sample Driver File – Quickly Churning Scenario    124 

7. References         130 

  



 
 

viii 
 

List of Tables 

 

1. The Execution Log File Format      59 

2. Log File Naming by Experiment and Scenario     78 

3. Overall Performance by Experiment and Scenario   85 

4. Surrogate Profile          91 

5. Surrogate Performance       93 

  



 
 

ix 
 

List of Figures 

  

1. A High-Level View of jScavenger       45 

2. The High-Level Architecture of jScavenger      47 

3. Pseudocode for InterceptCalls Advice      48 

4. Data Structure Mapping Operations to Surrogates     50 

5. Pseudocode for the Estimation-Enhanced History-Based Algorithm  54 

6. Calculating Round-Trip Communication Cost     56 

7. XML RPC Request         57 

8. XML RPC Response         58 

9. The jScavenger Surrogate Discovery and Presence Subsystem   60 

10. Discovery Driver File Format Specification      61 

11. Tactic File Format Specification       63 

12. jScavenger Surrogate Architecture       64 

13. Manifest File Specification        65 

14. Image Manipulation Application       67 

15. Image Manipulation Tool Automation Script Example   69 

16. Simple Java program         70 

17. Control Flow Graph of the Program in Figure 8     71 

18. jScavenger Test System Architecture      74 

19. Overall Execution Time by Scheduling Algorithm    84 

20. Experiment Performance by Scenario     85 

21. Disconnected Operation Performance     86 

22. Historical Scheduling Algorithm Saturated Scenario    87 

23. Historical Scheduling Algorithm Slowly Churning    88 

24. Historical Scheduling Algorithm Quickly Churning    90 

25. Experimental Scheduling Algorithm Saturated    94 

26. Experimental Scheduling Algorithm Slowly Churning   95 

27. Experimental Scheduling Algorithm Quickly Churning   96 

28. Performance Comparison of Historical, Experimental,  

and Random Algorithms – Saturated Scenario    98 

29. Performance Comparison of Historical, Experimental,     

and Random Algorithms – Slowly Churning Scenario    99 

30. Performance Comparison of Historical, Experimental,     

and Random Algorithms – Quickly Churning Scenario   100 

 



10 
 

 
 

Chapter 1 

 

Introduction 

Mobile devices are less powerful, more constrained, and tend to continually lag 

behind desktop workstations in terms of memory capacity, storage capacity, processor 

power, network bandwidth, and battery lifetime (Satyanarayanan, 1996; Verbelen, 

Simoens, De Turck, & Dhoedt, 2011).  At the same time, many of the most useful 

applications to a mobile user include games, video playback, video editing, audio 

processing, voice recognition, facial recognition, and image processing, tend to be 

resource intensive and difficult to support on a mobile device (Balan, Gergle, 

Satyanarayanan, & Herbsleb, 2007; Chun, Ihm, Maniatis, & Naik, 2010; Narayanan, 

Flinn, & Satyanarayanan, 2000). 

Despite the fact that mobile devices are resource constrained and therefore less 

capable than stationary workstations, users expect the same capabilities from them as 

they do from their workstation counterparts (Liagouris, Athanasiou, Efentakis, 

Pfennigschmidt, Pfoser, Tsigka, & Voisard, 2011; Verbelen, Simoens, De Turck, & 

Dhoedt, 2012).  To bridge this gap between a device’s capabilities and user expectations, 

Balan, et al. (2002) proposed an approach to augment mobile devices, called cyber 

foraging. 

This research achieved the goal of developing a cyber foraging scheduling 

algorithm that decreased a cyber foraging application’s execution time by eliminating the 

cold-start state.  The new scheduling algorithm combined a historical algorithm with an 

estimation-based heuristic.  The new experimental algorithm performed better than the 

historical algorithm and random scheduling algorithms in every operational scenario.  



11 
 

 
 

The remainder of this section presents the three common goals of cyber foraging 

followed by the demonstrated benefits of cyber foraging and concludes with an 

introduction to the cold-start problem and a discussion of the associated costs of the cold-

start problem.     

Cyber foraging systems attempt to balance the high expectations users place upon 

their mobile devices against the constraints of the device itself.  The cyber foraging 

methodology selects and offloads code from a mobile device to a surrogate device for 

remote execution in an effort to increase the application’s performance.  Cyber foraging 

attempts to increase an applications performance by maximizing one or more of the 

following goals: decreasing the overall execution time, conserving power, or by 

increasing the fidelity of the response beyond what is otherwise possible with the current 

device (Balan, Flinn, Satyanarayanan, Sinnamohideen, & Yang, 2002; Satyanarayanan, 

2001). 

When the overall goal of a cyber foraging system was focused on reducing the 

overall execution time, the question that needed to be answered was whether the cost (in 

time) to execute a task locally was greater than the cost of remotely executing the same 

task.  The basic formula for this decision took the form of:  CL > (CR + CC), where  

CL was the cost for a local task execution, CR was the cost for remote execution, and CC 

was the round-trip communication cost (Sharifi, Kafaie, & Kashefi, 2011).  Anytime (CR 

+ CC) was less than CL, then the task was a candidate for remote execution.   

The goal of reducing the energy consumption of an operation could be achieved if 

the energy consumed by executing a method remotely was less than the energy cost in 

performing the same operation locally, including the energy expended communicating 



12 
 

 
 

with the surrogate performing the operation (Verbelen, et al., 2012).  Using the same 

formula presented above:  CL > (CR + CC), where CC was be expanded to CC = CTX + 

CRX, where CTX was the communication cost of invoking the remote execution, including 

the transmission of parameter data, and CRX was the cost to receiving the results of the 

remote execution.  If (CR + CC) was less than CL, then the task was a candidate for 

remote execution on the basis that it would conserve local battery power.   

Fidelity is an application-specific notion that consists of one or more dimensions 

that include:  size (in bytes), resolution, frame rate, bandwidth, and latency (Noble, 

Satyanarayanan, Narayanan, Tilton, Flinn, & Walker, 1997).  Examples of fidelity in 

common use today include the resolution and frame rate of a streaming video and the size 

and resolution of a digital photograph.  Since fidelity is an application specific concept, 

each application must provide hints about an application’s fidelity dimensions to guide 

application developers in cyber foraging decision making (Narayanan, et al., 2000). 

Several research projects have demonstrated the benefits of cyber foraging.  The 

Spectra system demonstrated that a cyber foraging system could select the best remote 

execution plan the majority of the time (Flinn, Park, & Satyanarayanan, 2002).  Odyssey, 

an early cyber foraging system, demonstrated that the battery life of a device could be 

extended by offloading code execution to surrogate computers.  The offloading of code 

execution was shown to extend the battery life of a device by realizing an energy savings 

of up to 44% beyond what local hardware-based power management alone could deliver 

(Flinn & Satyanarayanan, 1999).  Cuckoo, an offloading framework for the Android 

platform, demonstrated that it was possible to speed up computational tasks by a factor of 

60 by offloading computationally intensive work to a more capable surrogate machine, 



13 
 

 
 

and, at the same time, reduce the energy consumption by a factor of 40 (R. Kemp, 

Palmer, Kielmann, & Bal, 2012).  The AIOLOS system demonstrated that method 

offloading to a surrogate resulted in up to a 90% decrease in method execution time over 

local execution (Verbelen, et al., 2012). 

The aforementioned systems were effective in part because beneficial offloading 

decisions were made by utilizing observed or historical performance data.  These systems 

utilized performance metrics from prior executions and training to decide how to partition 

the task between local and remote execution (Flinn, et al., 2002; Flinn & Satyanarayanan, 

1999; R. Kemp, et al., 2012; Narayanan, et al., 2000).   

A common practice used to obtain performance metrics was to execute tasks on 

each remote system in order to obtain performance data.  Kafaie, Kashefi, & Sharifi 

(2011) observed that in systems that utilized historical-based estimation, the system did 

not provide accurate estimates when there was a lack of observed performance data.  

Sharifi, et al. (2012) observed that a similar condition existed in historical-based 

estimation systems.  When there was insufficient history to be utilized in estimation 

efforts, the cost estimates were also inaccurate.  This condition was known as the cold-

start state.   

The effects of the cold-start state on offloading decisions can be illustrated by 

how the Odyssey system predicted future energy demand.  The Odyssey system predicted 

future energy demand based upon direct observations and historical data.  Odyssey’s 

estimation methodology utilized an exponential smoothing function in the form of 

Pestimate = α(Scurrent) + (1-α)*(Shistory),where α represented the weight of 

the power usage, Scurrent represented the current observed sample, and Shistory 



14 
 

 
 

represented the past demand estimation.  The value for α was dynamically set to 10% of 

the remaining battery power.  During the cold start state, before there was prior execution 

history or current execution observations, Scurrent and Shistory were both zero, which 

yielded zero as the future demand prediction.  This inaccuracy resulted in the system 

making an arbitrary and possibly detrimental decision based upon the faulty cost 

estimate.  In Odyssey, the effect of the cold-start state was obscured by a smoothing 

function and the duration of the testing, which ranged in time from 20 minutes to 2.75 

hours (Noble, et al., 1997). 

The Spectra system partially addressed the lack of information during the cold-

start state by utilizing default predictors, which provided a generic cost estimate 

whenever a current sample was not available (Flinn, et al., 2002).  The default predictors 

in Spectra were historical-based and relied on logged execution data to generate a linear 

model of resource usage using linear regression.  While this solution provided an 

approach to handle the case where current execution results were unavailable, the 

approach did not address the problem of when a new surrogate was encountered and there 

was a lack of both current and historical data.  Additionally, this approach introduced the 

additional cost of training overhead.  Essentially, the Spectra system suffered from the 

same drawback of faulty estimates as Odyssey, but incurred additional overhead in the 

form of training cost.  

The Spectra system was tested in three common usage scenarios:  speech-to-text 

translation, document formatting, and speech recognition.  In the speech-to-text 

translation evaluation, the historical database was seeded by a training session that 

consisted of processing 15 phrases so that the system could start with baseline data.  Prior 



15 
 

 
 

to the document formatting evaluation, Spectra processed 20 documents, which allowed 

the system to learn the performance metrics for the document formatting operation.  Prior 

to the natural language selection test, Spectra was trained by translating 129 sentences 

before the actual test was initiated (Flinn, et al., 2002).  The training avoided the cold-

start problem, but imposed training cost in terms of effort and time.  The overall cost of 

training the system was the sum of the individual task execution costs, but this simplistic 

calculation did not take into the account the cost of logging the individual operations nor 

did it incorporate the cost of the space required for storing the logs.   

An example of training cost can be found in the Odyssey system.  The Odyssey 

system added approximately 20 ms of overhead to each task invocation while offline 

training in Odyssey required approximately 10 seconds to read and process a log file 

(Narayanan, et al., 2000).  According to Flinn et al. (2012), the need for a learning phase 

was a drawback of history-based approaches, but a necessary one as the accuracy of the 

predictions increased over time as more data was collected.   

Using observations made by Narayanan et al. (2000), the case where a user of a 

cyber foraging system encountered a new environment where no device had ever been 

used before, a training session was required for each device before the devices could be 

utilized.  Using the published training overhead times mentioned earlier, each new device 

would incur a 10 second training delay.  In a dynamic environment, where devices joined 

and departed the environment spontaneously, it was impossible to know a-priori which 

devices would be available at any given moment.  Delaying remote operation execution 

could potentially degrade the application’s performance by missing a surrogate while it 

was available.  



16 
 

 
 

This report contains 5 chapters sequentially organized as follows.  Chapter 1 

provides background and introduces the research problem.  Chapter 2 presents a review 

of the relevant literature and discusses gaps in the existing research.  Chapter 3 presents 

the methodology used to develop and test the proposed scheduling algorithm.  Chapter 4 

reviews the results obtained by conducting the experiments.  Chapter 5 discusses the 

implications of the results, and suggests recommendations for additional work. 

Problem Statement 

Cyber foraging systems that utilize historical performance metrics in remote 

execution decisions encounter a period during the initial start-up where there is 

insufficient historical data available to make accurate estimations.  This problem, known 

as the cold-start state, is the period of time when historical-based estimation algorithms 

are inaccurate due to insufficient data to enable accurate estimations (Serral, Valderas, & 

Pelechano, 2011).   

Kafaie, et al. (2011) stated that historical-based estimation algorithms that do not 

possess prior execution data for newly encountered surrogates were likely to be 

inaccurate.  In a similar statement, Sharifi, et al. (2011) stated that one of the 

shortcomings of the historical-based estimation approach was that the algorithms required 

prior execution data, which was not available for newly encountered surrogates.   

It is important that cyber foraging systems obtain and maintain timely and 

accurate information pertaining to the cost of both local and remote operation execution 

in order to make informed offloading decisions; otherwise, the system may not select the 

surrogate that provides the most benefit to the user (Flynn, 2012; Sharifi, et al., 2011).   



17 
 

 
 

According to Kristensen and Bouvin (2000), the delay imposed by the cold-start 

state prevented beneficial surrogates from being utilized until the system was able to 

make predictions.  Because of this, historical-based algorithms may have delayed the 

utilization of a potentially beneficial surrogate while the surrogate was profiled.  This 

delay may have resulted in continued degraded performance until a new and more 

beneficial surrogate was profiled and utilized.  A scenario illustrating the potential cost 

associated with the cold-start follows. 

To show the benefits of remote execution, Kemp et al. (2009) demonstrated that 

remote execution could both reduce the response time and improve the fidelity at which 

the application operates to a point beyond what the local device itself can perform.  While 

the authors’ system was in foraging mode, the execution time of facial recognition 

operations was reduced by a factor of up to 60 over local execution by offloading 

computationally intensive operations to surrogate machines.  The ability to outsource the 

execution of computationally intensive tasks to surrogates not only decreased the 

execution time of the operations, it also potentially increased the fidelity of the 

operations.  Due to memory and processor constraints of the mobile device, it was not 

possible to perform recognition operations upon high-resolution images with high 

accuracy settings on the local device.   

In this case, cyber foraging provided the ability to offload the computation to 

more suitable surrogates, which augmented the local device to a point where such 

operations were possible (Kemp, Palmer, Kielmann, Seinstra, Drost, Maassen, & Bal, 

2009).  These benefits could not be realized if the system encountered a new surrogate 

and the surrogate was still in the cold-start state when an operation was executed.  If the 



18 
 

 
 

system did not have enough information about the cost of utilizing the surrogate, another 

surrogate would be used (if one were available) or the operation would have been 

executed locally causing the application to run up to 60 times slower, or not at all. 

The cost and duration of the cold-start state in the Odyssey system was 

demonstrated by how Odyssey predicted the resource demands of an application.  

Odyssey attempted to maximize the fidelity experienced by the user or to minimize the 

power consumed by the device by utilizing both a training process and a subsequent 

learning process.  The training process utilized historical execution logs, if they were 

available, for use in the learning phase where they were loaded and used to generate 

predictors that guided the system in making remote execution decisions during the 

application’s execution.  If historical logs were unavailable, they were synthesized during 

an offline training phase where a series of random executions were made across the entire 

spectrum of possible requests.  The resulting data was then fed into the training process 

for use by the system (Narayanan, et al., 2000).  According to Narayanan, et al. (2000), 

the training process was performed offline and took approximately 10 seconds per device 

to complete.  The offline training precluded new surrogates from dynamically joining the 

system; however, if new surrogates were able to join the system at runtime, they would 

have encountered an approximately 10 second training delay, assuming a training log was 

available for use.  This delay extended the cold start state and prevented the system from 

realizing the performance benefits of a surrogate.  

The historical-based task execution framework proposed by Huerta-Canepa and 

Lee (2008) reduced the execution time of an application by offloading code execution to 

surrogates in an effort to minimize the execution time of an application.  Code was 



19 
 

 
 

offloaded to remote surrogates if it was estimated that the local resources would fall 

below a threshold that supported the required application performance.  This was 

accomplished by a statistical sampling of local resources and incorporating prior 

application performance history, if available.  The offloading decision was based upon 

the expectation of local resources being available within a 95% confidence interval of the 

target threshold.  In order for the sampling to be statistically significant within the stated 

confidence interval, 96 samples were required to move beyond the cold-start state.  The 

sample size was calculated as follows: (Z
2  

p ( 1 – p )  ) / C
2,

, given Z = 1.96, p = 0.5, and 

C = 0.1, where Z was the confidence level, p was the standard deviation, and C was the 

margin of error (Huerta-Canepa & Lee, 2008).  The drawback of this approach was the 

number of samples required to achieve the desired confidence level might have delayed 

offloading and exacerbated the problem by the continued execution of code on the local 

device when remote execution would have been beneficial.   

Dissertation Goal 

This research achieved the goal of increasing the performance of a cyber foraging 

application in terms of decreasing the application’s execution time.  This goal was 

achieved by the implementation of an enhanced scheduling algorithm that utilized a 

heuristic to estimate the execution cost of an operation on a device during the cold-start 

state.  This estimation-based algorithm was utilized until the historical-based profiling 

algorithm acquired enough data to predict an operation’s execution cost.  The solution 

extended the linear regression-based algorithm utilized by the Odyssey system into the 

enhanced historical-based algorithm.  This new algorithm utilized a heuristic based upon 

the static analysis of Java bytecode rather than historical execution logs to estimate the 



20 
 

 
 

cost of remote execution.  This heuristic was utilized until the system obtained enough 

data for the prediction algorithm to be beyond the cold-start state.   

All surrogates were considered to be in the cold-start state until they attained a 

prediction accuracy of 20% or less.  This value was used based upon the success and 

accuracy of predictions in the Odyssey system, where the system achieved an error range 

of 10% to 24% (90
th

 percentile relative error) of the predicted CPU demand vs. the 

observed CPU usage (Narayanan, et al., 2000).   

The remainder of this section presents the high-level approach of how the success 

of this research was measured.  More details on the proposed algorithms are presented in 

Chapter 5 of this document.   

Three experiments were conducted to measure the performance of the new 

scheduling algorithm proposed in this research.  The first experiment measured the 

performance of the cyber foraging application with a historical-based prediction 

algorithm.  The second experiment measured the performance of the cyber foraging 

application with the experimental algorithm.  The third experiment measured the 

performance of the cyber foraging application with a blind offloading algorithm.  Each 

experiment consisted of 4 scenarios, each of which targeted a specific operating 

condition.  The differing operating conditions mimicked common use-case scenarios for 

mobile devices and included disconnected operation, use in an over saturated 

environment, use in a slowly churning environment, and use in a quickly churning 

environment.   

Each scenario consisted of 3 image manipulation operations upon a full-size 

image and a thumbnail-sized version of the same image.  The operations were repeated 



21 
 

 
 

fifty times for each image size.  A complete overview of the testing plan and testing 

environment is presented in the performance evaluation section of the methodology 

chapter. 

Relevance and Significance 

This section supports both the problem and the goal of the research by first 

discussing the background of the current methodology leading to the problem, the lack of 

information and timing that manifests the problem, and the how solving the problem is 

beneficial. 

The users of mobile devices are likely to possess and use multiple diverse devices 

simultaneously, which is in stark contrast to the mainframe era where one computer 

served multiple simultaneous users (Gu, Nahrstedt, Messer, Greenberg, & Milojicic, 

2004).   Amongst mobile devices, heterogeneity is commonplace with the hardware 

platform, operating system, physical characteristics, communication protocols, and 

overall device capabilities vary from device to device.  Compounding the sheer number 

of possible device configurations is the fact that mobile devices are generally less 

powerful and more restricted than stationary hardware and this trend is unlikely to be 

solved by Moore’s law alone (Narayanan & Satyanarayanan, 2003). 

While reviewing options to address the disparity between platforms, Gu et al. 

(2004) observed that rewriting individual applications to make efficient use of a specific 

platform’s resources would have been prohibitively expensive and time consuming.  With 

the typical lifespan of a mobile device averaging less than 12 months, an approach was 

needed that allowed for applications to make efficient use of existing hardware with little 

or no source code modifications (Balan, et al., 2007).   



22 
 

 
 

Satyanarayanan (2001) proposed the use of cyber foraging to bridge this gap by 

partitioning code execution between local execution and remote execution in an effort to 

increase the performance of an application.  By utilizing metrics obtained from the 

current execution environment, it was possible to determine if the remote execution 

would be beneficial to the application’s performance.  By remotely executing code on a 

surrogate device, an application’s performance may have been increased by conserving 

the host machine’s battery power, reducing the overall execution time of the operation, or 

increasing the fidelity of the operation (Balan, et al., 2002; Verbelen, et al., 2012). 

Sharifi, et al. (2012) observed that the information required to make the decision 

to execute an operation locally or remotely was unavailable or incomplete during the 

cold-start state, rendering the offloading decision inaccurate.  As a result, operation 

executions during the cold-start phase may not have yielded the desired performance.  

These suboptimal decisions may have also been distracting to the user and caused them to 

become impatient or frustrated with the application’s performance (Flynn, 2012; Huerta-

Canepa & Lee, 2008). 

The Odyssey system presented by Narayanan et al. (2000) sidestepped the 

runtime cold-start problem by both defining the surrogates that would be present in the 

environment and by training the surrogates in advance.  By identifying and training the 

surrogates a-priori, the system selected the most appropriate surrogate and APIs to 

utilize; however, it also restricted the movements of the mobile system to areas where the 

system was already trained (Kristensen & Bouvin, 2010).  This approach effectively 

moved the cold-start problem from runtime to system deployment.  This would be 

impractical in highly dynamic environments, such as vehicular ad-hoc networks, where 



23 
 

 
 

the topology of the network cannot be known in advance and nodes may only be 

available for as little as 10 seconds (Wang & Li, 2009). 

According to Kristensen and Bouvin (2010), in a highly dynamic mobile 

environment, the chance that an operation has been previously executed on any of the 

currently available surrogates was low.  This created an information gap between what 

was known about a surrogate and the execution history required to make informed 

decisions.  On the other extreme, if there were a large number of surrogates available, this 

would have created a burden on the scheduler to both store and process the information 

for use in scheduling decisions.  This overhead, in terms of both the storage space 

required for storing the information and the processing overhead incurred in managing 

and utilizing the data in scheduling decisions, must be properly managed; otherwise, it 

may have a negative effect on performance (Kristensen & Bouvin, 2010). 

In an effort to mitigate the lack of data during the cold-start, Flinn et al. (2002) 

implemented default predictors that supplied a value when there was a lack of historical 

data available.  The default predictors were implemented as linear models that expressed 

resource demand as a scalar data value.  While this provided missing data during the 

cold-start state, it made two important assumptions when applied to resource demand and 

execution time:  first, that resource demand was linear and second, that a given task 

would always have the same execution time.  These assumptions were not true as 

resource supply was highly dynamic and the execution time of tasks was commonly a 

function of the input data (Kristensen & Bouvin, 2010). 

 Mobile devices are generally less powerful that stationary devices in terms of 

memory, storage space, CPU power, and battery power.  This disparity cannot be solved 



24 
 

 
 

by scaling the hardware without seriously compromising the portability and battery 

lifetime of the device.  The sharing of resources via cyber foraging has shown to be 

beneficial; however, the majority of current approaches used to determine if remote 

execution would be beneficial utilized some form of online or offline profiling.  This 

profiling required the operation execution history for each device, which may not exist 

when new surrogates were discovered.  The delay imposed between the time when new 

surrogate was discovered and when the surrogate became available for use may prevent a 

cyber foraging application from realizing increased performance by utilizing a more 

beneficial surrogate.  Conversely, the effort required to profile surrogates that will not be 

beneficial may cost more than the overall savings.   

Barriers and Issues 

Developers of mobile applications are tasked with delivering software 

applications on relatively resource poor mobile devices upon which users place high-

performance expectations (Sharifi, et al., 2011).  To further exacerbate this situation, the 

release cycle of new hardware is measured in months rather than years and the pressure 

to develop and ship software with the new hardware is tremendous (Balan, et al., 2007).   

A shorter development cycle itself is burdensome for developers and the addition 

of cyber foraging to the application requirements list further complicates the overall 

design (Balan, Satyanarayanan, Park, & Okoshi, 2003).  In addition to traditional 

application development considerations, Balan, et al. (2003) observed that cyber foraging 

requirements force developers to consider other design goals, including resource 

monitoring, application partitioning, and remote execution that may run counter to 

traditional application development guidelines and increase overall development time.   



25 
 

 
 

This research avoided the aforementioned issue by separating the cyber foraging 

code from the application code by the use of aspect-oriented programming (AOP).  

Aspect oriented programming allowed for the clean separation of code into separate 

modules, which were woven together at runtime.  This separation allowed for the cyber 

foraging code to be applied to method calls without the targeted method calls being 

modified directly to support cyber foraging.  This eased the burden on the application 

developer because it was unnecessary to consider the cyber foraging requirements while 

developing the methods to support the functional requirements of the application.  

Historical-based prediction algorithms that estimate the cost of remotely 

executing code benefit from hints supplied by the programmer.  These hints, supplied in a 

file separate from the application, contain information that provides insight into factors 

that influence the cost of executing the code.  Some of these metrics include algorithmic 

complexity, fidelity limitations, and resource utilization (Flynn, 2012).  The added 

burden placed on application developers to hand-generate external files for use by cyber 

foraging systems makes it unlikely that the developers will be willing or able to 

adequately cover all of the possible combinations that the application will encounter 

(Chun, et al., 2010).   

The system developed for this research avoided the issue of overburdening the 

software developer by requiring the developer to provide a single tactic file, which 

contained the signatures of the operations that were candidates for remote execution.  No 

other analysis of the methods was necessary.   

To ease the burden on application programmers, automated techniques to quantify 

the cost of code execution have been developed and implemented.  CloneCloud, 



26 
 

 
 

developed by Chun et al. (2010) was one such example.  CloneCloud utilized dynamic 

profiling to ascertain the cost of code execution for use in the scheduling of operations 

without programmer input.  This assisted the programmer, but the use of dynamic 

profiling required that code be executed on each device that required profiling.  This 

introduced the cold-start problem into the system in the form of a training period.   

 The use of automated techniques to ease the burden placed upon application 

development is enticing, but the predominate use of dynamic profiling techniques in 

cyber foraging systems introduces the cold-start problem, which can decrease an 

application’s performance (Flynn, 2012).  Further complicating matters is the fact that 

runtime profilers add overhead, thus negatively affect performance.   

This research avoided the use of application profilers and other high-overhead 

techniques discussed earlier by utilizing the time in milliseconds it took to initialize the 

system.  The initialization time was then used to calculate the speed rating for the device 

by utilizing the number of JVM instructions the initialization code executed.  These steps 

required developer support to implement, but once the code was in place the metrics were 

dynamically calculated during system initialization. 

Binder and Hulaas (2006) observed that applications profiled with the Java 

Virtual Machine Profiler Interface (JVMPI) experienced slowdowns ranging from a 

factor of 10 to a factor of 4000.  The automatic profiling operations to obtain a cost 

estimate without running the code to obtain direct observations (thus avoiding the cold-

start problem) suggested that a static analysis approach might be required.   

The static profiling of Java applications to extract cost metrics using bytecode was 

complicated by Java’s use of unstructured flow of control (the goto statement), stacks, 



27 
 

 
 

and virtual methods (Albert, Arenas, Genaim, Puebla, & Zanardini, 2007).  The use of the 

unstructured goto statement hampered static analysis by increasing the number of edges 

in the flow analysis, thus increasing the size of the graph.  Java’s use of stacks to hold 

local variables limited the visibility of variables making it difficult to utilize them in the 

analysis.  Virtual method invocations make it impossible to determine statically which 

method would be invoked at run-time because the data type of the object referencing the 

method was unknown (Albert, et al., 2007).    The use of bytecode rather than source 

code was advantageous because access to an application’s source code could not be 

guaranteed.    

Further complicating estimation efforts was the fact that the complexity of an 

operation was often a function of the size of the input parameters (Kristensen & Bouvin, 

2010).  This impaired the ability to estimate the cost of operations, especially if the cost 

was not a linear function of the input parameter(s).  This problem was further 

compounded by the differences in architecture, notably CPU architecture.  Kristensen 

(2010) observed that the architectural differences between the Intel CPU architecture and 

the PowerPC CPU architecture generated a variance in the task weighting that was up to 

three times higher than the weight of the same function on an Intel processor.    

This research avoided the application profiling overhead by generating control 

flow graphs (CFG) of methods in order to calculate the average number of JVM 

instructions contained within the method.  This static analysis was performed once for 

library functions upon their addition to the code repository and upon the application itself 

at run-time when the cyber foraging system was initialized.  This approach avoided the 



28 
 

 
 

overhead of profiling tools and the use of CFGs enabled Java’s unstructured bytecode to 

be traversed using a graph traversal.     

Assumptions, Limitations and Delimitations 

 

The closed nature of the network used in this research and the sequential nature of 

the experimental scenarios allowed for the assumption that the communication latency 

between nodes was constant.  This allowed the communications latency to be factored out 

of the performance results.  Any variations in the network latency between individual 

nodes may have skewed the results if the communication latency varied significantly. 

Due to resource constraints, the surrogate pool was limited to 5 surrogate 

machines.  These machines are diverse in architecture, CPU speed, available memory, 

and storage.  The decision to limit the number of machines may not stress the scheduling 

algorithms as much as they may be in highly populated areas.  This may have allowed 

algorithmic issues due to scaling to go unnoticed.  

Definition of Terms 

Term     Definition 

 

Advice The code defined to run when the pointcut identifies 

a join point.  

 

Android Android is a popular mobile operating system 

developed by Google.   

 

Aspect Oriented Programming A programming method that is used to separate 

distinct tasks in a program that would otherwise be 

combined (tangled) together for convenience rather 

than functionality.  

 

Cold-Start Problem The condition created when there is insufficient 

information available to make decisions based upon 

inferences drawn from the data. 

 



29 
 

 
 

Cold-Start State The period in time when a system is susceptible to 

the cold-start problem.  

 

Control Flow Graph A graph-based representation of the possible 

execution path(s) a function may take during 

execution.  

 

Cyber Foraging A method of extending a device’s capabilities by 

utilizing services and resources provided by devices 

in the nearby environment. 

 

Estimation  Calculation that may be determined based upon a 

heuristic rather than an exhaustive calculation. 

 

Execution Time The amount of time it takes to execute a function 

from the time the function is called to when the 

function returns the results.  

 

Historical-Based Prediction A calculation that utilizes past known values for 

solving an problem to establish a relationship with 

future values often used with linear regression.  

 

Heuristic  Method to quickly arrive at an answer; however, the 

answer may not be optimal.  Heuristics generally 

are faster than the polynomial time required to solve 

the same problem for an optimal solution. 

 

Joinpoint Defines the position in an executing program or 

within a static program.  

 

Linear Regression A method used to model a relationship between one 

or more variables in a series of data points.  

 

NP-Complete A set of problems that can be solved in polynomial 

time. 

 

Pointcut An expression that defines a pattern to be matched 

against a program’s join points.  

 

Polynomial Time The time required to solve a problem expressed as a 

polynomial. 

 

Scheduling The process of determining where to execute a job 

so that it maximizes the overall goal of the system.  

 



30 
 

 
 

Surrogate An untrusted and unmanaged device that provides 

services to nearby clients. 

 

Remote Execution    See Remote Procedure Call 

 

Remote Procedure Call A method of executing code on another device 

transparent of the network providing the illusion 

that the code were being executed locally.  

 

Fidelity The degree to which the quality delivered by a 

service compares to the quality of the original 

source.  

 

Partition The code selected to be offloaded to a surrogate for 

remote execution.   

 

Partitioning The process of selecting code that may be offloaded 

to a surrogate for remote execution in a cyber 

foraging system. 

  



31 
 

 
 

Summary 

Mobile devices due to their size, weight, and power constraints typically lag 

behind stationary desktop workstations where processing power, memory, and storage 

capacity are concerned.  The cyber foraging paradigm enables mobile devices to perform 

beyond their means by offloading code for remote execution.  By remotely executing 

code, an application can conserve memory and battery power by allowing surrogate 

machines to expend the resources rather than requiring the mobile device itself to expend 

the precious resources.  The remote execution of code may also allow for the overall 

execution time of the process to be shortened or the fidelity of the result to be increased 

due to the utilization of high-performance computers rather than the resource poor mobile 

device.  

A barrier to making offloading decisions in a cyber foraging system centered on 

obtaining enough information to make informed remote execution decisions.  Given 

ample time and processing power, an execution scheduler could enumerate all available 

surrogates to determine the optimum surrogate to utilize in a given situation; however, as 

the number of surrogates increased, the time required to make such a determination 

would also increase and may become greater than what the end-user would be willing to 

accept.  The price would also be increased in terms of both the processing power and the 

battery power that would be expended to make the decision.  This could increase the cost 

of making the offloading decision beyond what would be saved by remotely executing 

the operation.  This scenario may also be compounded by the cold-start problem.  The 

cold-start problem could delay the availability of a newly arrived surrogate because the 



32 
 

 
 

system does not have enough information available to schedule the newly arrived 

surrogate.  

  The achieved goal of this research was to investigate if metrics obtained from 

the run-time profiling of a Java program could be utilized by an estimation algorithm to 

help a cyber foraging system make beneficial offloading decisions during the cold-start 

state thereby increasing an application’s performance.  The utilization of run-time metrics 

from the applications themselves provided a heuristic that did not require a-priori 

training, design-time information from the developer, or training effort from the end-user 

in order for the system to make informed offloading decisions that benefited the end-user. 

The next chapter presents a review of the relevant literature and includes the cold-

start problem, a review of the methods utilized to address the cold-start problem, 

including the use of default values or actions, historical-based algorithms, and heuristic-

based approaches.  The strengths and weaknesses of existing work are identified and gaps 

in the current approaches are identified and discussed.  

 

 

 

  



33 
 

 
 

Chapter 2 

Review of the Literature 

Introduction  

This research achieved the goal of increasing the performance of a cyber foraging 

application during the cold-start state by augmenting a history-based prediction algorithm 

with an estimation algorithm to avoid the cold-start state.  The overall goal of utilizing 

cyber foraging in this research was to augment the capabilities of a resource constrained 

mobile device by utilizing resources present in the local environment, thereby enabling 

the constrained device to exceed its capabilities to better meet the needs of the user 

(Balan, et al., 2002).  Past cyber foraging systems attempted to increase performance by 

minimizing an application’s execution time, minimizing energy consumption, or 

maximizing the fidelity of the content (Balan, et al., 2003; Cuervo, Balasubramanian, 

Cho, Wolman, Saroiu, Chandra, & Bahl, 2010; Kristensen & Bouvin, 2010; Verbelen, et 

al., 2012). 

The scope of this literature review includes discussions on cyber foraging 

scheduling algorithms, which include scheduling algorithms from the related domains of 

grid computing, cloud computing, and peer-to-peer systems.  This section begins with an 

overview of the cold-start state in cyber foraging systems and continues with discussions 

on scheduling algorithms that utilize default values or actions, historical-based prediction, 

and heuristics to make scheduling decisions.  

The Cold-Start Problem 

The cold-start problem, first discussed in recommendation systems, referred to a 

recommendation request for an item when recommendation data did not exist for the 



34 
 

 
 

item.  This situation was often caused by the newness of the item and occurred when 

users did not have ample time to obtain, use, and comment on an item.   

This scenario is common in websites that offer users’ ratings as part of a search 

option.  The adverse effects of the cold-start problem in a retail scenario may cause 

consumers to not see new items if the search query contains a ranking attribute.  This is a 

result of the system’s inability to provide a recommendation because there is no basis to 

form a recommendation (Schein, Popescul, Ungar, & Pennock, 2002). 

Default-Based Algorithms 

To avoid the cold-start problem in a pervasive system, Serral et al. (2011) 

approached the problem by seeding a user preference dataset with the default actions to 

be used when a user preference was unavailable for a condition.  By requiring the system 

developer to provide default actions for each possible scenario that could be encountered, 

the system avoided the cold-start problem by performing a default action until the system 

obtained enough data to learn a user’s preference (Serral, et al., 2011).  This approach 

effectively addressed the cold-start problem at the user-level, but this approach had two 

consequences.  First, it required the system developer to do additional work by providing 

default actions for each scenario and second, it pushed the cold-start problem from the 

user-layer into the system layer.   

By utilizing default actions at the user-layer, the cold-start problem was 

effectively pushed into the cyber foraging level where it was reasonable to assume that if 

the system did not have enough information to make a recommendation to the user, it did 

not have enough information to make remote execution decisions on behalf of the user.  

The cold-start problem manifested itself in a cyber foraging system by the presence of 



35 
 

 
 

one or more surrogates in the environment that the system dad never interacted with 

before.  This situation leads to the inability of the system to utilize the unknown 

surrogates when making scheduling decisions because of a lack of information about the 

surrogate.  Without data about the surrogate, the system did not have the information 

required to determine if utilizing the new surrogate would be more or less beneficial than 

utilizing one of the known surrogates. 

Narayanan, et al. (2000) implemented a closed-system approach in the Odyssey 

system to avoid the cold-start state and constrained the system to a few known surrogates.  

The closed system approach used in Odyssey required that each surrogate be profiled in 

advance of joining the system.  This advance profiling guaranteed that performance data 

about each surrogate would be available for use in scheduling decisions; however, the 

closed system approach has some disadvantages.  The closed system approach is more 

suited to an individual’s home or workplace where mobility is limited rather than in 

highly mobile environment, such as a bus station or an airport terminal, where ad-hoc 

surrogate encounters are likely. 

The Spectra system, the successor to the Odyssey system, utilized default models 

to avoid the cold-start state in the situation where historical data were unavailable to 

predict resource demand (Flinn, et al., 2002).  In Spectra, resource monitors were used to 

share resource levels between cyber foraging clients and servers to model the resource 

demand for use in offloading decisions.  In the absence of data, Spectra used default 

resource demand models that were based upon linear models of resource consumption.  

These model supply predictions for unknown values based upon execution history and 

extrapolation.  If a prediction was requested and the system was unable to find a suitable 



36 
 

 
 

model in the execution history, the system provided a generic estimate derived using 

linear regression.  These demand models were similar to the default actions utilized by 

Serral et al. (2011), and shared the same weakness in terms of increased developer 

workload, because it required the developer to provide default monitors and models for 

each resource.  Another concern with the use of default models was the appropriateness 

of the model across heterogeneous architectures. 

Balan et al. (2002) proposed using a brute force approach to surrogate utilization.  

The proposed method would have avoided the cold-start problem by utilizing every 

surrogate present in the environment and taking the first response.  Because every 

available surrogate would be utilized regardless if historical execution data were 

available, this approach would typically yield beneficial performance.  This approach 

would also have avoided the uncertainty that accompanied predictions and was immune 

to the cold-start problem; however, the brute force approach has a serious drawback:  the 

approach does not scale well as the number of surrogates increases.  As the number of 

surrogates increases, the communication, memory, and processing costs also increase due 

to the increased management load.  This increasing cost could quickly outweigh the 

savings realized by offloading operations (Balan, et al., 2002). 

Historical-Based Algorithms 

The majority of the research efforts in cyber foraging surrogate selection has  

focused on the use of historical-based profiling techniques (Kafaie, Kashefi, & Sharifi, 

2011).  According to Kafaie, et al. (2011), the bulk of prior cyber foraging research has 

utilized online profiling, which requires the use of historical datasets in the prediction of 

the execution time of operations on remote surrogates.  The utilization of historical-based 



37 
 

 
 

algorithms to make predictions was enticing because the predictions generally increase in 

accuracy over time as more data was accumulated (Gurun, Krintz, & Wolski, 2004).  

However, Flynn (2012) noted that the downside of using historical-based algorithms to 

make predictions was the cold-start problem.  The algorithms required a training period 

(the cold-start problem) in order to obtain sufficient data for use in generating predictions 

(Flynn, 2012).  This delay may have caused opportunities to use beneficial surrogates to 

be missed due to a lack of data.   

To quantify this delay, the profiling process in the Odyssey system will be used as 

an example.  Profiling a surrogate in the Odyssey system was performed offline and took 

approximately 10 seconds per surrogate.  This assumed that a historical dataset was 

available.  If a dataset was available, this file was provided as input to the profiler.  

However, if a historical dataset did not exist, it was generated by a training session.  This 

training session required that a surrogate repeatedly execute the required operation(s), 

often with varying input, to generate a historical dataset for use in profiling (Narayanan, 

et al., 2000).  The training and profiling of surrogates had the potential of introducing a 

substantial delay between when a surrogate was first encountered and when it became 

available for use.  To avoid the training penalty, Huerta-Camepa and Lee (2008) 

proposed incorporating the execution history from other surrogate devices during the 

integration of new surrogates into the system. 

When a device travels to a new environment, there is a high degree of probability 

that it will encounter new devices and be requested to perform operations that the device 

has never performed before (Kristensen & Bouvin, 2010).  This situation is at the heart of 

the cold-start problem.  By importing the execution logs of other devices, a surrogate 



38 
 

 
 

could minimize the time spent in the cold-start state and be available for use faster 

(Huerta-Canepa & Lee, 2008; Narayanan, et al., 2000).  There are several unsolved 

challenges associated with this approach.  First, conversions would be required to account 

for the performance differences between heterogeneous architectures, including 

differences introduced by CPU architecture and hardware speed.  Second, performance 

metrics may be platform dependent would need to be converted from one platform to 

another to ensure that a reasonable comparison is made (Narayanan, et al., 2000).  

Kristensen and Bouvin (2010) observed that the differences in platforms, including CPU 

architecture, compiler optimizations, and hardware architecture all contribute to the 

difficulty of finding a measure that can classify the power of heterogeneous machines.  

Such a classification would make it possible to group heterogeneous machines according 

to their respective power or throughput ratings.    

Heuristic-Based Algorithms  

According to Kafaie, et al. (2011), little work in cyber foraging surrogate 

selection has focused on utilizing approaches other than historical-based profiling.  One 

reason for this may be due to the overall accuracy that these approaches offer over time 

(Gurun, et al., 2004).  Although the delay imposed by profiling has been previously 

discussed, approaching the job of scheduling remote execution in a cyber foraging system 

from the perspective of grid computing provides a new perspective on the need to 

complete the scheduling task quickly.   

The task of remote execution scheduling performed in a cyber foraging system 

can be viewed as a dynamic grid where the grid is comprised of surrogate devices.  Job 

scheduling in a grid environment is an NP-complete problem that must be solved in a 



39 
 

 
 

relatively short period of time (Pooranian, Shojafar, Abawajy, & Singhal, 2013).  Grid 

computing scheduling algorithms tend to favor optimizing makespan to reduce the 

overall execution time of a job stream, which is similar to the goal of reducing an 

application’s execution time in this research.  According to Pooranian et al. (2013), since 

job scheduling is a NP-complete problem that must be solved in a relatively short period 

of time, the use of deterministic algorithms is not ideal.  Even though a deterministic 

algorithm would eventually yield the correct answer, for a large number of nodes, the 

algorithm may not arrive at the solution in a reasonable amount of time.  Solving this 

type of time-sensitive problem favors heuristic algorithms over deterministic algorithms. 

In an effort to avoid profiling and the need for historical datasets, the adaptable 

offloading inference engine (OLLIE) dynamically offloads classes to surrogate devices in 

an effort to reduce the memory consumption of a mobile device (Gu, Nahrstedt, Messer, 

Greenberg, & Milojicic, 2003).  OLLIE utilizes developer supplied class annotations, a 

fuzzy control inference engine, and developer supplied rules to control adaptation 

decisions that dynamically partition the executing application at runtime into objects that 

may be offloaded and accessed remotely via remote method invocation.  The fuzzy 

inference engine utilized by OLLIE requires developer support to provide fuzzy logic 

rules to determine when to trigger offloading.  The intriguing aspect of OLLIE from the 

perspective of this research is that no a-priori knowledge of the surrogates or execution 

history is required for the system to make beneficial offloading decisions.  This is due in 

large part because the goal of conserving memory on the mobile devices can be realized 

by remotely instantiating an object on a surrogate machine given there is adequate 



40 
 

 
 

memory available on the surrogate.  Adaptation is initiated by the single heuristic trigger 

of the available memory on a remote device to execute offloading.   

Zhang, Kunjithapatham, Jeong, & Gibbs (2011) proposed an elastic application 

model that would automatically partition an application into individual weblets that could 

be dynamically and independently offloaded into the cloud to augment and conserve a 

mobile device’s resources.  In an effort to determine the optimal balance between the 

number of offloaded weblets and locally executing code, a Naïve Bayesian Learning 

algorithm was utilized to keep the offloading balanced between the cloud and the mobile 

device.  This was achieved by using a cost-based approach.  The cost of specific 

resources and performance attributes were utilized by a learning algorithm and balanced 

against local resource measurements, historical performance data, and user preferences to 

control the partitioning of the application (Zhang, Kunjithapatham, Jeong, & Gibbs, 

2011).  Although this system utilizes a probabilistic approach over a deterministic 

approach to obtain the cost estimate this approach, like the Odyssey system, also suffers 

from the cold-start problem due to the dependence upon historical data to train the system 

before it can make predictions.    

Kafaie, Kasherfi, and Sharifi (2011) presented a cost-based approach to the cold-

start problem by using the throughput of an operation executed on a specific device as a 

cost metric that could be utilized to make scheduling decisions.  The cost metric, 

instructionPmSecond, was defined as the quotient of the number of elements that 

required processing and the time required to perform the operation (Kafaie, et al., 2011).  

Ideally, the value of instructionPmSection would be computed in an offline training 

session; however, if a new surrogate was encountered at runtime that did not have a value 



41 
 

 
 

for instructionPmSection, the system profiled the operation dynamically to obtain the cost 

metric.  Although this approach suffered from the same scaling problem as the brute-

force approach presented by Balan et al. (2002), it had two strengths.  First, the system 

did not refuse to allow new surrogates to participate if it had not been profiled in 

advance.  Second, the use of the metric (instructionPmSection) was preferable to the use 

of execution time itself.  This was a step towards a device independent metric, which 

could be used to quantify the strength of the operation when executed on the surrogate.   

 Using a similar approach, Kristensen et al. (2010) utilized benchmarking to assign 

a strength rating to surrogates for use as a scheduling heuristic.  This heuristic enabled the 

Scavenger system to make beneficial offloading decisions when there was a lack of 

historical information.  Scavenger’s scheduler utilized two profiles:  a peer-centric profile 

and a task-centric profile.  The peer-centric profiles utilized historical information about 

the run-time of past executions in a (peer, task) pairing, while the task-centric profiles 

contained the weight of the task as if it were executed on a surrogate with a strength 

rating of 1.  This scaling of the task weight by the strength rating of the surrogate allowed 

Scavenger’s scheduler to make judgments about the best surrogate to use when a peer 

profile was not available.  The strength ratings of the surrogates were linear where a 

surrogate with a strength rating of 2 was twice as fast as a surrogate with a strength 

weighting of 1 (Kristensen, 2010).   

 The benchmarking approach utilized in the Scavenger system provided relatively 

sound guidance to the Scavenger’s scheduler; however, it was not perfect in every 

situation.  Kristensen (2009) observed that architectural differences between platforms 

did influence the weights of tasks by as much as three times in some instances, which 



42 
 

 
 

may have led to inaccuracies in surrogate selection.  Additionally, requiring the use of an 

external benchmarking application to obtain the surrogate strength was essentially an 

offline training phase. 

 An alternate approach to quantifying the strength of a surrogate was to quantify 

the resource demand of an operation.  Binder and Hulaas (2006),  in an effort to provide a 

cross-platform CPU consumption metric, utilized bytecode instruction counting as a 

method for quantifying CPU consumption of a Java application.  The authors’, motivated 

by the high overhead of profiling and lack of portability of the JVM Profiler Interface, 

utilized bytecode rewriting to count the number of JVM instructions executed by each 

thread of execution in a Java application.  This approach enabled Java applications to be 

profiled with moderate overhead ranging from 17% to 30% of the applications run-time 

(Binder & Hulaas, 2006).  The ability to describe the CPU consumption of a Java 

bytecode in a platform neutral metric enabled the metric to be used directly without the 

need to perform conversions or weight the value to account for variations on device 

performance. 

 A platform neutral metric avoided the need for platform specific conversions to 

account for architectural differences when estimating costs in a heterogeneous 

environment; however, the fact that the cost of an operation was often a function of the 

size of the input parameters also influenced the estimation.  In an effort to glean cost 

relations from Java bytecode, Albert et al. (2007) utilized a CFG to convert Java bytecode 

into a traversable graph structure.  The resulting CFG was used as input into a static 

analysis process designed to infer the operational complexity of the Java bytecode based 

upon the input parameters and the variables utilized to control branching and looping 



43 
 

 
 

within the program.  Although obtaining cost relations was an important component of 

determining the complexity of an operation, which in turn was required to determine the 

running time of the operation, the focus of this work was not to determine execution time, 

but rather to determine which surrogate would potentially provide the fastest execution 

time.  A CFG was utilized to calculate the longest, shortest, and average path of 

execution through an operation.  The average path cost was utilized as a heuristic that 

indicated the overall cost of the operation rather than determining the exact cost of the 

operation using a deterministic method.  

  



44 
 

 
 

Chapter 3 

Methodology 

Introduction 

This research attained the goal of increasing an application’s performance during 

the cold-start state by designing and implementing an enhanced historical-based 

prediction algorithm.  This algorithm utilized estimation for surrogate selection during 

the cold-start state of a cyber foraging application until the historical-based prediction 

algorithm accumulated enough execution history to make predictions.  To provide an 

environment where the new algorithm could be evaluated, a Java-based cyber foraging 

system, called jScavenger, was developed using the Python-based Scavenger system 

developed by Kristensen (2009) as a model.   

This chapter is organized as follows.  First, a high-level overview of the 

jScavenger system will be presented, followed by a detailed discussion of the individual 

jScavenger components (the foraging application server, the jScavenger Surrogate client, 

and the cyber foraging application).  Next, a discussion on the approaches used for 

profiling the operations and devices will be presented followed by discussions on the 

testing environment, performance evaluation, data collection, data analysis, and data 

verification processes.  

jScavenger Overview 

The jScavenger system was a Java-based client/server system where cyber 

foraging applications executing on a mobile device, such as a tablet or smartphone, 

remotely executed code in an effort to decrease the overall execution time of an 

application.  Surrogate devices, located in the local environment, connected to the 



45 
 

 
 

jScavenger foraging application server (foraging server) to offer computational resources 

to cyber foraging applications.  If the foraging server determined that the operation about 

to be performed would potentially run faster on a surrogate device, then the operation 

would be offloaded to a surrogate.  The high-level organization of the jScavenger system 

is shown in Figure 1. 

 
Figure 1 – A High-Level View of jScavenger 

 

In Figure 1, the cyber foraging application depicted was an image manipulation 

application, which enabled the user to sharpen an image, adjust the contrast of an image, 

or convert the image to grayscale.  This application was an Android application running 

on a smartphone, which allowed the user to select an image and the operation to perform 

upon the image.  The application was also able to execute predefined scripts to automate 

the data collection phase of this research.  

Image manipulation was chosen because high-resolution cameras are standard on 

most mobile devices and the ability to manipulate images before they are uploaded to 

photo albums or social media sites is desirable; however, applying these operations to 

high-resolution images is still demanding and resource intensive for mobile devices in 

terms of time and energy (Kristensen & Bouvin, 2010).  According to Kristensen et al. 

Mobile Device

Cyber
Foraging 

Application(s)

jScavenger
Surrogate-1

jScavenger
Surrogate-2

jScavenger
Surrogate-N

jScavenger 
Foraging

Server



46 
 

 
 

(2010), cyber foraging has been able to reduce the time it takes for a resource constrained 

device to perform a series of image operations on a high-resolution image from 150 

seconds without cyber foraging to less than 20 seconds with cyber foraging. 

Surrogates in the jScavenger system functioned as remote procedure call (RPC) 

engines that accepted RPC requests, performed the requested operations, and returned the 

results.  Each surrogate connected directly to the foraging server and maintained a library 

of operations that were available for use.  When a surrogate connected to a foraging 

server the list of available operations on the surrogate were compared with the current 

requirements of the cyber foraging application(s) currently connected to the foraging 

server.  If a surrogate was missing an operation that was currently required, the 

discrepancy was resolved by the surrogate downloading missing operation(s) from the 

foraging server.  All surrogates in this research were assumed to be able to perform any 

operation that the cyber foraging application requested and each surrogate would have the 

required operations downloaded in advance.   

When a cyber foraging application attempted to perform an operation that was 

available on a surrogate, the foraging server intercepted the method execution request and 

determined if remote execution was beneficial.  If remote execution was deemed to be 

potentially beneficial, the foraging server sent a RPC request to the selected surrogate 

along with the parameter data.  The surrogate then performed the operation and returned 

the result to the foraging server.  The foraging server then presented the result of the 

operation to the requesting application as if the operation was performed locally.  

Conversely, if remote execution was not deemed beneficial, then the application 

processed the operation locally. 



47 
 

 
 

The jScavenger Foraging Application Server  

The jScavenger foraging server functioned as the cyber foraging resource 

manager for the mobile device by providing surrogate discovery and remote execution 

scheduling services to cyber foraging applications.  The high-level architectural overview 

of jScavenger is shown in Figure 2. 

Figure 2 – The High-Level Architecture of jScavenger. 

The Interface Between jScavenger and a Cyber Foraging Application 

During the execution of a cyber foraging application, the foraging server 

intercepted the method calls of the cyber foraging application and determined if remote 

execution was beneficial.  This interface was implemented using Aspect Oriented 

Programming.  In order to intercept the calls from a cyber foraging application, an AOP 

aspect called jScavengerMonitor was created.  This aspect contained a pointcut, which 

defined a predicate that was used to match the method calls to be intercepted.  The basic 

form of the pointcut is shown below.   

jScavenger Foraging Server

AOP

Cyber Foraging 
Application

(Image Tool)

Application 
Tactics

Execution 
Scheduler

jScavenger Surrogate

RPC 
Environment

Presence
(Discovery)

Executable 
Code Store

Execution 
Log

Surrogate 
Discovery

Discovery 
Simulation 

Driver

Parameter 
Data 

Repository

TCP 
Sockets

(single connection)

Execution 
Log

Manifest



48 
 

 
 

pointcut InterceptCalls():  call (* *(..)) 

This pointcut called the advice method InterceptCalls if the current join point matched 

the predicate defined in the pointcut.  In this case, the predicate was a wildcard that 

intercepted all method calls.  The advice InterceptCalls contains the logic to locally 

execute or remotely execute the call using method names from the application’s tactic file 

and the list of available RPCs derived from the currently available surrogates.  If the 

current method was available as a RPC and would potentially execute faster than local 

execution, then the request was submitted to the scheduler for execution; otherwise, the 

request was executed locally.  The pseudocode of the InterceptCalls advice is shown in 

Figure 3.  

 
Figure 3 – Pseudocode for InterceptCalls Advice  

In this research, cyber foraging was considered a non-functional requirement of 

the user application.  The use of AOP enabled the cyber foraging related code to be 

cleanly separated from the source code of the cyber foraging application (Irwin, 

Kickzales, Lamping, Mendhekar, Maeda, Lopes, & Loingtier, 1997).  This separation of 

concerns allowed cyber foraging services to be provided transparently to the application, 

thus avoiding the need to directly modify the application to support cyber foraging 

(Satyanarayanan, 1996). 

Object around() : InterceptCalls() 
{ 
 Object value = null 
 

if( Scheduler.isAvailable(rpcname) ) 
  value = Scheduler.execute(rpcname, params) 
 else 
  value = proceed(params)   // local execution 
  
 return value 
} 

 



49 
 

 
 

The single requirement jScavenver imposed upon a cyber foraging application to 

utilize cyber foraging was that the application developer must have provided a tactics file 

that contained the names of methods that could be offloaded to a surrogate.  If an 

application did not supply a tactics file, then the application will execute without the 

benefits of cyber foraging.  The tactics file will be discussed in detail in the Cyber 

Foraging Application section. 

The jScavenger Execution Scheduler  

The jScavenger execution scheduler was responsible for determining the location 

where the current operation should be executed, remotely executing the operation (if 

applicable), and maintaining a log file that contains performance data about the system’s 

operation.  This section contains details on the scheduler, the RPC execution mechanism, 

and the execution log file.   

The execution scheduler worked with the discovery subsystem to maintain a list 

of operations that may be remotely executed and a list of surrogates capable of 

performing the operations.  At runtime, when a new surrogate connected to the foraging 

server, a manifest of the available operations was presented to the discovery subsystem, 

which in turn registered the surrogate with the execution scheduler.  The execution 

scheduler then used the manifest and the surrogate’s device name to maintain a list of 

operations that were currently available for remote execution.  Each operation had the 

potential to be executed by none, one, or many surrogates.  The relationship between the 

operations and surrogates is shown in Figure 4.  For each operation, the associated 

surrogate list was maintained in order based upon the cost of performing the operation on 

the surrogate.    



50 
 

 
 

 
Figure 4 – Data Structure Mapping Operations to Surrogates 

 

 The execution scheduler in jScavenger determined whether to offload an 

operation to a surrogate or execute the operation locally using a cost-based metric.  

Kafaie, et al. (2011) developed a highly accurate solver that was able to successfully 

determine the most suitable surrogate to offload code execution using a cost-based 

model.  Their cost-based solution defined cost functions for execution latency, 

computation time, communication time, and energy consumption based upon offline 

profiling.  During experimentation, the authors’ solution selected the best location to 

execute the task with a degree of accuracy that performed as well as blind offloading.  

Two of the drawbacks of this approach, which were addressed in this research, required 

the developer to annotate the complexity of each operation and the use of offline profiling 

to determine the speed of each device.  

Based upon the research conducted by Kafaie, et al. (2011), the expression used to 

determine if an operation should be offloaded was:  IF CL > (CR + CC), where  CL 

was the cost for a local task execution, CR was the cost for remote execution, and CC was 

the round-trip communication cost.  If the estimated cost to perform the operation locally 

were greater than the sum of the estimated remote execution cost and the estimated 

round-trip communication cost, then the operation would be offloaded.  The unit of 

measure for cost in this research was time, expressed in milliseconds.  The method used 

to derive each cost varies by the scheduling algorithm that was used. 

+Name : string
+Cost : int
-SurrogateList : Surrogate

Operation

+Name : string
+Speed : int
+Cost : int

Surrogate

+Name : string
-OperationList : Operation

Scheduler

1 * 1 *



51 
 

 
 

The jScavenger scheduling system contained three costing algorithms that were 

used to determine CL and CR:  historical, experimental, and random.  The foraging 

server’s configuration file determined which scheduler was in use when the system was 

initialized.   

The first algorithm, the historically-based algorithm, attempted to predict the CR  

as the execution time of a given operation by performing an ordinary least squares linear 

regression.  The calculation was performed over a historical dataset consisting of the 

operation execution times for a specific surrogate and the size of the image in pixels.  

This mirrors the approach utilized by Narayanan, et al. (2000) to predict the remote 

execution time on the Odyssey system.  This research followed suit by utilizing simple 

linear regression to predict the remote execution time of an operation using the number of 

pixels contained within the image as input.  Linear regression was implemented in 

jScavenger using the Apache Commons Math3 library and the observation data was 

stored in the scheduler for each connected surrogate.    

This approach follows the Odyssey system’s use of a linear regression-based 

algorithm that was able to predict the CPU demand for a given operation based upon the 

polygon count and resolution of the model to be processed.  Using this approach, the 

Odyssey system achieved an error range of 10% to 24% (90
th

 percentile relative error) of 

the predicted CPU demand vs. the observed CPU usage (Narayanan, et al., 2000).  It 

should be noted that these results were obtained after the Odyssey system was trained on 

each surrogate so the system had adequate data to make offloading decisions.   

Like Odyssey, the jScavenger system’s implementation of this algorithm suffered 

from the cold-start problem because the system was not trained on each individual 



52 
 

 
 

surrogates prior to executing the experiments.  Although this algorithm was based upon 

the algorithm used by Odyssey; jScavenger, unlike Odyssey, accepted new surrogate 

connections at run-time.  The requirement to allow new surrogates to join the system at 

run-time brought with it the cold-start problem due to the low probability that an 

operation was previously executed on the surrogate (Kristensen & Bouvin, 2010). 

To address the cold-start problem, each new surrogate that did not have an 

execution history was profiled.  This profiling was performed in the background before 

the surrogate was able to be utilized by the scheduler.  The profiling was accomplished 

by requesting the surrogate to process two image files (one full-size and one thumbnail 

size) using the current operation.  All surrogates were considered to be in the cold-start 

state until they attained a prediction error accuracy of 20% or less.  Kafaie, et al. (2011) 

utilized a similar approach to gather performance information from an unknown 

surrogate.  This was accomplished by transferring a small profiling program to the 

surrogate to gather performance metrics before the system could include the surrogate in 

scheduling calculations.  Although this approach introduced additional overhead, 

experimental results showed that the overhead could be justified by enabling the 

scheduler to make better offloading decisions. 

The second algorithm, the experimental algorithm (Figure 5) utilized a heuristic to 

estimate the most beneficial surrogate to utilize while the historically based algorithm 

was in the cold-start state.  The heuristic estimated the remote execution cost as CR = OC 

/ DS, were OC was the cost of the operation in terms of the average number of Java 

virtual machine instructions contained in the operation and DS was the speed of the device 

in terms of the number of Java virtual machine instructions it demonstrated it could 



53 
 

 
 

execute per second.  This heuristic was utilized until there was enough history accrued so 

that the historical-based algorithm would be sufficiently accurate.  Using the error range 

from Odyssey as a guide, once the prediction error was below 20% of the observed value, 

the surrogate was considered to be beyond the cold-start state and the historical-based 

algorithm was utilized.  The pseudocode for this algorithm is shown in Figure 5.   

Kafaie, et al. (2011) utilized a similar metric to describe the performance of a 

device by performing offline profiling to obtain the number of data elements a device 

could perform in a second for a given task.  The profiling utilized a developer supplied 

big-O expression for the time complexity behavior of the function and the element count 

of the input data as the workload.  Although the term was named instructions per second, 

the value did not actually count machine instructions executed per second, but rather it 

represented the number of data elements that could be processed per second.  This value 

was calculated by taking the number of elements in the data set divided by operation’s 

execution time.  This approach enabled the authors’ to perform a brute force calculation 

over all surrogates to determine the best surrogate to utilize in a given situation (Kafaie, 

et al., 2011).   



54 
 

 
 

 
Figure 5 - Pseudocode for the Estimation-Enhanced History-Based 

Algorithm 

 

The use of a cost-based heuristic was utilized in the Scavenger system to enable 

the operations to be evaluated separately from the devices in what the authors’ termed 

multidimensional profiles (Kristensen & Bouvin, 2010).  Scavenger’s use of 

multidimensional profiles enabled the characteristics of both the device and the operation 

to be reasoned about separately when making offloading decisions.  For example, in the 

Scavenger system, a device with a strength level of 8 was considered to be twice as fast 

as a device with a strength level of 4.  This type of direct comparison was not possible in 

a historical-based approach where the only data available was the time it took to execute 

the operation.  By separating the characteristics of the device from the properties of the 

data to be acted upon, it became possible to estimate how a particular operation would 

perform on a specific device without actually performing the operation on the device 

// Determine which device to use 

device getDevice() 

{ 

cost = localdevice.profile.getCost(operation) 

host = localdevice 

foreach device s in surrogates with operation 

 costs = s.profile.getCost(operation) 

 if( costs < cost ) 

  cost = costs 

host = s 

 end-if  

end-for 

return host 

} 

 

// Determine the cost of the operation on a given device 

double device.getCost(operation) 

{ 

cost = infinity 

if( device.ColdStart == true ) 

    cost = device.profile.getCost() * operation.profile.getCost() 

else 

    cost = device.history.getCost(operation) 

return cost 

} 



55 
 

 
 

(Kristensen & Bouvin, 2010).  Although the accuracy of historical-based approaches 

have proven themselves to be beneficial, they fall flat when presented with the cold-start 

problem (Kristensen & Bouvin, 2010). 

One of the drawbacks of Scavenger’s approach is that each device must be 

benchmarked offline to obtain the device’s relative strength before it can participate in 

the system.  The benchmarking suite NBench was used to provide the strength metric, 

which, according to the documentation, takes approximately 10 minutes to execute 

(Kristensen & Bouvin, 2010).  The benchmarking requirement would delay devices that 

have not already been benchmarked by this specific software from participating in the 

system.  

The jScavenger approach to profiling surrogates was as follows.  First, the device 

was profiled to determine the estimated number of JVM instructions per second the 

device could perform.  Second, the methods defined in the tactics file were profiled to 

determine the average number of JVM instructions for each operation.  Once the device 

and operation profiles were obtained, the estimated execution time was calculated by 

dividing the operation profile cost by the device profile cost.  The details on the 

methodologies used to profile the surrogate device and operations are discussed in the 

device profiling and operation profiling sections, respectively.  

The third scheduling algorithm, the random algorithm, blindly selected a 

surrogate to use from the list of available surrogates.  This algorithm utilized a random 

number generator that selects the surrogate to utilize for the current operation.  This 

algorithm assumed that offloading was faster than local execution.   



56 
 

 
 

This research was conducted on a closed network to avoid unintended variations 

in network performance from influencing the overall performance of the testing 

environment.  Because of this, the value of CC was not estimated and was considered a 

constant value for each surrogate.  The actual observed value of CC was captured and 

evaluated to ensure that this assumption was valid.   

The observed value of CC was determined by capturing the total latency (denoted 

by CT) as seen from the application server and subtracting the remote execution time as 

reported by the surrogate.  The calculation used to determine CC is illustrated in Figure 6. 

 
Figure 6 – Calculating Round-Trip Communication Cost 

 

Two image sizes were utilized in this research, which introduced variability in the 

transfer rates used over the TCP connections.  The TCP communication protocol utilizes 

a sliding window, which can dynamically change the number of active packets allowed to 

be outstanding at a given time to increase throughput.  Because of this, the transmission 

rate for larger files was higher than the rate for smaller files (Kafaie, et al., 2011).   

Remote Execution  

When the scheduler decided to offload an operation to a surrogate, it created an 

RPC request formatted as a XML document and sent the RPC request via a synchronous 

TCP socket to the surrogate for execution.  The RPC was then decoded, executed, and a 

response was returned.  A detailed discussion about how the remote execution was 



57 
 

 
 

performed on the surrogate is provided in the jScavenger surrogate section.  An example 

of an RPC request/response pair is shown in Figure 7 and Figure 8, respectively.   

 
Figure 7 – XML RPC Request 

 

The RPC Request XML document contained all the information required by the 

surrogate to perform the RPC.  The important elements of the request document were the 

operationName and parameterValue elements.  The operationName parameter passed the 

class name and the method name to be remotely executed.  The parameterValues 

parameter contained binary data (byte and byte[]) in base64 to avoid the possibility of 

introducing invalid characters into the XML document.   

<?xml version="1.0" encoding="utf-8"?> 
<request> 
  <requestID>421</requestID> 
  <requestType>RPC</requestType> 
  <operationName>ImageLib.Contrast</operationName> 
  <parameters> 
    <parameter> 
      <parameterName>RETURN_VALUE</parameterName> 
      <parameterDirection>OUT</parameterDirection> 
      <parameterDataType>byte[]</parameterDataType> 
      <parameterValue>X62IBNhchbxBwbGhVwc==</parameterValue> 
    </parameter> 
    <parameter> 
      <parameterName>IMAGE</parameterName> 
      <parameterDirection>IN</parameterDirection> 
      <parameterDataType>byte[]</parameterDataType> 
      <parameterValue>W35IFNhchbCBwbGVhcw==</parameterValue> 
    </parameter> 
  </parameters> 
</request> 



58 
 

 
 

 
Figure 8 – XML RPC Response 

 

The XML response reported upon the success or failure of the RPC.  The 

response document contained an errorCode element, which contained the value of zero 

upon success, and a nonzero number upon failure.  If the RPC failed, the errorDescription 

contained detailed information about the exception.  The remote execution time (CR, in 

milliseconds) was returned in the executionTime parameter.  If the operation contained 

output parameters or a return value, they were passed in the parameters array.   

The Execution Log File 

The foraging server maintained a tilde delimited execution log, which enabled the 

performance of the system to be analyzed.  The log file was called “server.log” by default 

and contained three record types:  a request entry, a response entry, and a performance 

entry.  The basic format for the execution log is shown below.   

sequence number~record type~record data 

The sequence number was automatically generated for each record.  The record type was 

one of the following:  “1” for a request log entry, “2” for a response log entry, and “3” for 

a performance log entry.  The record data varied by the record type.  The format of the 

log file is shown in Table 1.  

<?xml version="1.0" encoding="utf-8"?> 
<response> 
  <responseID>421</responseID> 
  <operationName>ImageLib.Contrast</operationName> 
  <executionTime>575000000</executionTime> 
  <errorCode>0</errorCode> 
  <errorDescription></errorDescription> 
  <parameters> 
    <parameter> 
      <parameterName>RETURN_VALUE</parameterName> 
      <parameterDirection>OUT</parameterDirection> 
      <parameterDataType>byte[]</parameterDataType> 
      <parameterValue>X62IBNhchbxBwbGhVwc==</parameterValue> 
    </parameter> 
  </parameters> 
</response> 

 



59 
 

 
 

Field Name Data Type Description 

Sequence Number Long integer Auto incrementing value  

Record Type Char 1 = request 

2 = response 

3 = performance 

Record Data 

 

when record data = 1 

when record data = 2 

when record data = 3 

String 

 

XML String 

XML String 

Tilde Delimited 

String 

Varies by Record Type 

 

Request as defined by Figure 7 

Response as defined by Figure 8 

Performance Data String defined below 

   

Performance Data Delimited String (~) Contains the following delimited fields  

Operation Name String Contains the Class Name and Method 

name of the RPC in class.method 

format 

Image File Name String Contains the filename of the image 

Image File Size Integer Contains the file size in bytes 

Selected Surrogate Name String Selected Surrogate Name or Local  

Execution Latency (CT) Integer Operation latency in milliseconds 

Round-Trip Communication (CC)  Integer Communication time in milliseconds 

Remote Execution Time (CR) Integer Remote execution time in milliseconds 

Connected Surrogates Delimited String (;) Contains the available surrogates 

Connected Surrogate Statuses Delimited String (;) Contains the statuses of all connected 

surrogates 

Table 1 – The Execution Log File Format  

For record types 1 and 2, the record’s data string contained the XML for the 

request and response, respectively.  The performance record field’s value contained the 

following tilde delimited data items.  The operation name, the image name, the image 

size in bytes, the surrogate selected for use, the latency of the execution, round-trip 

communication time, remote execution time, the connected surrogates, and the status of 

connected surrogates.  This data enabled the performance of the system to be calculated 

for each of the scheduling algorithms.  The overall latency (CT) was calculated as the 

summation of the round-trip communication time (Cc) and the operation execution time 

(CR).  The latency value represents the total time from when a user requested an operation 



60 
 

 
 

to be performed until the user received the results of the request.  An example of the 

contents of the execution log file is shown in Appendix B. 

Surrogate Discovery 

The surrogate discovery subsystem registered and unregistered surrogates with 

the execution scheduler.  When a surrogate connected to jScavenger, the discovery 

subsystem, shown in Figure 9, registered the surrogate with the execution scheduler and 

informed the scheduler about the operations the surrogate could perform along with the 

speed of the surrogate.   

Figure 9 – The jScavenger Surrogate Discovery and Presence Subsystem 

Rather than manually orchestrating the availability of devices during the data 

collection stage of this research, the surrogate discovery module reads a driver file, which 

managed the availability of surrogates at runtime.  The use of the driver file allowed for 

the same sequence of operations to be executed across all experimental scenarios.  

Surrogate status was changed after the completion of each operation execution.  In this 

research, surrogates were assumed to be present for the entire duration of a remote 

execution request and would not be preempted.  For example, the following discovery 

events will change the status of surrogates one, two, and three after the next 3 successive 

executions of the CONTRAST function.   

RPC CONTRAST SURROGATE-1=ONLINE, SURROGATE-2=OFFLINE, SURROGATE-3=ONLINE; 



61 
 

 
 

RPC CONTRAST SURROGATE-1=OFFLINE, SURROGATE-2=OFFLINE, SURROGATE-3=ONLINE; 
RPC CONTRAST SURROGATE-1=ONLINE, SURROGATE-2=COLD-START, SURROGATE-3=OFFLINE; 
 

The specification of the Discovery Simulation Driver file format is given in Figure 10  

 

below. 
 

Figure 10 – Discovery Driver File Format Specification 

The Application Tactics File 

A cyber foraging application was required to provide the jScavenger system with 

an application tactics file in order to take advantage of cyber foraging services.  The 

tactics file contained the signature for each method that could be offloaded to a surrogate.  

As shown in Figure 2, the application tactics file was passed to the execution scheduler 

for use in the offloading decision.  The execution scheduler monitored the method 

executions of a cyber foraging application and if the current method name matched a 

method in the tactics file, the method was intercepted for remote execution.   

<discovery_file> ::= <discovery_event> { <discovery_event> } 
 
<discovery_event>  ::= <tactic_type> <function_name> <surrogate_name> = <state> {, <surrogate_name> = <state> } <terminator> 
 
<tactic_type> ::= RPC 
 
<function_name> ::= <identifier> 
 
<surrogate_name> ::= <node_name> 
 
<identifier> ::= <letter> | <underscore> { <letter> | <digit> | <underscore> } 
 
<node_name> ::= <letter> | <special_characters> { <letter> | <digit> | <special_characters> } 
 
<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | a | b | c | d | e | f | g | h | 
i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z 
 
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
 
<special_characters> ::= @ | - | <underscore> 
 
<underscore> ::= _ 
 
<state> ::= ONLINE | OFFLINE | TRAINING | COLD-START 
 
<terminator> ::= ; 



62 
 

 
 

A sample application tactic is shown below that describes an RPC called 

Grayscale that converts an image to grayscale and returns the converted image as a byte 

array.  The format for the tactic file is show in in Figure 11.  

RCP byte[] ImgeLib.Grayscale (IN byte[] image); 

The concept of application tactics was presented by Balan, et al. (2003) as a 

method by which application developers could hand-tune an application rather than have 

the system enumerate over all the possible ways (most of them infeasible) an application 

could be partitioned for remote execution.  Tactics are the compromise between 

evaluating every possible combination at run-time, which may be computationally 

prohibitive, to hard-coding the application so that only one partitioning option was 

available (Balan, et al., 2003).  The authors’ also recognized that creating a tactics file 

was a burden for the application developer; however, since the number of methods that 

could potentially be remotely executed was typically small compared to the overall size 

of the application’s source code, the added burden was generally manageable.  To 

strengthen the argument for a developer supplied partitioning strategy, Chun, et al. (2010) 

stated that a hand-tuned partitioning strategy would likely outperform the partitioning 

generated by an algorithm.   

The tactics file approach was selected for jScavenger due to the external nature of 

the annotations.  The external nature of the tactics file was appealing because it allowed 

the behavior of the cyber foraging application to be changed without source code 

modifications. 



63 
 

 
 

Figure 11 - Tactic File Format Specification 
   
The jScavenger Surrogate 

A jScavenger Surrogate functioned as a remote operation execution client for a 

jScavenger Foraging Application Server.  Using surrogate devices for remote execution 

to increase an application’s performance was presented by Balan et al. (2002) as a 

component of the Spectra cyber foraging system and has been a necessary component of 

virtually all cyber foraging systems to date.  The architecture of jScavenger’s surrogate 

was similar to the architecture used by the Scavenger system presented by Kristensen 

(2010).  This section presents the architecture of the jScavenger surrogate and discusses 

the following components:  the presence subsystem, the RPC execution subsystem, the 

operation manifest, the executable code store, the parameter data repository, and the local 

execution log.  The architectural overview of jScavenger Surrogate is shown in Figure 

12. 



64 
 

 
 

 
Figure 12 – jScavenger Surrogate Architecture 

 

The Presence Subsystem 

 

 The purpose of the presence subsystem was to detect and announce the presence 

and capabilities of a surrogate to the foraging server.  For the purposes of this research, 

the surrogate presence subsystem was configured to connect to a specific jScavenger 

foraging server during initialization rather than listening for a broadcast from a local 

foraging server.   

Each surrogate maintained a manifest, which contained details of the operations 

that it was able to perform.  When the surrogate was initialized, each object in the 

executable code store was examined using Java’s Reflection API and the public methods 

that were present in each class were identified and added to the manifest file.  Any public 

method could be the target of an RPC request.  The surrogate updated the manifest when 

the surrogate was initialized, when new class files were imported, and when class files 

were removed from the code store.  The manifest maintained the type of call, the return 

jScavenger Surrogate

RPC 
Environment

Presence
(Discovery)

Executable 
Code Store

Execution 
Log

Parameter 
Data 

Repository

Manifest

jScavenver Foraging 
Application Server

TCP 
Sockets

(single connection)



65 
 

 
 

data type, the function name, the parameter direction, the parameter data type, and the 

parameter name.   

An example of a manifest entry is shown below.  

RPC 567483 byte[] ImageLib.Contrast ( IN byte[] IMAGE );  

The manifest entry indicates that a remote procedure call having 567,483 JVM 

instructions that returns a byte array called, “ImageLib.Contrast” is available.  The RPC 

accepts a single byte array as the only parameter.  The manifest file specification is 

shown in Figure 13. 

Figure 13 – Manifest File Specification  

The Remote Execution Environment 

The remote execution environment accepted remote procedure call requests from 

the foraging server, performed the requested operation, and returned a response to the 

requestor.  The format of the request and response documents is shown in Figures 7 and 

8, respectively. 



66 
 

 
 

When a surrogate received an RPC request, it first read the operationName 

property from the request document and verified that the operation was available.  If the 

operation was available, then the surrogate extracted the parameter data from the request 

document and executed the operation.  If the operation was not available, an error was 

generated and a response containing the error information was returned.  

The Executable Code Store 

The executable code store was the library where RPC operations that a surrogate 

can offer to foraging applications were stored.  For the experiments in this research, the 

libraries were prepopulated with Java class files for the remote execution environment for 

use when servicing remote procedure calls. 

The Parameter Data Repository 

 The parameter data repository was a temporary working storage area for the 

remote execution environment.  Any data that was required to be persisted was stored in 

this area.  Data was stored using the requestID followed by the parameter name.  For 

example, if it was necessary to persist the image parameter of the request document 

shown in Figure 7, a file named 421.IMAGE.dat would be created to hold the parameter 

value.  All files in this storage area were deleted when the surrogate was initialized. 

The Surrogate Execution Log File 

Every jScavenger surrogate maintained an execution log of each remote execution 

request received and every response sent.  The surrogate’s execution log was identical to 

the foraging server’s log with the exception that performance records were not generated.  

The surrogate logging system only maintained logs for requests and responses.  The 

surrogate log file was called, “surrogate.log.”   



67 
 

 
 

The jScavenger Cyber Foraging Application  

 As mentioned earlier, the cyber foraging application utilized in this research was 

an image manipulation application, which enabled the user to sharpen an image, adjust 

the contrast of an image, or convert the image to grayscale.  The application was an 

Android application running on a smartphone that allowed the user to select an image and 

the operation to be performed upon the image.  The application was also able to run in 

autopilot mode by executing a script that automated the image selection and operation 

requests.  A prototype user interface of the testing tool is shown in Figure 14.   

 

 
Figure 14 – Image Manipulation Application 

 

If a script file was selected for processing, the script file was expected to contain 

the image to be processed, the operation(s) to be performed upon the image, and the 

repetition count.  The format of the script file uses name/value pairs and consisted of the 

jScavenger Image Manipulation Tool (Forager)

Test 14/50:  Contrast Adjustment…..In Progress...Completed (5678ms)
Test 15/50:  Contrast Adjustment…..In Progress...Completed (5678ms)
Test 16/50:  Contrast Adjustment…..In Progress...Completed (5678ms)
Test 17/50:  Contrast Adjustment…..In Progress...Completed (5678ms)
Test 18/50:  Contrast Adjustment…..In Progress...Completed (5678ms)
Test 19/50:  Contrast Adjustment…..In Progress...Completed (5678ms)
Test 20/50:  Contrast Adjustment…..In Progress...Completed (5678ms)
Test 21/50:  Contrast Adjustment…..In Progress...

\jScavenger\Testing\Scripts\experimental.script

Image:

Testing Progress:

Choose Image

Run Test!

Log Output:

Sharpen

Contrast

Operation

Adjust Image

Testing Plan Script:

...

Color



68 
 

 
 

following named attributes.  ScriptName, ScriptDescription, ImageName, OperationList, 

and RepeatCount.  The ScriptName attribute contained the free-format name of the script.  

The ScriptDescription attribute proveded a short description of the script.  The 

ImageName contained the filename of the image to process.  The RepeatCount property 

specified the number of times the operation(s) were to be performed upon the image 

defined in the ImageName property.   

The script file was defined as follows.  First, the ScriptName and 

ScriptDescription must be defined (in-order) on the first two non-commented lines of the 

script.  The parameters ImageList, OperationName, and RepeatCount must follow in-

order on the next three consecutive non-commented lines of the script.  This parameter 

set may be repeated to enable multiple operations to be performed in a single test script.  

A sample script is shown in Figure 15.  

Figure 15 – Image Manipulation Tool Automation Script Example 

When the mobile device takes a picture, the resulting image was stored at 

/storage/extSdCard/DCIM/Camera/.  This location was considered the root folder for the 

cyber foraging application’s images.  All input and output from the image manipulation 

tool defaulted to this location.  The image manipulation tool supported the PNG graphic 

file format.   

 

;Start of script 

ScriptName=Experimental.script 

ScriptDescription=Experiential Testing Script that sharpens an image, adjusts the contrast, 

and adjusts the color image 50 times full-size and 50 times thumbnail (200x200) size.  

;  

Image=dog.png 

OperationList=Sharpen, Contrast, Color 

RepeatCount=50 

; End of script 
 



69 
 

 
 

Operation Profiling  

The automatic profiling of operations to obtain the average number of JVM 

instructions that were expected to be executed when the operation was invoked was 

achieved using a CFG.  Java bytecode was transformed into a CFG graph, which was 

traversed to quantify the number of JVM instructions that would be executed when the 

method was invoked.  The use of bytecode was preferred over source code because 

access to the source code could not be guaranteed.   

Albert et al. (2007) utilized CFGs in one step of an algorithm used to determine 

the cost relationship between methods and their input parameters.  The authors’ work 

utilized CFGs to transform unstructured bytecode, which was difficult to analyze directly 

in part due to the use of the goto statement, into a traversable graph data structure that 

was suitable for static code analysis.  The use of CFGs in this research was orthogonal to 

the work of Albert et al. (2007) in the sense that this research was concerned with 

obtaining a generic cost estimate of the operation’s execution for use as a heuristic.  

Although interesting, this research does not require the general relationship between the 

input parameters and the amount of work performed by the operation.  The high-level 

algorithm used to profile operations in jScavenger follows: 

1. Convert the class containing the operation into a CFG. 

2. Generate a list of all possible paths from start to exit for the CFG. 

3. Calculate the average number of operations across all execution paths in the 

list.  

Consider the simple Java program shown in Figure 16.  The entire program 

consists of 12 statements, but because of the if statement, not all of the statements will be 



70 
 

 
 

executed when the program runs.  Figure 17 shows the same program converted into a 

CFG.  There are two execution paths from start to exit in this program.  Each block 

contains statements, which are guaranteed to be executed.  In Figure 17, the True and 

False arrows from the decision statement define a fork in the execution path.  To 

determine the number of statements that could be executed, the number of statements 

contained in each block for each execution path will be summed.  An average will then 

be calculated across all paths to provide a high-level approximation of the number of 

statements that will be executed.  Using this technique, the estimated number of 

statements that will be executed when this program runs is 9 statements.  This number 

represents the estimated cost of the operation.   

 
Figure 16 - Simple Java program 

 

int a = 5;  
int b = 10;  
System.out.println("A = " + a);  
System.out.println("B = " + b);  
 
if( a > 5 ) 
{ 
   a++;  
   b--; 
} 
else 
{ 
   a--; 

   b++; 

} 

System.out.println("A = " + a);  

System.out.println("B = " + b); 



71 
 

 
 

 
Figure 17 – Control Flow Graph of the Program in Figure 8 

 

The example above utilized Java source code to illustrate the CFG based approach 

to calculate the number of statements that could be executed.  The actual approach 

utilized Java bytecode.  The JVM instructions that would be executed by the JVM when 

the Simple Java Program was executed are shown in appendix A.  Applying the 

technique discussed above to the output of the javap command yielded approximately 

forty-six JVM instructions that would be executed when the program runs.   

The Apache Commons Byte Code Engineering Library (BCEL), which provided 

methods that enabled a Java program to inspect and manipulate Java bytecode, was 

utilized to extract the Java instructions from bytecode to calculate the average number of 

instructions at run-time.  In future work, it would be advantageous for the Java compiler 

to generate this value during the compilation process and store the value as a method 

annotation.   

Device Profiling  

 To support the experimental scheduling algorithm, each device in the jScavenger 

system was profiled to obtain a measure of how powerful it was for executing operations.  

Start

int a = 5; 

int b = 10;

System.out.println("A = " + a);

System.out.println("B = " + b);

a > 5

a++;

b--;

a++;

b--;

True

False

System.out.println("A = " + a);

System.out.println("B = " + b);



72 
 

 
 

In jScavenger, the speed of the surrogate was the number of JVM instructions the device 

demonstrated it could execute in one second.  Binder and Hulaas (2006) first proposed 

using Java bytecode instruction counting as a method to obtain a cross-platform method 

of expressing CPU utilization rather than using the more traditional method of using CPU 

seconds.  The benefit of using bytecode counting was that it effectively removed the 

variability introduced by the underlying hardware that influenced the CPU metric (Binder 

& Hulaas, 2006).  This approach enabled devices to be rated by a common metric that 

does not have to be adjusted based upon the platform upon where the code was executed.   

Kafaie, et al. (2011) utilized a similar approach by rating an operation’s speed on 

a specific device by how many input data elements could be processed by an operation in 

one second.  This approach provided a metric that defined how an operation performed 

on a specific device; however, the approach requires that each operation be profiled per 

device prior to use.  Kristensen and Bouvin (2010) utilized the third-party benchmarking 

suite NBench in the Scavenger system to provide a common rating of a device’s strength.  

The Scavenger system utilized the benchmark score as a device’s strength indicator, 

which allowed devices to be compared with one another.  Both of these approaches 

provided a strength or speed indicator of the device; however, both approaches required 

manual developer support and an offline profiling session before the operations/devices 

were available for use.   

The approach to profiling devices in this research aimed to eliminate the offline 

profiling phase by replacing it with an online profiling phase that was integrated into the 

application.  This was achieved by profiling both the jScavenger foraging server and the 

jScavenger surrogate using the operation profiling method discussed previously to obtain 



73 
 

 
 

the number of instructions expected to be executed during the initialization of the 

jScavenger Foraging Application Server and the jScavenger Surrogate, respectively.  

During initialization, each application measured the time required to perform the 

initialization process and determined the speed of the current device using the number of 

instructions obtained by profiling the initialization code.  The resulting JVM instruction 

execution speed was used to express the overall speed of the device. 

The Testing Environment 

The testing environment consisted of a wireless mobile device, a wireless access 

point, a switch, a DHCP server, and 5 surrogate devices.  The testing environment is 

shown in Figure 18.  The mobile device was a Samsung Galaxy SIII running Android 4.4, 

the wireless access point was a Linksys WAP54G, the switch was a Cisco 2950-12 12-

port switch, and the 5 computers acting as surrogates were configured as follows:  

1. HP D530, Intel Pentium 4, 2.8 GHz, 1 GB RAM, Ubuntu 12.04 x86 

2. Power Mac G5 – Motorola  PowerPC 970 G5, 1.6 GHz, 512 MB RAM, OS X 

10.5.8 

3. Compaq 5700T, Intel Pentium 3, 550 MHz, 512 MB RAM, Windows XP 

4. Mac Pro Dual Intel Xeon Quad Core Processors, 2.8 GHz, 4 GB RAM, OS X 

10.8.5 

5. HP 6000 Pro, Intel Core2 Quad Core, 2.83 GHz, 8GB RAM, Windows 7 x64 

 



74 
 

 
 

Figure 18 – jScavenger Test System Architecture 

 The test network was configured as follows.  The wireless access point (WAP) 

was configured with a SSID of ‘cyberforaging’ and secured with WPA2 Personal 

encryption.  The test network was available in an open environment where the wireless 

signal could not be masked.  To prevent outside devices from interfering with the testing, 

Media Access Control (MAC) address filtering was enabled on the WAP so that only 

wireless devices included in the test were able to connect to the network.  The network 

was not connected to either the internet or the enterprise network so a DHCP server was 

installed on the network to assign IP addresses based on each device’s unique MAC 

address.  Only devices that were configured in the DHCP server’s configuration file were 

provided with an IP address. 

 Each surrogate computer was configured to run Java version 7.0 SE.  Each 

surrogate client installed was configured to connect to the foraging server running on the 

mobile device upon initialization.  Each surrogate was configured with a secure shell 

server so the surrogates could be remotely administered. 

Performance Evaluation 

Three experiments were conducted to measure the performance of the new 

scheduling algorithm proposed in this research.  The first experiment measured the 

performance of the cyber foraging application with the historical-based prediction 

algorithm.  The second experiment measured the performance of the cyber foraging 



75 
 

 
 

application with the experimental algorithm.  The third experiment measured the 

performance of the cyber foraging application with the random scheduling algorithm.  

Each experiment consisted of 4 scenarios, which collected data for specific 

operating conditions.  The scenarios were disconnected operation, a saturated 

environment, a slowly churning and building environment, and a quickly churning 

environment.  The structure of the each experiment is shown below followed by the 

description of each scenario.   

1. Experiment #1 – Historical Algorithm 

a. Scenario #1 – Disconnected Operation 

b. Scenario #2 – Saturated Environment  

c. Scenario #3 – Slowly Churning Environment  

d. Scenario #4 – Quickly Churning Environment  

2. Experiment #2 – Experimental Algorithm 

a. Scenario #1 – Disconnected Operation 

b. Scenario #2 – Saturated Environment  

c. Scenario #3 – Slowly Churning Environment  

d. Scenario #4 – Quickly Churning Environment  

3. Experiment #3 – Random Algorithm 

a. Scenario #1 – Disconnected Operation 

b. Scenario #2 – Saturated Environment  

c. Scenario #3 – Slowly Churning Environment  

d. Scenario #4 – Quickly Churning Environment  



76 
 

 
 

The disconnected operation scenario tested the system in an environment where 

there are no surrogates available.  In this situation, all operations were executed locally, 

thus providing a baseline measurement of the cyber foraging application performance 

without cyber foraging assistance.   

The saturated environment scenario tested the system in an over-provisioned 

environment where multiple surrogates were available.  The purpose of this scenario was 

to measure the performance in a static system where there was no surrogate churn.  This 

scenario was similar to a device being used at an individual’s home or workplace, where 

the presence of other devices can be predicted in advance and rarely changes.  

The slowly churning environment scenario exercised the system in an 

environment where there were initially no connected surrogates and surrogates were 

slowly added to the system until all five surrogates were available for use.  The purpose 

of this scenario was to measure the performance of the scheduling algorithm in an 

environment where changes were slow but constant.  This scenario started out with no 

surrogates available and a new surrogate was added every 5 operations.  This scenario 

parallels a business or social meeting place where people arrive sporadically and once 

present do not leave for an extended period.     

The quickly churning environment scenario exercised the system in an 

environment where initially no surrogates were available.  Surrogates were then 

simultaneously added and removed from the system after every few operations.  The 

purpose of this scenario was to measure the performance of the scheduler in an 

environment where changes were fast-paced and constant, with possibly multiple 

surrogates arriving and departing simultaneously.  This specific scenario started with no 



77 
 

 
 

surrogates online.  After a random number of operations were performed (between 1 and 

5), one surrogate was randomly selected to join the system and one currently connected 

surrogate was disconnected (if applicable).  In this scenario, all surrogates were 

considered new to the system and training state will not be retained between a surrogate 

disconnection and a surrogate reconnection.  This scenario parallels use in a public place 

such as a café or an airport terminal, where devices and their owners are highly mobile.   

This research replicated the mechanics of the benchmarking approach used in 

Scavenger, where a series of image operations were sequentially performed on an image 

50 times, once using a thumbnail representation of the image (200x200) and once using 

the full-sized image (Kristensen & Bouvin, 2010).  According to Kristensen & Bouvin 

(2010), it is common for a series of operations to be performed upon an image before it 

was published.  In the experiments outlined above, the image operations to be performed 

upon an image were to sharpen the image, adjust the contrast of the image, and to convert 

the image to grayscale.  The images used were high-definition full-color pictures taken 

with an 8 Megapixel camera at a resolution of 3264x2448.  The thumbnail images were 

derived from the full-size images at run-time.  

The Data Collection Process 

The execution logs created while running the experiments was named according 

to the currently running experiment and scenario.  All log files were named based upon 

the experiment and scenario being conducted as shown in Table 2.  The log files collected 

during this process was formatted according to the execution log file format shown in 

Table 1. 

 



78 
 

 
 

Experiment Scenario Log File Name 

Historical Disconnected Operation Historical.disconnected.log 

Historical Saturated Environment Historical.saturated.log 

Historical Slowly Churning 

Environment 

Historical.slowchurn.log 

Historical Quickly Churning 

Environment 

Historical.quickchrun.log 

Experimental Disconnected Operation Experimental.disconnected.log 

Experimental Saturated Environment Experimental.saturated.log 

Experimental Slowly Churning 

Environment 

Experimental.slowchurn.log 

Experimental Quickly Churning 

Environment 

Experimental.quickchrun.log 

Random Disconnected Operation Random.disconnected.log 

Random Saturated Environment Random.saturated.log 

Random Slowly Churning 

Environment 

Random.slowchurn.log 

Random Quickly Churning 

Environment 

Random.quickchrun.log 

Table 2 – Log File Naming by Experiment and Scenario. 

The Data Analysis Process 

The data captured by performing the experiments was imported into a Microsoft 

Access database, labeled by experiment, and processed to complete the following 

analysis. The analysis consisted of a high-level overview of the results, an analysis of the 

historical algorithm, an analysis of the experimental algorithm, a brief analysis of the 

random algorithm, and a discussion of the combined analysis of all three algorithms.   

First, a high-level overview of the experiments was presented.  This overview 

included the execution time of each scheduling algorithm.  The results were graphed to 

present a high-level performance overview of each scheduling algorithm.  Next, the 

performance of each scheduling algorithm was graphed to compare the performance of 

each operational scenario.  Finally, the detailed execution time of each experimental 

scenario was presented, which included both the local and remote execution time.  



79 
 

 
 

The historical scheduling algorithm was examined by reviewing the surrogate 

training and selection activity for each of the scenarios.  For each scenario, a graph was 

generated that presented the both the local execution time and the remote execution time 

for each scenario.  This enabled the surrogate selection and training activities to be 

compared against the expected surrogate selection and training activities.   

The experimental scheduling algorithm was analyzed by first presenting the 

surrogate configuration profiles along with the speed ranking of each surrogate.  A table 

was generated from the random saturated scenario that included multiple operation 

executions on each surrogate to obtain actual execution metrics.  The data were sorted by 

execution time to compare the calculated speed vs. the actual execution time required by 

each operation.  Each scenario was then graphed in the same fashion as the historical 

scheduling algorithm so that the surrogate selection could be compared with the expected 

results.    

The random scheduling algorithm was not graphed due the random nature of 

surrogate selection.  To assess this algorithm, the overall execution time for each scenario 

was compared against the historical and experimental algorithms.  

All three scheduling algorithms were compared against each other by 

superimposing all of the performance graphs for each scenario.  The resulting graphs 

illustrated the performance of each algorithm by operational scenario.  This allowed the 

performance to be reviewed by operation. 

Data Verification 

To ensure that the HotSpot JVM was not influencing the results, each JVM was 

configured with the –Xint run-time parameter to disable just in time (JIT) compilation.  



80 
 

 
 

On the Android platform, this was accomplished by using the 

android:vmSafeMode="true"  property of the Android application manifest configuration 

file.  Additionally, the JVM were configured to display compilation messages using the –

XX:-PrintCompliation parameter to ensure that the JVM did not perform optimizations 

that would influence the execution time of the operations.   

Resources 

The computing resources required to complete this dissertation consisted of a 

development machine, Java application development software, Android application 

development software, a wireless access point, a switch, networking accessories, an 

Android-based cell phone, and 6 network ready personal computers capable of running 

Java 7.0.   

The development environment consisted of Java 7.0 (http://java.oracle.com), the 

Android Developer Tools (ADT) bundle (http://dl.google.com/android/adt/adt-bundle-

windows-x86_64-20131030.zip), and the Eclipse Java IDE 

(http://www.eclipse.org/downloads/).  The test network infrastructure consisted of a 

Linksys WAP54G, and a Cisco 2950-12 switch with the required configurations and 

cabling necessary to create an isolated local area network. 

Summary 

This research developed and implemented an enhanced historical-based prediction 

algorithm.  This algorithm utilized estimation for surrogate selection during the cold-start 

state of a cyber foraging application until the historical-based prediction algorithm 

accumulated enough execution history to make predictions.  To provide an environment 

http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20131030.zip
http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20131030.zip
http://www.eclipse.org/downloads/


81 
 

 
 

where the new algorithm could be evaluated, a Java-based cyber foraging system, called 

jScavenger, was developed. 

Three scheduling algorithms were utilized by jScavenger to test the performance 

of each algorithm.  In addition to the experimental algorithm, the additional scheduling 

algorithms were a historical-based algorithm and a random-based algorithm.  The 

experimental algorithm utilized a heuristic based upon the rate at which a surrogate 

demonstrated that it could execute JVM instructions and the number of JVM instructions 

contained within an operation to choose a surrogate when a historical prediction was 

unavailable.  The historical-based algorithm utilized historical predictions to select 

surrogates and when a surrogate was unable to provide a prediction, a training session 

was initiated to obtain historical measurements.  The random-based algorithm chooses 

surrogates based upon a random number generator.  

Each scheduling algorithm was utilized in 4 testing scenarios, each of which 

collected data for specific operating condition.  The scenarios were disconnected 

operation, a saturated environment, a slowly churning and building environment, and a 

quickly churning environment.  The disconnected operation scenario tested the system in 

an environment where there are no surrogates available.  The saturated environment 

scenario tested the system in an over-provisioned environment where multiple surrogates 

were available.  The slowly churning environment scenario exercised the system in an 

environment where there were initially no connected surrogates and surrogates were 

slowly added to the system until all five surrogates were available for use.  The quickly 

churning environment scenario exercised the system in an environment where initially no 



82 
 

 
 

surrogates were available.  Surrogates were then simultaneously added and removed from 

the system after every few operations. 

The results of each scheduler’s performance of each operational scenario were 

analyzed independently, then against each of the other two scheduling algorithms.  This 

allowed for the scheduler’s performance with each operational scenario to be verified and 

then the performance to be compared with the other algorithms.  

  



83 
 

 
 

Chapter 4 

Results 

Introduction 

Three experiments were conducted based upon the methodology described in 

Chapter 3.  The results of the experiments are discussed in the following sections.  

 Overview of the Experimental Results 

 Experiment 1 – Historical Scheduling Algorithm 

 Experiment 2 – Experimental Scheduling Algorithm 

 Experiment 3 – Random Scheduling Algorithm 

 A Performance Comparison of the Experiments  

Overview of the Experimental Results  

The execution time required to complete all three experiments is shown in Figure 

19.  The overall execution time is presented for each experiment grouped by the time 

spent executing operations locally (CT) and the time spent executing operations remotely 

(CR).  Additionally, the time required for the experiments to be run in disconnected from 

the network is also presented as a baseline measurement.  The network communication 

overhead is not included in the calculations.  



84 
 

 
 

 

 
Figure 19 – Overall Execution Time by Scheduling Algorithm  

 

Overall, the experimental scheduling algorithm required 7.38 hours to execute the 

1200 operations in the testing scenario, the historical scheduling algorithm required 8.25 

hours to execute the same set of 1200 operations, and the random scheduling algorithm 

required 10.2 hours to complete the operations.  In disconnected mode, the same 1200 

operations took 15.84 hours to complete running solely on the local device.  Figure 20 

presents the performance of each scenario by experiment.   



85 
 

 
 

 
Figure 20 – Experiment Performance by Scenario 

Table 3 presents the summarized data for each experiment broken down by 

scenario.  In addition to providing data by scenario, the breakdown of the local and 

remote execution times are shown along with the total time. 

Overall Performance By Experiment and Scenario 

Experiment Scenario Local Operation 

Execution 

Time 

(CT hours) 

Remote Operation 

Execution 

Time 

(CR hours) 

Total 

Time 

CT + CR 

(hours) 

Historical 

 

 

 

Total Time 

Disconnected 

Saturated 

Slow Churn 

Quick Churn 

5.28 

0.00 

0.32 

1.18 

6.78 

0.00 

0.43 

0.43 

0.61 

1.47 

5.28 

0.43 

0.75 

1.79 

8.25 

Experimental 

 

 

 

Total Time 

Disconnected 

Saturated 

Slow Churn 

Quick Churn 

5.28 

0.00 

0.21 

0.28 

5.77 

0 

0.44 

0.43 

0.74 

1.61 

5.28 

0.44 

0.64 

1.02 

7.38 

Random 

 

 

 

Total Time 

Disconnected 

Saturated 

Slow Churn 

Quick Churn 

5.28 

0 

0.31 

0.08 

5.67 

0 

1.65 

1.48 

1.40 

4.53 

5.28 

1.65 

1.79 

1.48 

10.20 

Table 3 – Overall Performance by Experiment and Scenario 



86 
 

 
 

Figure 21 shows the execution results of performing all three image operations on 

a disconnected surrogate using the full-sized image.  Since no cyber foraging was 

involved, this result is common to each of the three experiments.  The graph clearly 

shows the execution for each operation and transitions between the operations running 

solely on the local device. 

 
Figure 21 – Disconnected Operation Performance 

 

Experiment 1 – Historical Scheduling Algorithm 

Figure 22 shows the results of the historical scheduling algorithm in the saturated 

scenario where the image manipulation operations were executed on the full-size image.  

The graph clearly shows the expected local executions at the transitions between 

operations while the surrogates are trained.  Training occurs at the first operation because 



87 
 

 
 

no operations have been performed on any of the surrogate devices.  Training occurs 

again at operation 51 because the operation changes from sharpening to contrast and 

execution history for the contrast operation do not exist.  The final training session occurs 

at operation count 101 when the operation changes from contrast to grayscale due to a 

lack of execution history.  As expected, the scheduler quickly determines the beneficial 

surrogate to utilize based upon the training.  Overall, there are 15 individual training 

sessions during this experimental run.   

 
Figure 22 

 

Figure 23 shows the results of the historical scheduling algorithm in the slowly 

churning scenario, where image manipulation operations were executed on the full-size 

image.  The graph shows the expected local executions at the start of the experiment 



88 
 

 
 

while no surrogates are available and again while the initial training is performed once a 

surrogate becomes available.  At operation 13, a new, more powerful surrogate becomes 

available.  The system spawns a background thread to negotiate and train the new 

surrogate (not shown).  At operation 14, the scheduler selects the newly available 

surrogate and begins offloading operations to that surrogate.  New surrogates continue to 

arrive during the remainder of the test, but they are all less powerful than the currently 

selected surrogate.  The scenario repeats itself for the subsequent operations and the same 

surrogate switch occurs again at operations 64 and 115 (denoted by the red asterisk).  For 

this scenario, there are 14 individual training sessions during this experimental run.

Figure 23 – Historical Scheduling Algorithm Slowly Churning Operation Performance 



89 
 

 
 

Figure 24 shows the results of the historical scheduling algorithm in the quickly 

churning scenario where the image manipulation operations were executed on the full-

size image.  The graph shows the expected local executions at the start of the experiment 

when there are no surrogates available and while the initial training is performed.  Since 

the availability of the surrogates is random and they connect and disconnect frequently, 

the amount of local execution is noticeably higher due to the churn.  At operation 19, an 

abnormally long running remote execution is shown.  This spike, although large, is still 

faster than the observed local executions.  It is also noteworthy because it represents a 

missed opportunity.  At operation 18, a new and more powerful surrogate arrived, but it 

was not selected for remote execution because training had not yet been completed.  

Overall, the training overhead for this scenario involves 64 individual surrogate training 

sessions and 68% of all operation executions occur when there is a minimum of one 

surrogate in training.  



90 
 

 
 

Figure 24 - Historical Scheduling Algorithm Quickly Churning Operation Performance 

  



91 
 

 
 

Experiment 2 – Experimental Scheduling Algorithm 

 The experimental scheduling algorithm chooses a surrogate based upon the 

average speed at which a surrogate can process Java instructions.  The average number of 

Java bytecode instructions obtained by traversing the CFG graph for the operations 

contrast, grayscale, and sharpen is 227, 174, and 285, respectively.  The initialization 

routine for the surrogate client consists of an average of 930 JVM instructions to be 

executed upon startup.  A profile of each surrogate and the surrogate’s calculated speed 

rating is shown in Table 4. 

Surrogate Profile 

Surrogate Speed  

Rating 

CPU CPU  

Speed 

RAM 

S-1 22 1 Intel Pentium 4 2.8GHz 1 GB 

S-2 9 1 PowerPC 970 1.6GHz 512 MB 

S-3 4 1 Intel Pentium 3 550 MHz 512 MB 

S-4 44 2 Intel Quad Core Xenon 2.8GHz 4 GB 

S-5 58 1 Intel Core2 Quad Core 2.83GHz 8 GB 

local 16 1 ARM Cortex-A9 Quad Core 1.4GHz 1 GB 

Table 4 – Surrogate Profile 

 Every surrogate was utilized in the random scheduling algorithm execution, 

which enabled the average actual execution time to be measured for each operation on 

every surrogate device.  The average operation execution time for each surrogate along 

with the surrogate’s speed ranking is shown in Table 5.  The results are discussed next.  

 As expected, the contrast operation’s actual execution time on each surrogate 

followed the speed ranking for the decision making with S-5 being the fastest surrogate 

for the contrast operation to surrogate S-3 being the slowest surrogate for the contrast 

operation.  The speed rankings for the surrogate using the speed heuristic were consistent 

with the observed execution times for the operation.  The grayscale operation ranked 

surrogate S-5 as the fastest surrogate to S-3 being the slowest surrogate.  The speed 

mailto:2@2.8GHz


92 
 

 
 

rankings for the surrogate using the speed heuristic were consistent with the observed 

execution times for the operation with one exception.  For the grayscale operation, the 

local execution speed was ranked higher than the observed execution placed it in the 

rankings.  The sharpen operation ranked surrogate S-5 as the fastest surrogate to local 

execution being the slowest surrogate.  The speed rankings for the surrogate using the 

speed heuristic were consistent with the observed execution times for the operation with 

the exception of 2 surrogates.  For the sharpen operation, both surrogates S-2 and S-3 

were ranked slower than their observed executions.  These inconsistencies offer 

opportunities for future research that might include hardware variation between 

machines.   

  



93 
 

 
 

 

Average Surrogate Operation Execution Time 

Full-Size Image 

Operation  Surrogate 
 

 Execution 

Surrogate 

Speed 

Operation 

Speed 

Time 

(ms) 

Contrast 

S-5 58 3.90 9,247 

S-4 44 5.16 9,521 

S-1 22 10.32 43,199 

local 16 14.19 47,570 

S-2 9 25.20 64,476 

S-3 4 56.75 122,996 

Grayscale 

S-5 58 3.00 4,770 

S-4 44 3.96 5,068 

S-1 22 5.77 15,887 

S-2 9 14.11 22,568 

local 16 7.94 32,646 

S-3 4 31.75 51,926 

Sharpen 

S-5 58 4.91 17,729 

S-4 44 6.48 20,977 

S-2 9 31.67 36,658 

S-1 22 12.96 59,308 

S-3 4 71.25 210,126 

local 16 17.81 298,367 

Table 5 – Surrogate Performance  

The results of the experimental scheduling algorithm in the saturated scenario are 

presented in Figure 25.  In this scenario, the image manipulation operations were 

performed upon the full-size image where all the surrogates are online and available.  As 

expected, the scheduler quickly determined the beneficial surrogate to utilize without 

performing local executions. 



94 
 

 
 

Figure 25 - Experimental Scheduling Algorithm Saturated Operation Performance 

Figure 26 shows the results of the experimental scheduling algorithm in the 

slowly churning scenario, where the image manipulation operations were executed on the 

full-size image as surrogates slowly join the system.  The graph shows the expected local 

executions at the start of the experiment when no surrogates are online.  At operation 13, 

a more powerful surrogate became available and was immediately utilized by the 

scheduler to execute operations.  New surrogates continued to arrive during the 

remainder of the test, but they were all less powerful than the current surrogate was.  The 

scenario repeats itself for the subsequent image operations and the same surrogate switch 

occurs again at operations 63 and 113 (denoted by the red asterisk). 



95 
 

 
 

Figure 26 - Experimental Scheduling Algorithm Slowly Churning Operation Performance 

Figure 27 shows the results of the experimental scheduling algorithm in the 

quickly churning scenario, where the image manipulation operations were executed on 

the full-size image.  The graph shows the expected local executions at the start of the 

experiment when no surrogates are online.  Overall, the experimental algorithm produced 

the best performance over the historical and random algorithms.  While the experimental 

scheduling algorithm picked the proper surrogate based upon the rankings, the 

performance of three surrogates that were chosen for the contrast and grayscale 

operations show that in hindsight the choices could have been better.   



96 
 

 
 

For the sharpen operation, at operation 4 the local surrogate was chosen by the 

experimental scheduling algorithm for the contrast operation over surrogate S-3 because 

it is ranked higher.  In reality, surrogate S-3 demonstrated better performance in the post-

execution review.  For operations 21through 24, surrogate s-1 was chosen over surrogate 

s-2 where in reality, surrogate s-2 demonstrated better performance.  At operation 33, the 

local device was chosen over surrogate s-2 when s-2 demonstrated better performance.  

For operations 34-36 and 39-40, s1 was chosen when s2 would have been preferred.  For 

the grayscale operation, the scheduler chose surrogate s-1 over s-2 at operation 109 when 

s-2 would have provided better performance.  

Figure 27 - Experimental Scheduling Algorithm Quickly Churning Operation 

Performance 



97 
 

 
 

Experiment 3 – Random Scheduling Algorithm 

 The random scheduling algorithm randomly selected a surrogate to perform an 

operation from the pool of available surrogates.  This algorithm assumes that offloading 

is always beneficial.  

 The disconnected scenario performed all operations locally due to the lack of 

available surrogates taking 5.28 (Table 3) hours to complete all 1200 operations.  The 

saturated algorithm performed all 1200 operations on surrogate devices taking 1.65 hours 

to complete compared to the 0.53 hours for the historical algorithm and 0.44 hours for the 

experimental algorithm.  The slowly churning scenario executed all but 9 operations on 

surrogate devices and took 1.79 hours to complete compared to the 0.75 hours for the 

historical algorithm and 0.64 hours for the experimental algorithm.  The quickly churning 

scenario executed all but 1 operation on surrogate devices and took 1.48 hours to 

complete, which beat the historical algorithm’s time of 1.79 hours but fell short of the 

experimental algorithm’s time of 1.02 hours to complete.  This algorithm’s success at 

beating the historical algorithm using blind chance points to the benefits of cyber 

foraging and strengthens the support for additional research into using a lightweight 

heuristic to guide offloading sections.  Although the random algorithm potentially 

chooses slower surrogates when faster surrogates were available, it shows that a minimal 

overhead algorithm can rival historical-based algorithms in certain scenarios.   

A Performance Comparison of the Experiments 

 An analysis of the historical, experimental, and random algorithms’ performance 

during the saturated scenario (Figure 28) shows that the overall, the historical and 

experimental algorithms share the same performance graph except during the cold-start 



98 
 

 
 

state where the historical algorithm is required to perform operations locally until training 

has been completed.  Operations 1, 50, and 100 show the cold-start states and it can be 

clearly seen that the experimental algorithm can quickly change to the new operation and 

select a beneficial surrogate while the historical algorithm requires training.  The random 

algorithm can be seen selecting surrogates at random within the pool of the 5 available 

surrogates.   

Figure 28 – A Performance Comparison of the Historical, Random, and Experimental 

Algorithms in the Saturated Scenario 

 

An analysis of the historical, experimental, and random algorithms’ performance 

during the slowly churning scenario shows that overall, the historical and experimental 

algorithms share the same performance graph (Figure 29) except during the cold-start 

state.  The slowly churning scenario starts with no surrogates available and surrogates 

come online one at a time until all surrogates are available for use.  Again, at operations 

3, 53, and 103, the historical algorithm is required to perform operations locally until 

training has been completed while the experimental algorithm is quickly able to utilize 



99 
 

 
 

the newly arrived surrogate.  The random algorithm, favoring remote execution also 

immediately utilizes the new surrogate by default since it is the only surrogate available.  

As seen previously, at operation 13, a new surrogate arrives and again, the experimental 

algorithm is able to recognize that this surrogate is more powerful and utilizes it 

immediately while the historical algorithm trains the surrogate.  At this point, the random 

algorithm has 2 surrogates to choose from and oscillates between them.  As more 

surrogates become available, both the historical and experimental algorithms do not 

change the selected surrogate while the random algorithm randomly selects surrogates 

from the slowly growing pool of available surrogates. This scenario repeats for the 

contrast and grayscale operations that start at operation 50 and 100, respectively.  

Figure 29 – A Performance Comparison of the Historical, Random, and Experimental 

Algorithms in the Slowly Churning Scenario 

 

An analysis of the historical, experimental, and random algorithms’ performance 

during the quickly churning scenario shows a sharp deviation (Figure 30) between the 



100 
 

 
 

historical algorithm and the experimental algorithm.  In this scenario, surrogates arrive, 

leave the environment, and do not retain their training history between connections (to 

simulate every connection being a new device encounter).  This is evident by the frequent 

spikes in the historical algorithm’s performance compared to the experimental algorithm 

while the historical algorithm is training the newly arrived surrogates.  In this scenario, 

the blind choosing of surrogates from a limited surrogate pool is often beneficial.  This 

can be seen by the random algorithm closely following the experimental algorithm when 

only a few surrogates are available and the random chance picks a favorable surrogate.   

Figure 30 – A Performance Comparison of the Historical, Random, and Experimental 

Algorithms in the Quickly Churning Scenario 

 

Scheduling Algorithm Overhead 

 The historical scheduling algorithm utilized simple linear regression to predict the 

execution time of operation based upon past observations.  This required each surrogate 

to store data about each operation a surrogate could perform and required each connected 

surrogate to maintain a historical dataset for each operation.  This scheduling algorithm 



101 
 

 
 

scaled O(n) and required the linear regression prediction method to be invoked for each 

node to determine the most beneficial surrogate for the current operation and image size.  

In addition to this overhead, jScavenger will request each new surrogate to perform the 

required operation on both a full-size image and a thumbnail image upon arrival.  This 

additional training overhead occurs on a background thread.  In the saturated scenario, 

the additional training overhead was 15 individual training sessions, the slowly churning 

scenario required 15 unique training sessions, and the quickly churning scenario required 

64 training sessions.   

The experimental scheduling algorithm utilized the surrogate speed rating and the 

approximate number of bytecode contained within an operation as a heuristic to choose a 

surrogate.  The operational overhead for this algorithm, once the speed rating and the 

bytecode count was determined, was minimal.  The surrogates were stored in a sorted list 

ranked by the anticipated speed of the operation.  Retrieving a beneficial surrogate from 

the list was an O(1) operation.  

The random scheduling algorithm generated a random number between 1 and the 

size of the currently connected surrogate list.  The scheduler simply utilized the surrogate 

associated with the random number that was generated.  This yielded an ultra-low 

overhead scheduling algorithm that could be implemented as O(1) if implemented in a 

data structure that supported direct access.  In this research, the algorithm scaled O(n) 

because the surrogates were stored in a linked list which does not support direct access.   

Summary of Results 

 Three experiments were conducted for this research, one for each of the 

scheduling algorithms used to select a surrogate to remotely execute image-processing 

operations.  The scheduling algorithms consisted of a historical algorithm, an 



102 
 

 
 

experimental algorithm, and random algorithm.  Each experiment consisted of the same 4 

operational scenarios:  disconnected, saturated, slowly churning, and quickly churning.  

Each operational scenario executed 300 operations consisting of sharpening an image, 

adjusting the contrast of an image, and converting an image to grayscale.   

It was found that the historical scheduling algorithm required 8.25 hours to 

execute the 1,200 operations across all 4 operational scenarios with 93 individual training 

sessions.  The experimental scheduling algorithm required 7.38 hours to complete all 

1,200 operations across the 4 operational scenarios with no training required.  The 

random scheduling algorithm required 10.2 hours to complete the 1,200 operations 

contained in the operational scenarios with no training overhead.    

   It was found that the historical and experimental algorithms performed 

consistently when the environment was static or slowly changing differing only by the 

number of training sessions required.  When the frequency of change increased, the 

performance of the historical and experimental algorithms quickly diverged.  This was 

because the training requirement of the historical algorithm prevented the use of newly 

arrived surrogates until training had been completed.  The experimental algorithm was 

shown to be able utilize beneficial surrogates immediately, without training, which 

allotted for the performance gain when the rate of change increased.  

 As expected, the random scheduler was the slowest of the three algorithms with 

one exception.  The random algorithm achieved a faster execution time for the quickly 

churning scenario than the historical algorithm did for the same scenario.  The random 

scheduling algorithm beat the historical algorithm by 31 minutes.  This reinforces the 



103 
 

 
 

benefits of cyber foraging and suggests that even unguided offloading in an unknown 

environment may be beneficial.   

  Overall, the experimental scheduling algorithm presented in this research 

outperformed both the historical and random scheduling algorithms for all scenarios 

(excluding the disconnected scenario).  This achieved the goal of this research of 

increasing the performance of cyber foraging application by decreasing the overall 

execution time of a cyber foraging application.  

   



104 
 

 
 

Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

This research has as shown that a heuristic-based scheduling algorithm can 

increase the performance of a cyber foraging application by decreasing the application’s 

runtime.  The success of the experimental algorithm was attributed to the algorithm’s 

ability to utilize beneficial surrogates faster, rather than delaying remote execution while 

the surrogate was trained.   

Three experiments were conducted as a part of this research.  The first experiment 

investigated the use of a historical scheduling algorithm to offload operations for remote 

execution.  The second experiment utilized the experimental scheduling algorithm, which 

utilized a heuristic-based scheduling algorithm to offload operations for remote 

execution.  The third experiment utilized a random scheduling algorithm that randomly 

selected a surrogate from the list of available surrogates for use.  The results of each 

experiment were then compared to derive the performance analysis.  

The results of the historical experiment showed that the training overhead was 

directly related to the overall surrogate-churn.  During the saturated test, 15 individual 

training sessions were required.  Since all five surrogates were available for the duration 

of the test, 5 training sessions were required for each of the three operations conducted 

during the test.  The slowly churning test also required 15 training sessions, as each of the 

surrogates were utilized during the duration of the test.  The quickly churning scenario 

saw the greatest training overhead as 64 individual training sessions were required 

because surrogates frequently joined and left the network.   



105 
 

 
 

The random scheduler experiment showed that blindly offloading operations to 

surrogates could be beneficial in scenarios where there are relatively few surrogates.  In 

the saturated scenario, where all 5 surrogates were available, the random scheduler 

produced the longest execution time of all the scheduling algorithms.  This can be 

attributed to the scheduler picking surrogates that were better than local execution, but far 

slower than the most beneficial surrogate available.  On the other end of the spectrum, in 

the quickly churning scenario, where there were relatively few surrogates to choose from, 

the random selection of surrogates produced a faster execution time that the historical 

scheduling algorithm.  This can be attributed to the high probability of selecting a 

beneficial surrogate from the small pool of available surrogates.   

The results of the experimental experiment showed that a heuristic-based 

scheduling algorithm was able to decrease the execution time of an application.  The 

experimental scheduling algorithm achieved the fastest overall application execution 

times of all the scheduling algorithms, beating the historical algorithm by 0.87 of an hour 

(10.5%) and the random algorithm by 2.82 hours (28%).   

Implications 

 This research provided an approach to surrogate selection during the cold-start 

state that fast tracks the utilization of new surrogates or new operations on existing 

surrogates when there was a lack of past performance data.  The experimental algorithm 

has demonstrated the ability to eliminate the cold-start state in historically based 

scheduling algorithms.  This suggests that the experimental algorithm may be 

implemented without the need of a historical component, thus eliminating the overhead 

of storing performance data and performing prediction calculations.     



106 
 

 
 

Recommendations 

 The goal of the research was met by the experimental algorithm; however, there 

are some areas of research could be pursued.  Kristensen (2010) utilized the NBench2 

benchmark suite to produce surrogate strengths, but the benchmark was a heavyweight 

process and required about 10 minutes to execute per device.  The heuristic utilized in 

this research was lightweight and reduced the overhead required by leveraging the 

execution of the software itself to generate the data.  Additional research into determining 

the minimum amount of data required to create a useful heuristic for use in the offloading 

of operations could further reduce the effort required to generate the heuristics. 

 The differences between CPU architecture and instruction execution speed could 

also be investigated to determine the architectural impact native code execution has upon 

the heuristic.  Kristensen and Bouvin (2010) observed that the different CPU 

architectures influenced the operation weights in their heuristic.  The operation weights 

for the PowerPC CPU architecture were almost three times as high when compared to the 

Intel architecture for the same operation.  Additional research into how the architectural 

difference can be incorporated into a heuristic will allow for a smoother application of the 

heuristic in a heterogeneous environment.    

 This research focused heavily upon CPU performance; however, the incorporation 

of other subsystems could provide a more accurate heuristic.  The performance of 

Hadoop nodes in a cloud computing environment incorporated the use of disk I/O 

performance, memory performance, and network performance in the overall evaluation of 

node performance (Lin & Liu, 2013).  The authors’ state that this was required due to the 

diversity of individual nodes in the Hadoop cluster diverging over time, due to hardware 



107 
 

 
 

failures and upgrades.  The incorporation of additional heuristics could improve the 

overall performance estimate, especially if the operations rely heavily upon a subsystem 

that is not currently accounted for in the general heuristic.  

 In an effort to optimize the scheduling of tasks in a cloud environment, the task 

requirements and server capabilities are required so that tasks can be pared with the most 

suitable server (Gupta, Fritz, Price, Hoover, De Kleer, & Witteveen, 2013).  Gupta, et al. 

(2013) utilized offline training to build a historical dataset of server and job performance 

for use in scheduling because no method currently exists to estimate server performance 

from hardware specifications.  The use of a Bayesian estimator to produce a performance 

heuristic for each surrogate based upon hardware specifications could potentially provide 

performance heuristics for use in task scheduling.  

Summary 

Mobile devices due to their size, weight, and power constraints typically lag 

behind stationary desktop workstations where processing power, memory, and storage 

capacity are concerned.  The cyber foraging paradigm enables mobile devices to perform 

beyond their means by offloading code for remote execution.  By remotely executing 

code, an application can conserve memory and battery power by allowing surrogate 

machines to expend the resources rather than requiring the mobile device itself to expend 

the precious resources.  The remote execution of code may also allow for the overall 

execution time of the process to be shortened or the fidelity of the result to be increased 

due to the utilization of high-performance computers rather than the resource poor mobile 

device.  



108 
 

 
 

A barrier to making offloading decisions in a cyber foraging system centers on 

obtaining enough information to make informed remote execution decisions.  Given 

ample time and processing power, an execution scheduler can enumerate all available 

surrogates to determine the optimum surrogate to utilize in a given situation; however, in 

a highly interactive environment, the time required to make such a determination may be 

greater than what the end-user is willing to accept.  The price may also be higher in terms 

of the processing power and the battery power expended to make the offloading decision 

than would be gained by remotely executing the operation.  Compounding this issue is 

the cold-start problem, which potentially delays the availability of a newly arrived 

surrogate because the system does not have enough information available to rank the 

surrogate for remote execution scheduling.  

This research achieved the goal of utilizing metrics obtained from the run-time 

profiling of a Java program to decrease the run-time of a cyber foraging application.  This 

was accomplished by scheduling beneficial offloading decisions during the cold-start 

state.  The utilization of run-time metrics from the applications themselves provided a 

heuristic that does not require a-priori training, design-time information from the 

developer, or training effort from the end-user in order for the system to make informed 

offloading decisions. 

The methodology utilized to obtain the metrics for the heuristic was based upon 

the speed that a surrogate demonstrated it could execute Java bytecode instructions and 

the average number of instructions contained within an operation.  To obtain the speed 

rating for each surrogate, the surrogate client application was profiled to obtain the 

average number of instructions that were expected to be executed during the initialization 



109 
 

 
 

of the client.  The operations were profiled by generating a control flow graph for the 

operation and calculating the average number of instruction that could potentially be 

executed by the operation.  The surrogate selection process calculates the potential 

execution speed for the operation by dividing the expected number of instructions in the 

operation by the speed of the surrogate.   

Three experiments were conducted, one for each of the scheduling algorithms 

used to select a surrogate for remote execution.  The scheduling algorithms consisted of a 

historical algorithm, an experimental algorithm, and random algorithm.  Each experiment 

consisted of the same 4 operational scenarios:  disconnected, saturated, slowly churning, 

and quickly churning.   

The disconnected operation scenario tested the system in an environment where 

there are no surrogates available.  The saturated environment scenario tested the system 

in an over-provisioned environment where all 5 surrogates were available.  The slowly 

churning environment scenario exercised the system in an environment where there were 

initially no surrogates and surrogates were slowly added to the system until all five 

surrogates were available for use.  The quickly churning environment scenario exercised 

the system in an environment where initially no surrogates were available.  Surrogates 

were then simultaneously added and removed from the system after every few operations.  

Each operational scenario executed 300 operations consisting of sharpening an image, 

adjusting the contrast of an image, and converting an image to grayscale. 

It was found that the historical scheduling algorithm required 8.25 hours to 

execute the 1,200 operations across all 4 operational scenarios with 93 individual training 

sessions.  The experimental scheduling algorithm required 7.38 hours to complete all 



110 
 

 
 

1,200 operations across the 4 operational scenarios with no training required.  The 

random scheduling algorithm required 10.2 hours to complete the 1,200 operations 

contained in the operational scenarios with no training overhead. 

Overall, the experimental scheduling algorithm presented in this research 

outperformed the historical scheduling algorithm by 10.5% and the random scheduling 

algorithm by 28%.  This achieved the research goal by decreasing the overall execution 

time of a cyber foraging application. 

 



111 
 

 
 

Appendices 

  



112 
 

 
 

Appendix A: Sample Java Program 

The sample Java program used in generating the sample CFG. 

1. public class SimpleJavaProgram  
2. { 
3.  public static void main(String[] args)  
4.  { 
5.   int a = 5;  
6.   int b = 10;  
7.    
8.   System.out.println("A = " + a); 
9.   System.out.println("B = " + b); 
10.    
11.   if( a > 5 ) 
12.   { 
13.    a++; 
14.    b--; 
15.   } 
16.   else 
17.   { 
18.    a--; 
19.    b++; 
20.   } 
21.    
22.   System.out.println("A = " + a); 
23.   System.out.println("B = " + b); 
24.  } 
25. } 
  



113 
 

 
 

Appendix B: Sample Java Program – Bytecode Representation 

 
Command line used to generate and capture the output was:  

 

javap -v SimpleJavaProgram.class > output.txt 

 

The Java version used to generate this output:  java version "1.7.0_17" 

 

Note:  This output has been altered.  The comments have been removed from the output 

due to space and formatting considerations. 
 
--Start Listing-- 
         0: iconst_5       
         1: istore_1       
         2: bipush        10 
         4: istore_2       
         5: getstatic     #16 
         8: new           #22 
        11: dup            
        12: ldc           #24  
        14: invokespecial #26 
        17: iload_1        
        18: invokevirtual #29 
        21: invokevirtual #33 
        24: invokevirtual #37 
        27: getstatic     #16 
        30: new           #22 
        33: dup            
        34: ldc           #42  
        36: invokespecial #26 
        39: iload_2        
        40: invokevirtual #29 
        43: invokevirtual #33 
        46: invokevirtual #37 
        49: iload_1        
        50: iconst_5       
        51: if_icmple     63 
        54: iinc          1, 1 
        57: iinc          2, -1 
        60: goto          69 
        63: iinc          1, -1 
        66: iinc          2, 1 
        69: getstatic     #16 
        72: new           #22 
        75: dup            
        76: ldc           #24  
        78: invokespecial #26 
        81: iload_1        
        82: invokevirtual #29 
        85: invokevirtual #33 
        88: invokevirtual #37 
        91: getstatic     #16 
        94: new           #22 



114 
 

 
 

        97: dup            
        98: ldc           #42  
       100: invokespecial #26 
       103: iload_2        
       104: invokevirtual #29 
       107: invokevirtual #33 
       110: invokevirtual #37 
       113: return   
--End Listing-- 

  



115 
 

 
 

Appendix C: Sample Execution Log File Data 

 

Below is an excerpt from the execution log.  The header row and empty lines between 

entries have been added to increase readability.   

 
sequence number~record type~record data 

1~1<request><requestID>1</requestID><requestType>RPC</requestType><operationNa

me>ImageLib.Contrast</operationName><fileName>dog.png</fileName><parameters><p

arameter><parameterName>imageBytes</parameterName><parameterDirection>IN</para

meterDirection><parameterDataType>byte[]</parameterDataType><parameterValue></

parameterValue></parameter></parameters></request> 

2~2~<response><responseID>1</responseID><operationName>ImageLib.Contrast</oper

ationName><executionTime>32421</executionTime><errorCode>0</errorCode><errorDe

scription></errorDescription><parameters><parameter><parameterName>RETURN_VALU

E</parameterName><parameterDirection>OUT</parameterDirection><parameterDataTyp

e>byte[]</parameterDataType><parameterValue>X62IBNhchbxBwbGhVwc==</parameterVa

lue></parameter></parameters> 

3~3~ImageLib.Contrast~dog.png~6209174~surrogate-2~785~421~surrogate-

1;surrogate-2;surrogate-3;surrogate-4;surrogate-5~cold-

start;online;offline;online;online 

4~1~<request><request><requestID>2</requestID><requestType>RPC</requestType><o

perationName>ImageLib.Contrast</operationName><fileName>dog.thumb.png</fileNam

e><parameters><parameter><parameterName>imageBytes</parameterName><parameterDi

rection>IN</parameterDirection><parameterDataType>byte[]</parameterDataType><p

arameterValue></parameterValue></parameter></parameters></request> 

5~2~<response><responseID>2</responseID><operationName>ImageLib.Contrast</oper

ationName><executionTime>421</executionTime><errorCode>0</errorCode><errorDesc

ription></errorDescription><parameters><parameter><parameterName>RETURN_VALUE<

/parameterName><parameterDirection>OUT</parameterDirection><parameterDataType>

byte[]</parameterDataType><parameterValue>X62IBNhchbxBwbGhVwc==</parameterValu

e></parameter></parameters> 

6~3~ImageLib.Contrast~dog.png~7194~surrogate-2~285~121~surrogate-1;surrogate-

2;surrogate-3;surrogate-4;surrogate-5~cold-start;online;offline;online;online  

-end- 

 

  



116 
 

 
 

Appendix D: Sample Driver File – Saturated Scenario 

RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 



117 
 

 
 

RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 

   



118 
 

 
 

Appendix E: Sample Driver File – Slowly Churning Scenario 

RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 



119 
 

 
 

RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 



120 
 

 
 

RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 



121 
 

 
 

RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 



122 
 

 
 

RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 



123 
 

 
 

RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 

 

 

 

  



124 
 

 
 

Appendix F: Sample Driver File – Quickly Churning Scenario 

RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 



125 
 

 
 

RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC SHARPEN s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 



126 
 

 
 

RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 



127 
 

 
 

RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC CONTRAST s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 



128 
 

 
 

RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 



129 
 

 
 

RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=OFFLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=ONLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=ONLINE,s-2=OFFLINE,s-3=OFFLINE,s-4=ONLINE,s-5=OFFLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 
RPC GRAYSCALE s-1=OFFLINE,s-2=ONLINE,s-3=OFFLINE,s-4=ONLINE,s-5=ONLINE; 

  



130 
 

 
 

References 

Albert, E., Arenas, P., Genaim, S., Puebla, G., & Zanardini, D. (2007). Cost analysis of 

java bytecode Programming Languages and Systems (pp. 157-172): Springer. 

Balan, Flinn, J., Satyanarayanan, M., Sinnamohideen, S., & Yang, H. I. (2002). The case 

for cyber foraging. Paper presented at the ACM SIGOPS European Workshop. 

Balan, Gergle, D., Satyanarayanan, M., & Herbsleb, J. (2007). Simplifying cyber foraging 

for mobile devices. Paper presented at the Proceedings of the 5th international 

conference on Mobile systems, applications and services. 

Balan, Satyanarayanan, M., Park, S. Y., & Okoshi, T. (2003). Tactics-based remote 

execution for mobile computing. Paper presented at the Proceedings of the 1st 

international conference on Mobile systems, applications and services. 

Binder, W., & Hulaas, J. (2006). Using bytecode instruction counting as portable CPU 

consumption metric. Electronic Notes in Theoretical Computer Science, 153(2), 

57-77. 

Chun, B. G., Ihm, S., Maniatis, P., & Naik, M. (2010). Clonecloud: boosting mobile 

device applications through cloud clone execution. arXiv preprint 

arXiv:1009.3088. 

Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R., et al. 

(2010). MAUI: making smartphones last longer with code offload. Paper 

presented at the Proceedings of the 8th international conference on Mobile 

systems, applications, and services. 

Flinn, J., Park, S. Y., & Satyanarayanan, M. (2002). Balancing performance, energy, and 

quality in pervasive computing. 

Flinn, J., & Satyanarayanan, M. (1999). Energy-aware adaptation for mobile applications. 

ACM SIGOPS Operating Systems Review, 33(5), 48-63. 

Flynn, J. (2012). Cyber Foraging: Bridging Mobile and Cloud Computing: Morgan & 

Claypool. 



131 
 

 
 

Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., & Milojicic, D. (2003). Adaptive 

offloading inference for delivering applications in pervasive computing 

environments. Paper presented at the Pervasive Computing and Communications, 

2003.(PerCom 2003). Proceedings of the First IEEE International Conference on. 

Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., & Milojicic, D. (2004). Adaptive 

offloading for pervasive computing. Pervasive Computing, IEEE, 3(3), 66-73. 

Gupta, S., Fritz, C., Price, B., Hoover, R., De Kleer, J., & Witteveen, C. (2013). 

ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop Clusters. 

Paper presented at the ICAC. 

Gurun, S., Krintz, C., & Wolski, R. (2004). NWSLite: a light-weight prediction utility for 

mobile devices. Paper presented at the Proceedings of the 2nd international 

conference on Mobile systems, applications, and services. 

Huerta-Canepa, G., & Lee, D. (2008). An adaptable application offloading scheme based 

on application behavior. Paper presented at the Advanced Information 

Networking and Applications-Workshops, 2008. AINAW 2008. 22nd 

International Conference on. 

Irwin, J., Kickzales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., et al. 

(1997). Aspect-oriented programming. Proceedings of ECOOP, IEEE, Finland, 

220-242. 

Kafaie, S., Kashefi, O., & Sharifi, M. (2011). Augmented Mobile Devices through Cyber 

Foraging. Paper presented at the 10th International Symposium on Parallel and 

Distributed Computing, Cluj Romania. 

Kemp, Palmer, N., Kielmann, T., Seinstra, F., Drost, N., Maassen, J., et al. (2009). 

eyeDentify: Multimedia cyber foraging from a smartphone. Paper presented at the 

Multimedia, 2009. ISM'09. 11th IEEE International Symposium on. 

Kemp, R., Palmer, N., Kielmann, T., & Bal, H. (2012). Cuckoo: a computation 

offloading framework for smartphones. Mobile Computing, Applications, and 

Services, 59-79. 

Kristensen, M. D. (2010). Scavenger: Transparent development of efficient cyber 

foraging applications. Paper presented at the Pervasive Computing and 

Communications (PerCom), 2010 IEEE International Conference on. 



132 
 

 
 

Kristensen, M. D., & Bouvin, N. O. (2010). Scheduling and development support in the 

scavenger cyber foraging system. Pervasive and Mobile Computing, 6(6), 677-

692. 

Liagouris, J., Athanasiou, S., Efentakis, A., Pfennigschmidt, S., Pfoser, D., Tsigka, E., et 

al. (2011). Mobile task computing: beyond location-based services and ebooks. 

Web and Wireless Geographical Information Systems, 124-141. 

Lin, W., & Liu, J. (2013). Performance Analysis of MapReduce Program in 

Heterogeneous Cloud Computing. Journal of Networks, 8(8), 1734-1741. 

Narayanan, D., Flinn, J., & Satyanarayanan, M. (2000). Using history to improve mobile 

application adaptation. Paper presented at the Mobile Computing Systems and 

Applications, 2000 Third IEEE Workshop on. 

Narayanan, D., & Satyanarayanan, M. (2003). Predictive resource management for 

wearable computing. Paper presented at the Proceedings of the 1st international 

conference on Mobile systems, applications and services. 

Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J., & Walker, K. R. 

(1997). Agile application-aware adaptation for mobility. 

Pooranian, Z., Shojafar, M., Abawajy, J. H., & Singhal, M. (2013). Gloa: a new job 

scheduling algorithm for grid computing. IJIMAI, 2(1), 59-64. 

Satyanarayanan, M. (1996). Fundamental challenges in mobile computing. Paper 

presented at the Proceedings of the fifteenth annual ACM symposium on 

Principles of distributed computing. 

Satyanarayanan, M. (2001). Pervasive computing: Vision and challenges. Personal 

Communications, IEEE, 8(4), 10-17. 

Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics 

for cold-start recommendations. Paper presented at the Proceedings of the 25th 

annual international ACM SIGIR conference on Research and development in 

information retrieval. 



133 
 

 
 

Serral, E., Valderas, P., & Pelechano, V. (2011). Improving the Cold-Start Problem in 

User Task Automation by Using Models at Runtime. Information Systems 

Development, 671-683. 

Sharifi, M., Kafaie, S., & Kashefi, O. (2011). A survey and taxonomy of cyber foraging 

of mobile devices. 

Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2011). AIOLOS: mobile 

middleware for adaptive offloading. Paper presented at the Proceedings of the 

Workshop on Posters and Demos Track.  

Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2012). AIOLOS: middleware for 

improving mobile application performance through cyber foraging. Journal of 

Systems and Software. 

Wang, Y., & Li, F. (2009). Vehicular ad hoc networks Guide to wireless ad hoc networks 

(pp. 503-525): Springer. 

Zhang, X., Kunjithapatham, A., Jeong, S., & Gibbs, S. (2011). Towards an elastic 

application model for augmenting the computing capabilities of mobile devices 

with cloud computing. Mobile Networks and Applications, 16(3), 270-284. 

 

 


	Nova Southeastern University
	NSUWorks
	2014

	Improving the Selection of Surrogates During the Cold-Start Phase of a Cyber Foraging Application to Increase Application Performance
	Brian Kowalczk
	Share Feedback About This Item
	NSUWorks Citation


	tmp.1418849423.pdf.V4BsT

