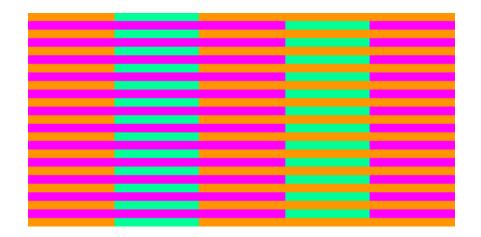
Flexible Gating of Contextual Influences in Natural Vision

Odelia Schwartz
University of Miami
Oct 2015

• Perceptual illusions: "no man is an island.."



Review paper on context: Schwartz, Hsu, Dayan, Nature Reviews Neuroscience 2007

• Perceptual illusions: "no man is an island.."

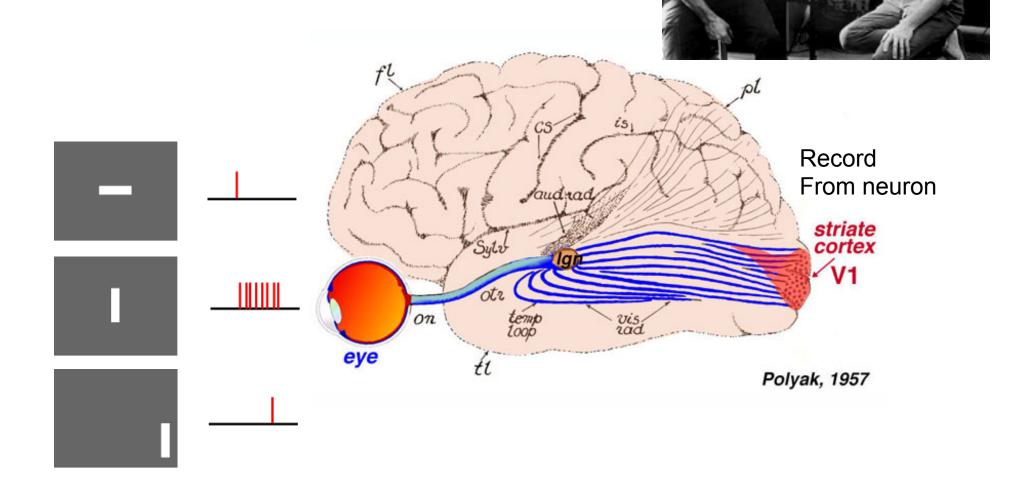
Review paper on context: Schwartz, Hsu, Dayan, Nature Reviews Neuroscience 2007

Perceptual illusions



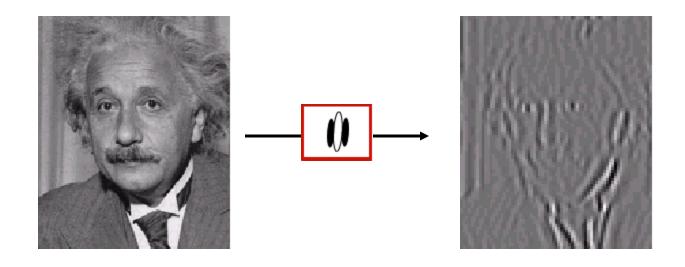
What about neurons?

Cortical neural processing

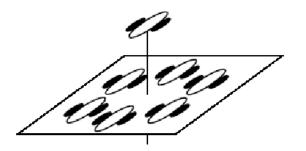


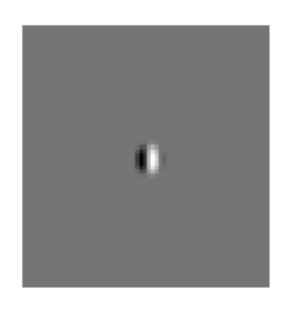
What about neurons?

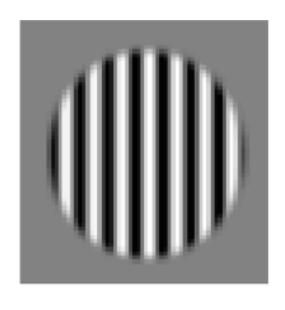
 Computer science / Engineering: visual receptive field or filter



Cortical visual neurons (V1)









??

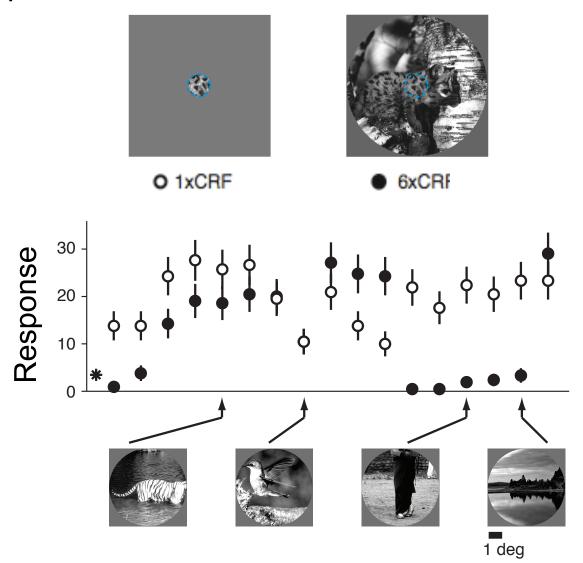
Motivation

- Spatial context plays critical role in object *grouping* and recognition, and in *segmentation*. It is key to everyday behavior; deficits have been implicated in neurological and developmental disorders and aging
- Range of existing experimental data on spatial context (neural; perceptual). Lacking principled explanation
- Poor understanding for how we (and our cortical neurons) process complex, natural images

Outline

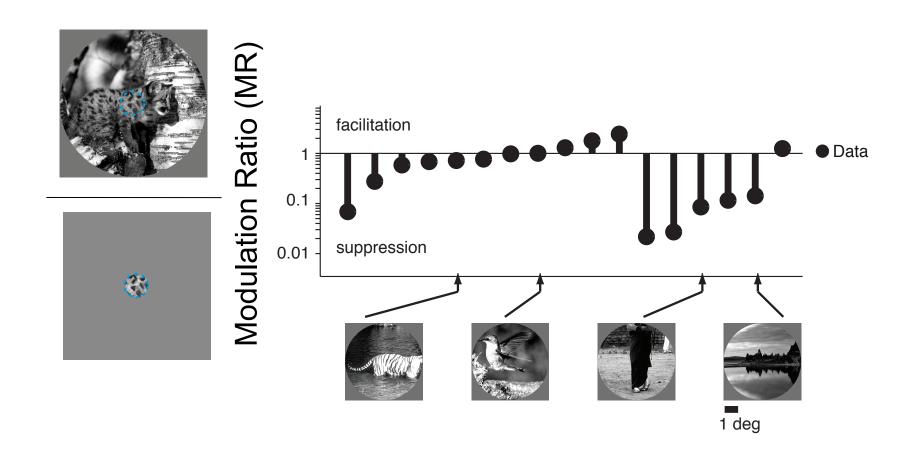
- Experimental data on cortical responses to natural images
- Computational neural model that captures contextual regularities in natural images
- Interplay of modeling with biological neural and psychology data (focus on natural images data)

Spatial context and natural scenes



Data: Adam Kohn lab (Coen-Cagli, Kohn, Schwartz, 2015; in press)

Spatial context and natural scenes

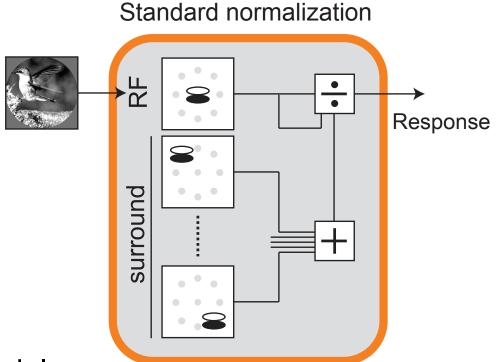


Data: Adam Kohn lab (Coen-Cagli, Kohn, Schwartz, 2015; in press)

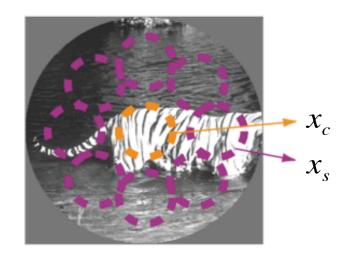
Spatial context and natural scenes

Can we capture data with canonical divisive normalization? (descriptive model)

Divisive normalization



- Descriptive model
- Canonical computation (Carandini, Heeger, Nature Reviews Neuro, 2012)
- Has been applied to visual cortex, as well as other systems and modalities, multimodal processing, value encoding, etc

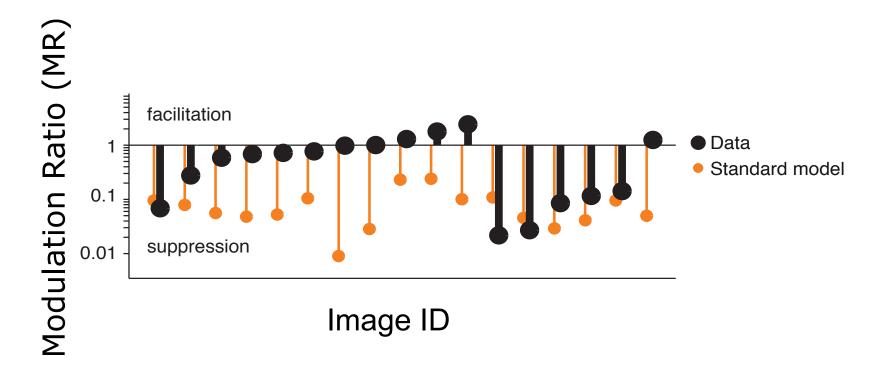


Canonical divisive normalization:

$$R_c \prec \frac{x_c}{\sqrt{x_c^2 + x_s^2}}$$

V1 Data: Kohn lab

Cortical responses to natural images

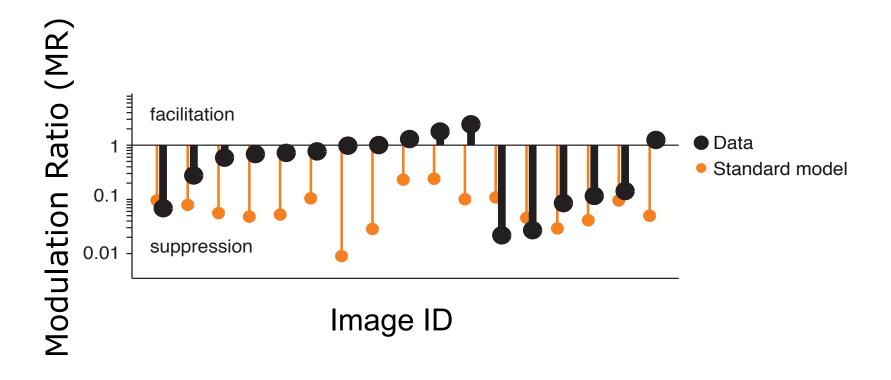


- We fit the standard normalization model to neural data
- Poor prediction quality

Data: Adam Kohn lab

Coen-Cagli, Kohn, Schwartz, 2015 (in press)

Cortical responses to natural images



 Can we explain as strategy to encode natural images optimally based on expected contextual regularities?

Data: Adam Kohn lab

Coen-Cagli, Kohn, Schwartz, 2015 (in press)

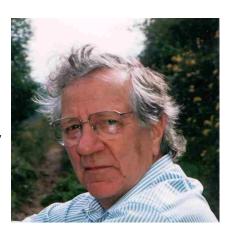
Outline

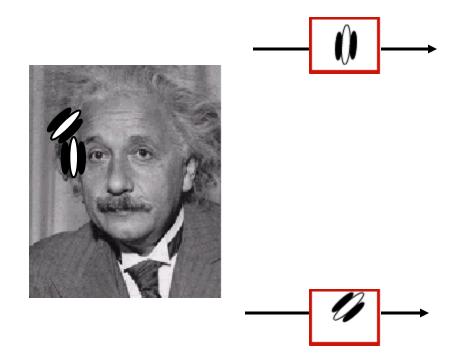
- Experimental data on cortical responses to natural images (standard descriptive model can't explain)
- Computational neural model that captures contextual regularities in natural images
- A Interplay of modeling with biological neural and psychology data (focus on natural images data)

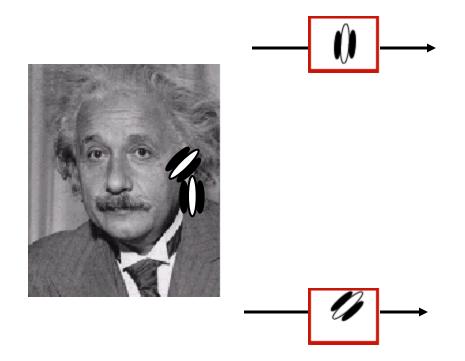
Two overarching computational principles

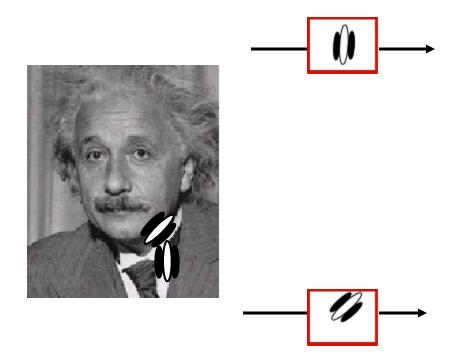
• Sensory processing as inference of properties of the input (can be formalized via probabilistic *Bayesian inference*)

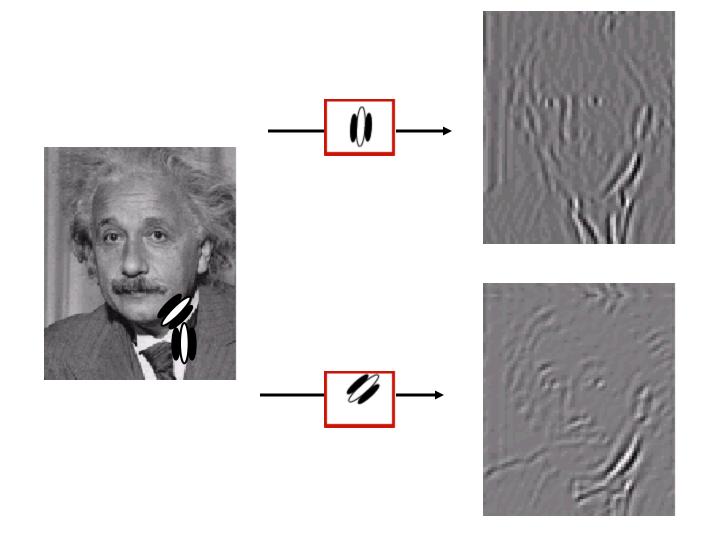
 Sensory systems aim to form an efficient code by reducing redundancies of the input (Barlow; also Attneave); influenced by information theory in the 1950s

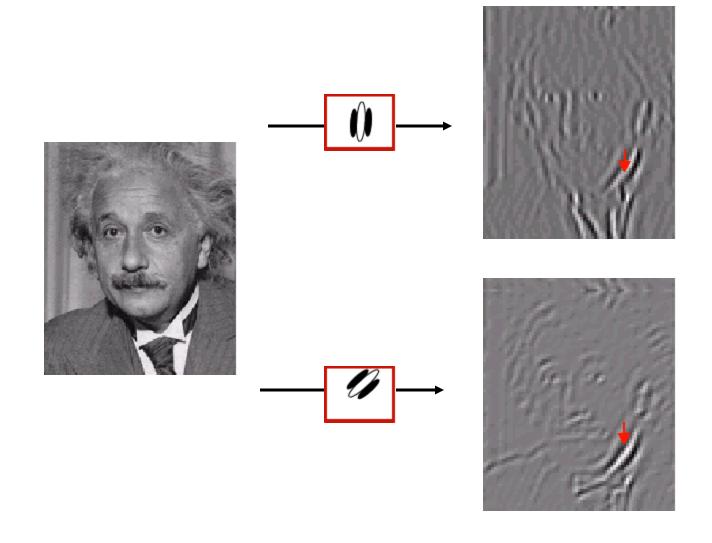


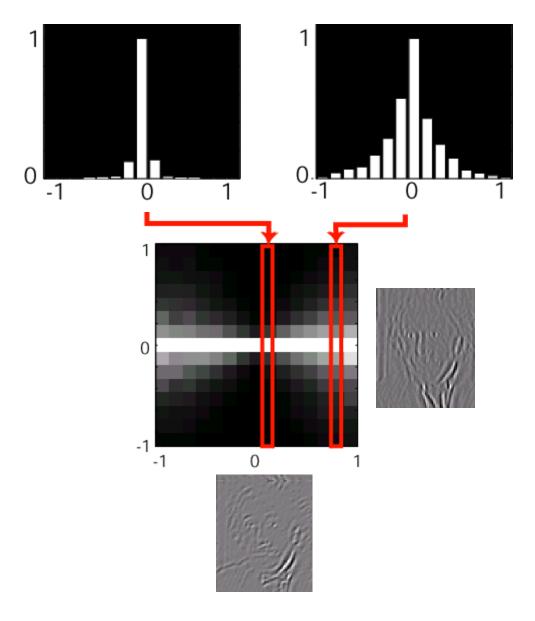






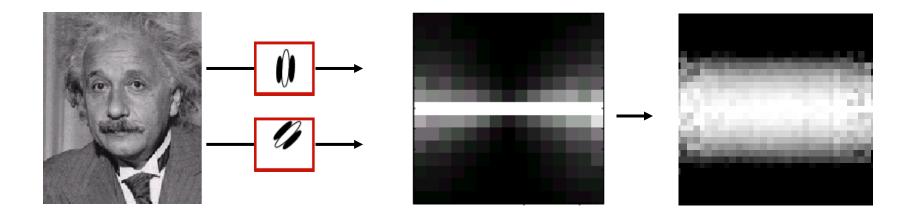






Schwartz, Simoncelli, Nature Neuroscience 2001

Generative model framework

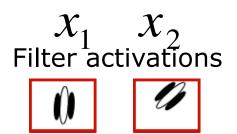


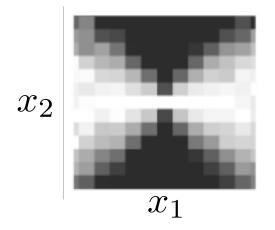
 Hypothesize that cortical neurons aim to reduce statistical dependencies (so as to highlight what is salient)

Schwartz, Simoncelli 2001 (for salience: Zhaoping Li, 2002)

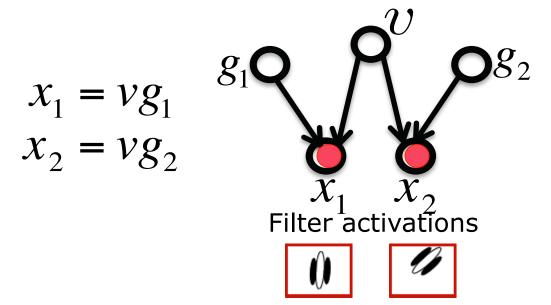
- Formally, we build a generative model of the dependencies and invert the model (Bayesian inference) richer representation!

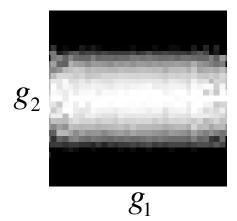
 Andrews, Mallows, 1974; Wainwright, Simoncelli, 2000; Schwartz, Sejnowski, Dayan 2006
- Generating the dependencies is a multiplicative process and to undo the dependencies we divide

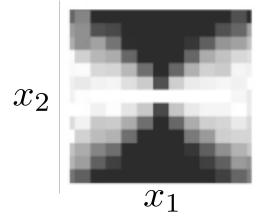


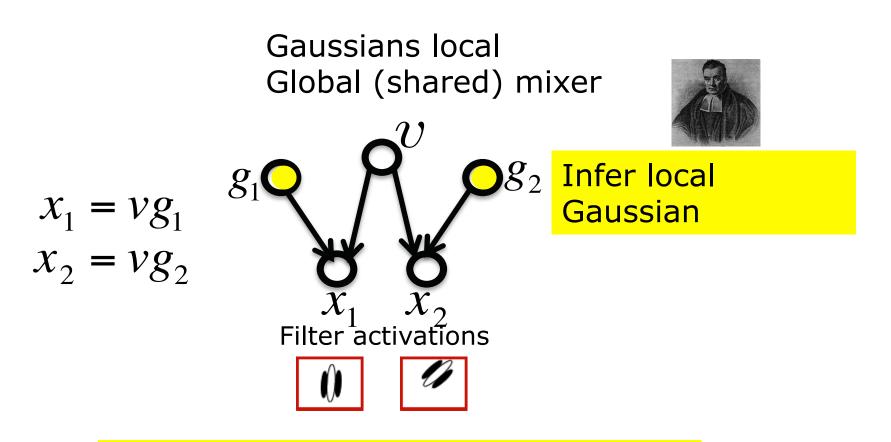


Gaussians local Global (shared) mixer



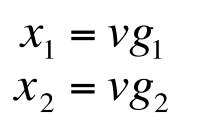


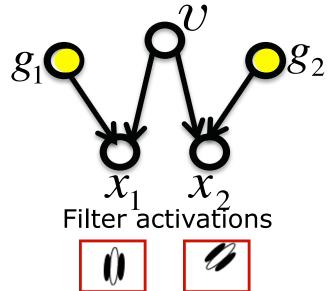


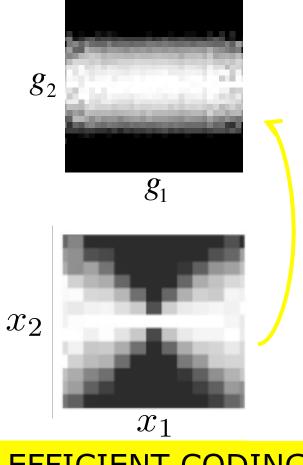


 $E(g_1 | x_1, x_2) = Model neuron activity$

Gaussians local Global (shared) mixer

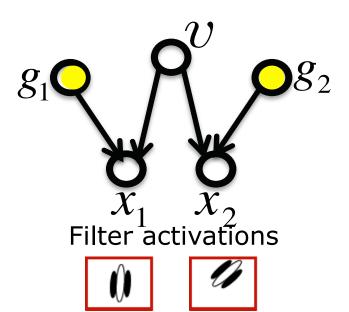






EFFICIENT CODING

Gaussians local Global (shared) mixer



Computed via Bayes rule

$$E(g_1 \mid x_1, x_2) \prec \frac{x_1}{\sqrt{l}};$$

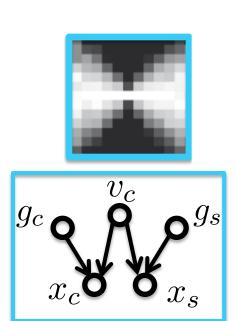
$$l = \sqrt{x_1^2 + x_2^2}$$

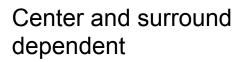
DIVISIVE NORMALIZATION

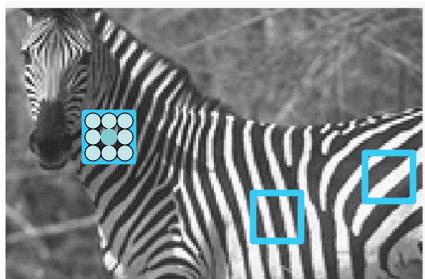
Divisive Normalization Canonical Model



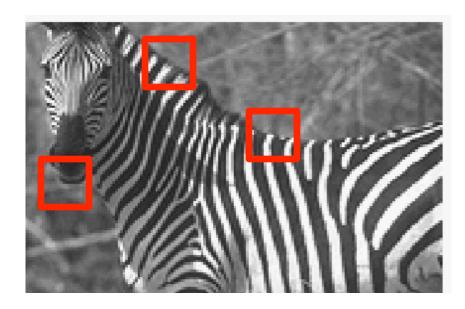
Divisive normalization descriptive models have been applied in many neural systems. Here we provide a principled explanation. We will next show that it also leads to a richer model based on image statistics and makes predictions



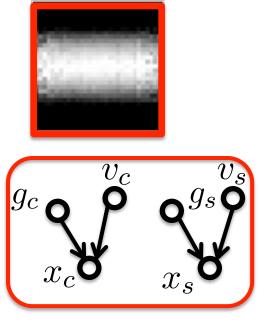




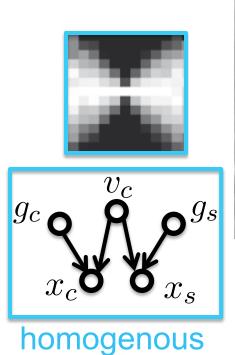
homogenous image patches

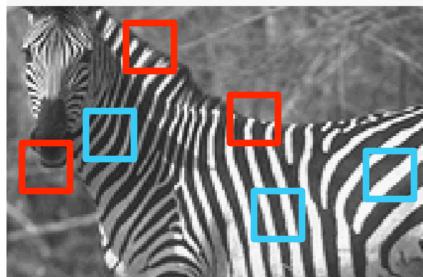


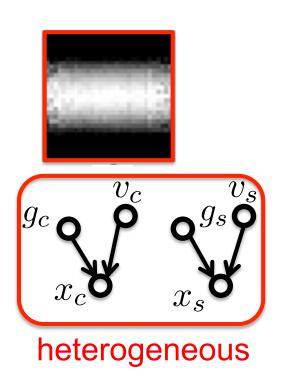
non-homogenous image patches

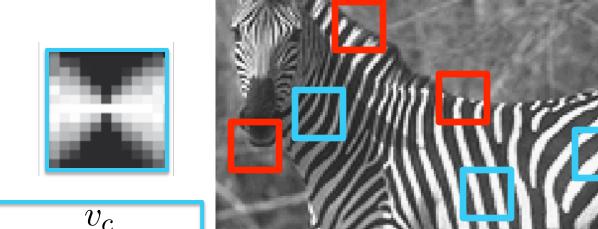


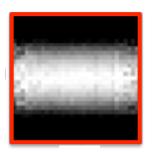
Center and surround independent

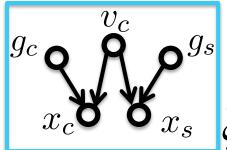












ع اع ξ_{2} x_{c} x_{c} x_{s}

divisive normalization ON divisive normalization OFF

$$E[g_c | x_c, x_s] = p(\xi_1 | x_c, x_s) E[g_c | x_c, x_s, \xi_1] + p(\xi_2 | x_c, x_s) E[g_c | x_c, \xi_2]$$

Schwartz, Sejnowski, Dayan, 2009; Coen-Cagli, Dayan, Schwartz, PLoS Comp Biology 2012

Non-homogeneity of images

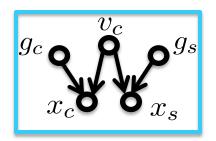
$$E[g_c \mid x_c, x_s] = p(\xi_1 \mid x_c, x_s) E[g_c \mid x_c, x_s, \xi_1] + p(\xi_2 \mid x_c, x_s) E[g_c \mid x_c, \xi_2]$$

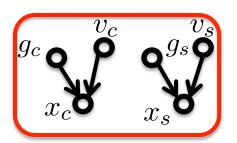
$$p(\xi_{1} \mid x) \prec p(\xi_{1}) p(x \mid \xi_{1}) = p(\xi_{1}) \int dv_{c} p(v_{c}) p(x \mid v_{c}, \xi_{1});$$

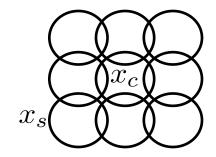
$$p(\xi_{2} \mid x) \prec p(\xi_{2}) p(x \mid \xi_{2}) = p(\xi_{2}) \int dv_{c} p(v_{c}) p(x_{c} \mid v_{c}, \xi_{2}) \int dv_{s} p(v_{s}) p(x_{s} \mid v_{c}, \xi_{2})$$

Schwartz, Sejnowski, Dayan, 2009; Coen-Cagli, Dayan, Schwartz, PLoS Comp Biology 2012

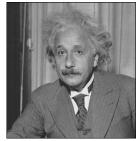
Model: Optimizing Image Ensemble







- 3x3 spatial positions, 6px separation
- 4 orientations in the center
- 4 orientations in the surround
- 2 phases (quadrature)
- model parameters (prior probability for \$\frac{\xi_1}{\xi_2}\$ and also linear covariance matrices) optimized to maximize the likelihood of a database of natural images using Expectation Maximization



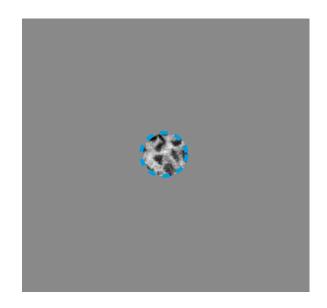
Coen-Cagli, Dayan, Schwartz, PLoS Comp Biology 2012; Schwartz, Sejnowski, Dayan, 2006

Outline

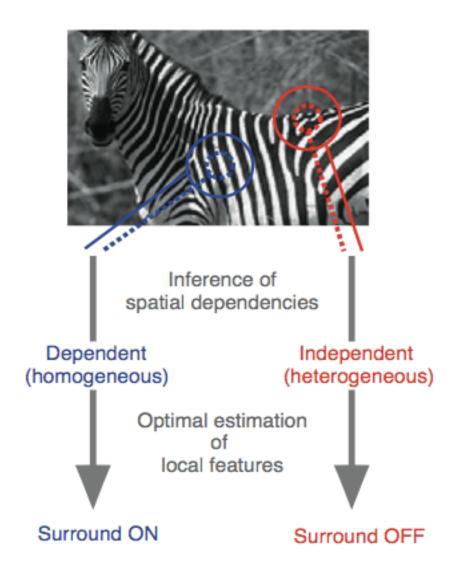
- Experimental data on cortical responses to natural images
- Computational neural model that captures contextual regularities in natural images
- Interplay of modeling with biological neural and psychology data (focus on natural images data)

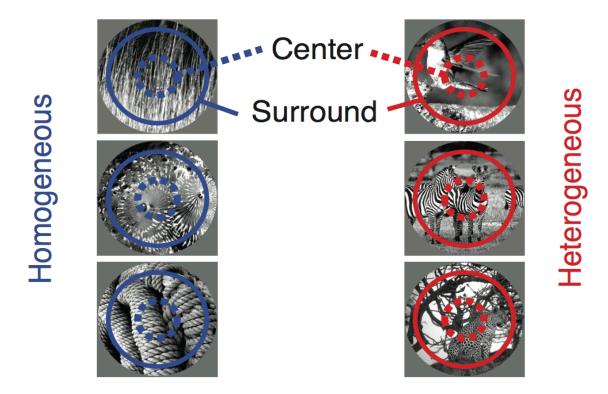
Cortical predictions for natural images

- In the past, we have tested modeling with simple stimuli (e.g., Coen-Cagli, Dayan, Schwartz, 2012; Schwartz, Sejnowski, Dayan, 2009)
- Here, we make predictions for natural images (Coen-Cagli, Kohn, Schwartz, 2015, in press)



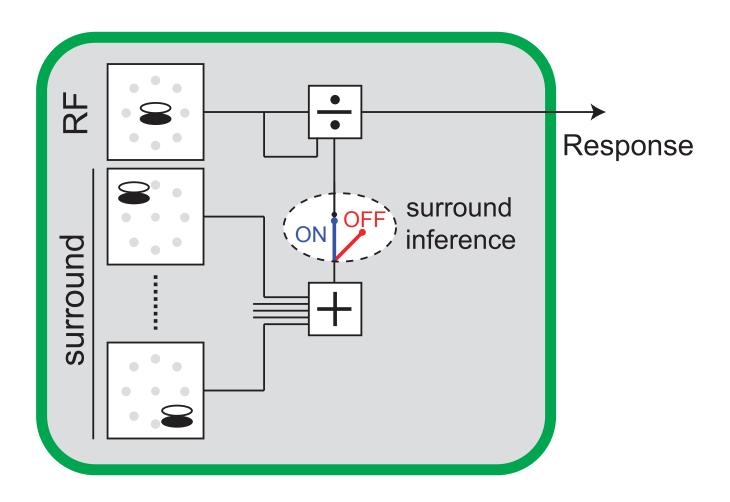
Flexible Divisive Normalization





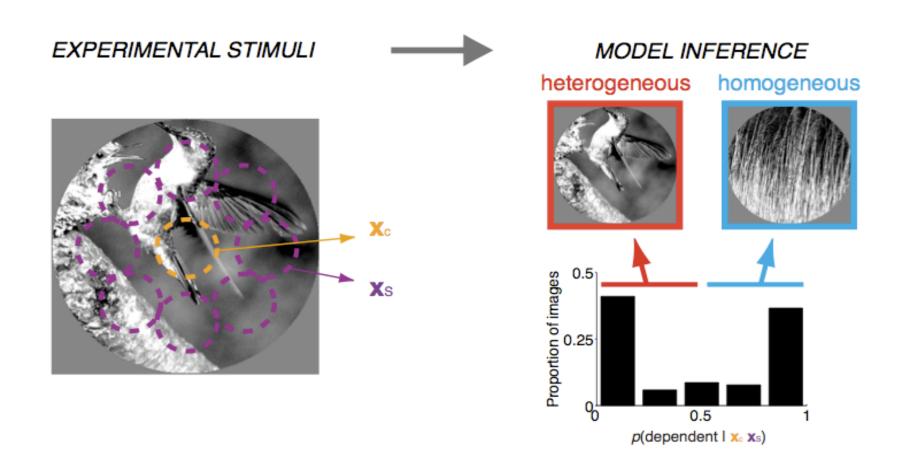
- Homogeneous and heterogeneous determined by model!
- Expect more suppression in neurons for homogeneous
- Related to salience (eg, Zhaoping)

Model summary



Inference determined by model

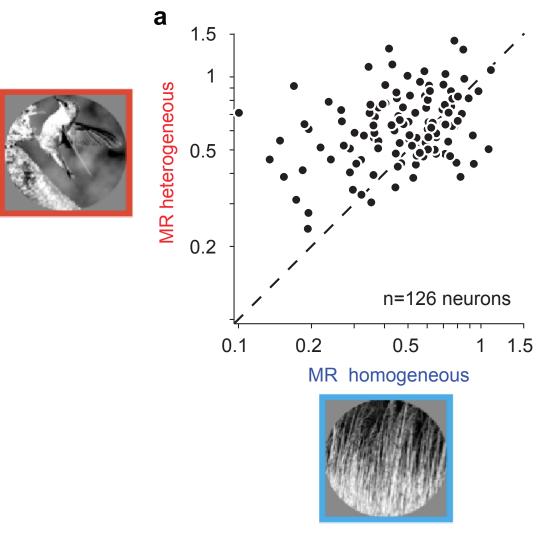
Model Predictions for Natural Scenes



homogeneous versus heterogeneous determined by the model

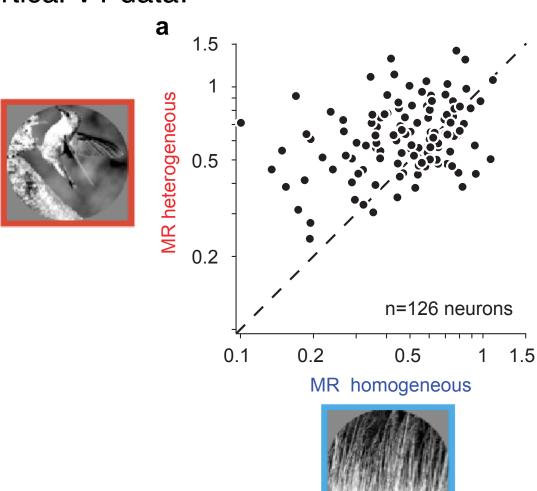
Model Predictions for Natural Scenes

Cortical V1 data:



Model Predictions for Natural Scenes

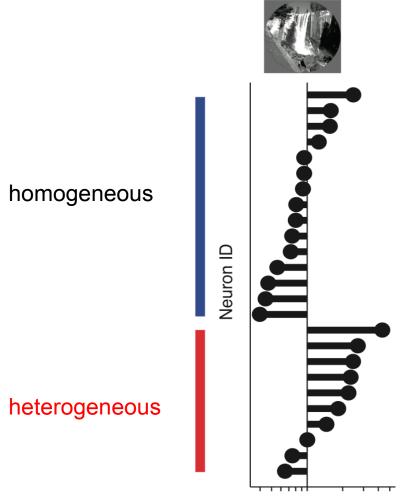
Cortical V1 data:



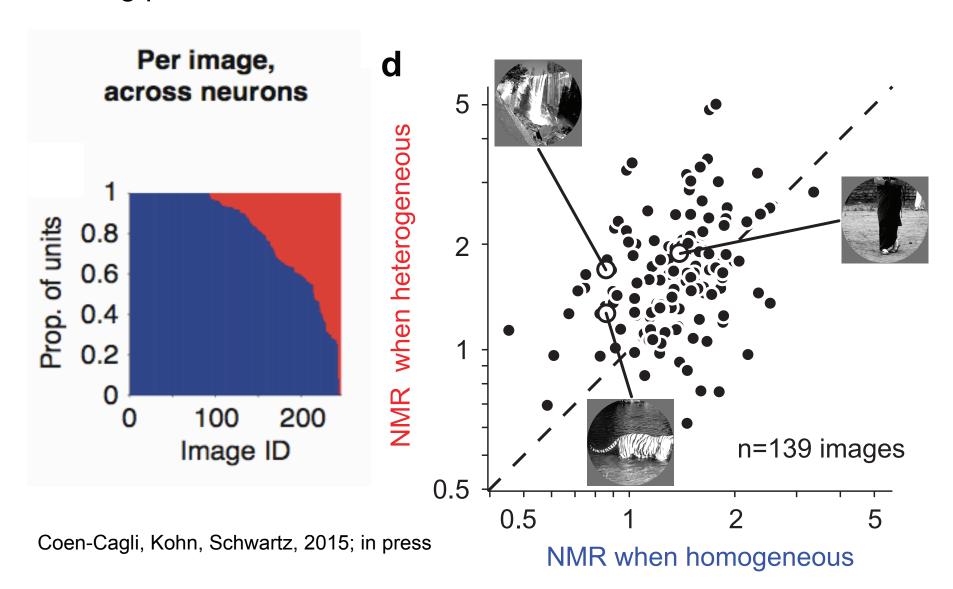
Not explained by:

- firing rate with small frames
- surround energy

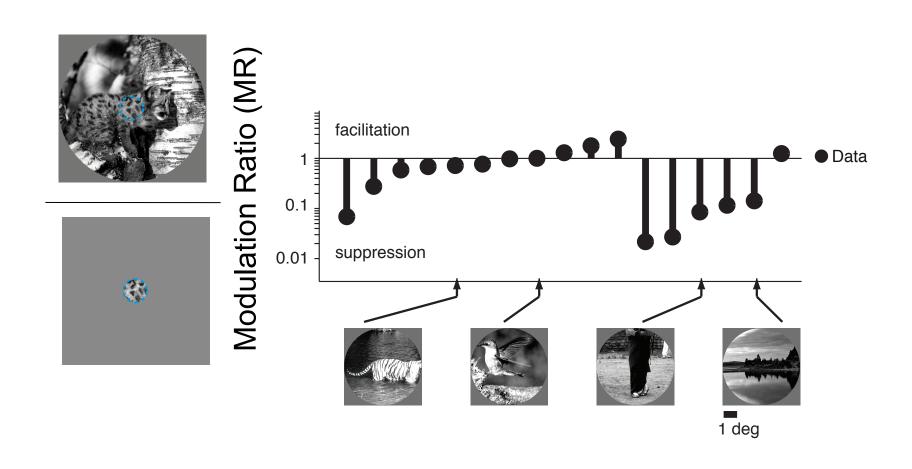
• Per image, across neurons



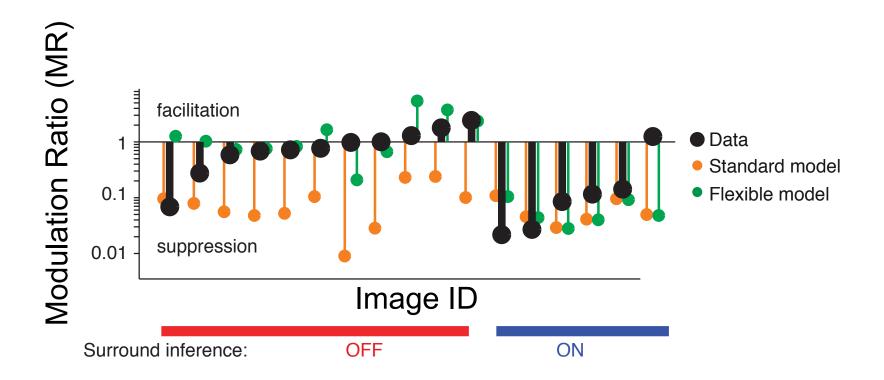
Testing predictions with cortical data



Natural scenes data



Natural scenes data



Comparing model performance for cortical data

Standard divisive normalization

$$R_{i} = \alpha \left(\frac{E_{c,\phi_{pref}}}{\varepsilon + \beta E_{c} + \gamma E_{s}} \right)^{n}$$

Flexible divisive normalization:

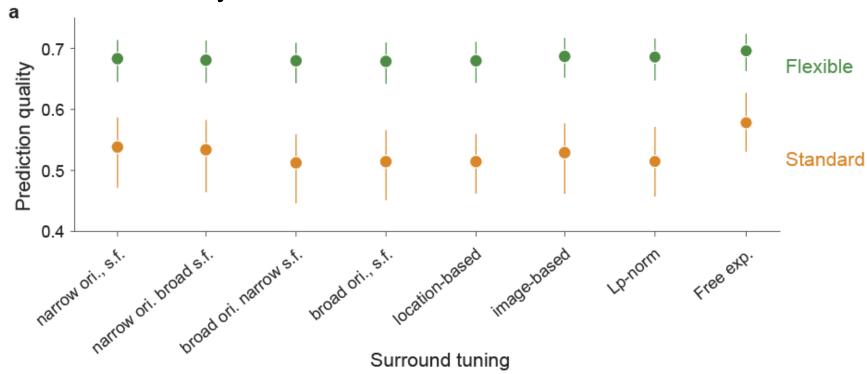
$$R_{i} = \alpha \left(\frac{E_{c,\phi_{pref}}}{\varepsilon + \beta E_{c} + \boxed{q(c,s)} \gamma E_{s}} \right)^{n}$$

Determined by the model (not fit!) 1 if $p(\xi_1 \mid c,s) \ge 0.5$ 0 otherwise

(similar results if non binary)

Natural scenes data

- Cross-validated prediction quality
- There are many standard model versions...



Prediction quality:

- 1 = "oracle" (observed mean for each image)
- 0 = "null" (mean response across all images)

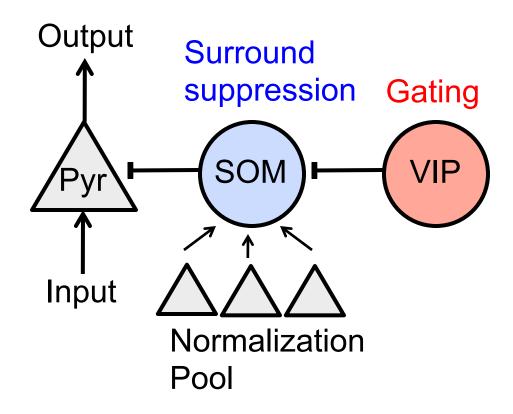
Model Mechanisms

Divisive normalization:

- Feedback inhibition
- Distal dendrite inhibition
- Depressing synapses
- Internal biochemical adjustments
- Non-Poisson spike generation

Flexible Normalization Mechanism?

- Adjusting gain by circuit or postsynaptic mechanisms?
- Distinct classes of inhibitory interneurons? (eg, Adesnik, Scanziani et al. 2012; Pfeffer, Scanziani et al. 2013; Pi, Kepecs et al. 2013; Lee, Rudy et al. 2013)



Key take-home points

- New approach to understanding cortical processing of natural images. Rather than fitting more complicated models, use insights from scene statistics
- Connects to neural computations that are ubiquitous, but enriches the "standard" model
- Our results suggest flexibility of contextual influences in natural vision, depending on whether center and surround are deemed statistically homogeneous
- Next/currently: hierarchical representations; adaptation

Acknowledgments

Albert Einstein

Ruben Coen Cagli Adam Kohn

Gatsby, UCL Peter Dayan

Salk Institute Terry Sejnowski

Funding

NIH (Collaborative Research in Computational Neuroscience) Army Research Office Alfred P. Sloan Foundation Google