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Abstract 

MOLECULAR EVOLUTION OF NUMT, A RECENT TRANSFER AND TANDEM 
AMPLIFICATION OF MITOCHONDRIAL DNA INTO THE NUCLEAR GENOME 
OF DOMESTIC CAT (FELIS CATUS) 

Jose Victor Lopez, Ph.D. 

George Mason University, 1995 

Dissertation Director: Dr. Alan H. Christensen 

Mitochondrial DNA (mtDNA) are functional cytoplasmic chromosomes, tracing 

origins to a symbiotic infection of eukaryotic cells by bacterial progenitors. As 

prescribed by the Serial Endosymbiosis Theory. symbionts have gradually transferred 

their genes to the nuclear genome that enable functional interaction. In this 

dissertation, a 7.9 kb transposition of a typically 17.0 kb mitochondrial genome to a 

specific chromosomal position in the domestic cat is reported. The integrated mtDNA 

has amplified about 38-76 times and now occurs as a "macrosatellite"-like tandem 

repeat with multiple length alleles resolved by pulse field gel electrophoresis (PFGE) 

segregating in cat populations. To examine the tempo and mode of evolution between 

different organelles, characterization of the complete 7946 bp nuclear milochondrial 

DNA monomer, Nunu. and cytoplasmic mtDNA (17,009 bp) sequences reveals about 

95 % similarity, which supports recent divergence within 1.8-2.0 MY A and the radiation 
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offour modern species in genus Felis. The motif, [ACACACGTJ, appears imperfectly 

repeated at the deletion junction of the control region (CR), and a likely target for 

recombination. Simple repeats are also implicated in indel generation. Most 

substitutions between the cat homologues are attributable to accelerated cytoplasmic 

mtDNA evolution, yet maintain a uniform rate of synonymous substitutions between 

different mitochondrial genes. Results of ribonuclease protection assays on cellular 

RNA verify the lack of Numt-specific transcription and the appraisal of Numr as a 

molecular "fossil". Despite an elevated number of transversions and no increase in 

dA/dT content over cytoplasmic mtDNA, Numl resembles archetypal pseudogene 

evolution. 

To place the felid data in the context of functional mitochondrial genomes, 

pairwise similarity comparisons of all 37 mtDNA coding genes and the CR among eight 

complete mitochondrial genomes of five placental mammals were performed. In 

carnivores, the ND4L and ATPase 6 genes exhibit higher sequence conservation. while 

cyt B shows accelerated divergence. Lastly, the occurrence of MU7ll-like loci in other 

exotic felids deviates from current phyiogenetic predictions. To confirm homology with 

the F. ealus Nunu locus, a series of experiments was conducted to isolate chromosomal 

sequences directly flanking Numt-like loci. These observations provide an empirical 

glimpse of historic genomic events that may parallel the accommodat!on of organelles 

in eukaryotes. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 1 

ISOLATION AND MOLECULAR CHARACTERIZATION OF NUMT FROM THE 
DOMESTIC CAT NUCLEAR GENOME 

BACKGROUND AND OBJECTIVES 

"Every solution of a problem raises new unsolved problems: the more we learn about 
the world, the more conscious, specific, and articulate wiil be our knowledge of what 
we do not know, our knovv'ledge of ignorance. For this, indeed, is the main source of 
our ign()rance - the fact that our knowledge can be only finite, while our ignorance 
must necessarily be infinite." - Karl R. Popper. COlljeclUres and Refutations (1968) 

In this dissertation, one of the largest transpositions of mitochondrial DNA 

(mtDNA) into the nuclear genome of a higher vertebrate. thc domcstic.; cat (feLis catus). 

is described. The cytoplasmic compartments. or organellcs, possessing specialized 

functional roles have been rccognized as a distinguishing trait of cukaryotic cells for 

many years (Wilson, 1959: Gilham, 1978: Alberts el ai, 1989). As a eukaryotic 

organelle, mitochondria provide the site of energy prOduction via the oxidation of 

carbon compounds and the coupling of chemiosmotic gradients with electron-transfer 

pathways to form phosphate bonds in ATP (adenosine triphosphate) (Hatefi, 1985). 

Through the process of oxidative phosphorylation. three vital and interrelated functions 

are served: reoxidation of NADH and FADH2. generation of ATP (energy), and 

regulation of body temperaturc by g.encrating heat (Wallace. 1994). 
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Although mitochondrial genetics studies on yeast (Ephrussi, 1949) preceded the 

actual discovery of nucleic acids within mitochondria (Nass and Nass, 1963), the latter 

serendipitously ushered in a new era of molecular genetics research (Wallace, 1982: 

Attardi. 1985; Tzagloff and Myers, 1986). Along with the nearly universal distribution 

among eukaryotic organisms, several key features of mtDNA seized the attention of 

population and evolutionary biologists (Brown. 1983; Wilson et ai, 1985; Moritz et al. 

1987: Harrison. 1989: Avise. 1986; 1991: 1994; O'Brien et ai, 1990). Firstly. 

mitochondrial gene sequences evolve on average about 2 % per MY, which is about 5-

10 times faster than most nuclear genes (Brown et ai, 1979; 1982; Nei 1985; 1987). 

Secondly. in most eukaryotic organisms. mtDNAs undergo nearly uniparental 

transmission, typically through the matriline (Dawid and Blackler, 1972; Gyllensten et 

al. 1985). The resulting low frequency of recombination, preserves the integrity and 

faithful sorting of specific mtDNA haplotypes and increases its utility for population 

biology and systematics studies (Ballinger et ai, 1992; Nei, 1987; Avise, 1994). 

Lastly. the compact size (ca. 16-17 kb) and relatively conserved gene organization of 

many animal mtDNAs also facilitated rapid and extensive studies across diverse phyla 

(Brown, 1983; 1985; Attardi. 1985; Harrison, 1989)(see Appendix C). 

The subject of constrained or fluid size and gene content in many animal 

mitochondrial genomes sets a fundamental cornerstone for the rationale of 

characterizing mtDNA length variants. I n spite of the great morphological and 

ecological diversity of vertebrate fauna in nature. endothermic vertebrate mtDNAs 
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appear restricted to sizes within 16.0 - 19.2 kb (B.-own 1983; 1985; Roe et al. 1985; 

Amason and Johnsson, 1992; Rand. 1993; 1994; Janke et ai, 1994: Lee and Kocher, 

1995). The double-stranded. circular mitochondrial genome typically codes for only 

37 genes specifying 13 proteins. 22 tRNAs. and 2 rRNA subunits (Chomyn et al. 1985; 

Attardi. 1985; Wolstenholme. 1992). A compact mtDNA organization is further 

demonstrated by the lack of introns and paucity of short intervening sequences. In 

Homo sapiens. only 7% of the mitochondrial genome is noncoding (Attardi. 1985) and 

mitochondrial genes often directly abut one another. or overlap. as is the case for ND6 

and ATPase 6 and between ND4 and ND4L. and several tRNA genes (Anderson et ai, 

1981; Bibb et al. 1981). The notion of a static vertebrate molecule with respect to size 

has barely changed with the continual expansion of the mtDN:\ database that began 

with the complete sequences of the human mitochondrial genome (Anderson et al. 

1981). A general survey of the current mitochondrial genome database (GenBank 

release 86.0. 12/94) for vertebrate sequences finds nine mammals (not including cat). 

chicken. clawed toad (Xenopus laevis), and carp (Cyprinus carpio). Fig. 1 shows the 

structure of the domestic cat mitochondrial genome (fully described in chapier 2). 

which conforms to the structure of other placental mammalian mtDNAs. 
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Whether vertebrate or mammalian mtDNAs have become "frozen" at the currem 

average of about 17.0 kb poses an intriguing question. For instance, invertebrate. 

fungal, and plant mitochondrial genomes exhibit a wider range of sizes from 14.3 kb 

in the nematode worm. Ascaris suum (Wolstenholme et ai, 1987; Okimoto et al. 1992) 

to 115 kb in the ascomycetes fungus. CochlioboLus heterostrophus, and 2400 kb in the 

muskmelon, Cucumis melD (Gray, 1989a). Fluidity of mtDNA structure also finds 

support in the examples of length variations and rearrangements of mtDNA. These 

instances of heteropLasmy. a possession of more than one mtDNA genotype in an 

individuaL can occur without a noticeable loss in organismal fitness (Harrrison and 

Rand, 1985: HoehetaI. 1991: Wallace, 1992: Zourosetal, 1994). MtDNAlength 

heteroplasmy may be correlated with basal metabolic rates, since it occurs more 

frequently in lower vertebrate and invertebrate genomes (Monnerot et al. 1984: 

Bermingham et aL 1986: Rand and Harrison. 1986: Hyman. 1988; Bentzen et aL 1988: 

Birky et al. 1991: Rand. 1993). For example. the parthenogenic lizard. Cllemidophorus 

exhibits mtDNA length variants caused by tandem duplications in the control region 

(CR) (Densmore et al. 1985; Moritz and Brown. 1987). More recently, Hoelzel ct al 

(1993; 1994) demonstrated length heteroplasmy in the mitochondrial control region of 

two popUlations of elephant seals and various species of carnivores, while DNA 

deletions may encompass mtDNA coding regions (up to 7 kb) and cause heteroplasmy 

in human pathological conditions. such as myoclonic epilepsy and ragged red fibers 

(MERFF) and ocular myopathy. or simple aging (Schon et al. 1989: Wallace. 1992: 1994). 
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Since mtDNA holds only a minimal repertoire of genetic information. many 

structural proteins, enzymes and co factors required for mitochondrial function must be 

actively transported into the organelle after cytoplasmic translation of nuclear transcripts 

(Gilham, 1978: Hurt and van Loon, 1986: Clayton, 1984: Hartl and Neupert, 1990: 

Rose et ai, 1992). This paucity of genetic information has been interpreted in the 

context of the Serial Endosymbiosis Theory or SET (Margulis, 1981: 1993: Smith and 

Douglas, 1986: Ahmadhian. 1986; Gray, 1989a: 1989b), which proposed that 

mitochondria and plant chloroplasts (cp) arose from free-living prokaryotes. and 

organellar genomes are mere vestiges of a more complete ancestral genome. The SET 

is consistent with the dependence of mitochondrial biogenesis on nuclear instructions 

and strongly supported by molecular evidence showing a genetic similarity between 

animal mtDNA and the a subdivision of purple bacteria. which includes Paracoccus 

denitrificans (Yang et al. 1985: Spencer et al. 1984: Fenchel and Bernard. 1993). 

Primordial hosts to these endosymbionts may have been similar to the giant amoeba. 

Pelom.'\lxa palustris or the mycoplasma-like prokaryote, Thermopiasma acidoplzilul1l 

(Smith and Douglas, 1986; Ahmadhian, 1986). An important corollary of the theory, 

however, is that during the evolution of each symbioses, symbiont (mitochondrial or 

chloroplast) gene sequences wilI have gradually transferred and integrated into the 

nuclear genome. Furthermore, integration of symbiont genes should be followed by 

their expression from nuclear loci to maintain function of the parent organelle. 
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Numerous studies (Table 1) have established that mtDNA (or cpDNA) can move 

or "transpose" into the nucleus or between heterologous organelles in various plant. 

invertebrate and vertebrate taxa (Van den Boogaart et aL 1982: Ellis, 1982, Tsuzuki 

et al. 1983: Quinn and White. 1987: Kamimura et aL 1989: Fukuda et al. 1985; Zullo 

et al. 1991: Nugent and Palmer. 1991: Smith et aL 1991). In at least two cases, long 

interspersed repetitive elements (LINES) or cryptic retroviral sequences were co­

isolated with nuclear mtDNA. which suggests a possible vehicle for the transpositions 

(Wakasugi et aL 1985: Tsuzuki et aL 1983). Amplification of the nuclear mtDNA has 

occurred in some but not all of the documented cases. These observations indicate the 

periodic occurrence of genetic exchanges between organelles and nuclear genomes. but 

fail to identify a unifying mechanism or common DNA sequences which may be 

directly involved in the transpositions. 

During the course of developing the cat as an alternative animal model for 

gcncticsresearch(O'Brien. 1986:YuhkiandO'Brien. 1990: 1994; GilbertetaL 1991: 

Brown ei al. 1994: Lyons et al. 1994). extra mtDNA restriction fragments were 

observed by standard Southern hybridization analyses. Consequently. a set of 

experiments was initiated to characterize and demonstrate a nuclear location for this 

anomalous mtDNA in F. caruso Unlike previous studies of transferred mtDNA, the 

structure and organization of feline nuclear mtDNA. or Numt, appears to be an 

amplified tandem array of approximately one half of the mtDNA genome (7.9 kb) 

located on a specific feline chromosome. D2. 
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Based on the above rationale and discussion. the chapters of this dissertation 

address various aspects of the Numt phenomenon with the following primary objectives: 

- Perform a comprehensive molecular characterization of the Numt phenomenon in F. 

emus, including the verification of its nuclear integration and location. Mendelian 

transmission. estimation of copy number and structural organization. (This chapter). 

- Determine the complete DNA sequences of NlIIm and the homologous fclic! 

cytoplasmic mitochondrial genome to compare and contrast patterns of molecular 

evolution (e.g. existence of two different rates of evolution). (Chapter 2) 

- Confirm whethcr iVUIIlI genes are transcriptionally silent. following the rationale of 

thc SET. (Chapter 3) 

- Verify and examine the possibility of similar mtDNA transpositions into the nuclear 

genome of other felid species in the context of Felidae phylogeny. Determine orthology 

of these events by isolating and characterizing the flanking chromosomal sequences 

directly adjacent to nuclear mtDNA loci. (Chapter 4) 

- Discuss the implications of NUI7l1 with respect to evolutionary time frame, felid and 

mammalian genome evolution and possible mechanisms for MUlll transposition. 
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MATERIALS AND METHODS 

DNA Extraction and Southern Blot Analysis. Genomic DNAs were extracted from fresh 

lymphocytes or fibroblast cell cultures of domestic cats according to the procedures 

previously described (Sambrook et al. 1989). The purified DNAs were digested with 

restriction endonucleases according to the manufacturer's instructions (BRL. 

Gaithersburg, MD). Electrophoresis and Southern transfer were also performed 

according to standard procedures (Southern. 1975; Sambrook et al. 1989). Typically. 

1.0 - 3.0 p.g of DNA per lane were loaded on the gels. BioTrace RP (Gelman Sciences) 

or Hybond-N (Amersham) nylon membranes were hybridized in a soiution containing 

50% formam ide. 1 M NaCI, 50 mM PIPES [pH 6.8]. 200 p.g/ml salmon testis DNA 

0.1 % Sarkosyl, 10 mM EDTA. and 5X Denhardt's solution (0.1 % Ficoll, 0.1 % 

polyvinyi-pyrolidonel. and 0.1 % bovine serum albumin fraction. Hybridization probes 

were radiolabeled with 13.!P)-dCTP by random primer synthesis kits (Boehringer 

Mannheim) and added to filters at a specific activity of 5-10 X 10~ cpm/p.g. After 

washing with stringent conditions (once at 2X SSC, 0.5 % SDS at 37°C, and twice with 

IX SSC.0.1 % SDS at 50°C). filters were exposed to Kodak XRP-5 X-ray film for at 

least 16 h and developed. 
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Isolarion of Mitochondrial DNAs. Mitochondrial DNAs were purified by the method 

of Drouin (1980). Briefly. ten grams of frozen tissue were pulverized with pestle in 

liquid nitrogen. After evaporation of the liquid nitrogen. powdered tissue was 

resuspended in homogenization buffer (0.25 M sucrose. 0.15 M KCI. 10 mM Tris-HCI. 

pH 7.5. 1.0 mM EDTA) and homogenized with a tight-fining pestle in a Potter 

Elvejhem homogenizer and spun at lOOOg for 10 min. and pellets (nuclear fractions) 

were used to isolate nuclear DNAs. After another centrifugation. supernatant was 

saved and spun at 20.000g for 10 min. A part of the pellets was used ro isolare 

cytoplasmic DNAs. Remaining pellets were resuspended in a solution containing 0.25 

M sucrose. 10 mM Tris-HCl. pH 7.5, 1 mM EDTA. and EtBr and CsCI were added 

to bring up the concentration to 500 j!g/ml and a refractive index of 1.39. respectively. 

Pellets were then centrifuged at 55,000 rpm in a Beckman Ti60 roror at 20C.C. 

Supercoiled DNAs were isolared from a lower band and used as purified mitochondrial 

DNAs. 

Isolation of Nuclear and Cvroplasmic (eyro) mtDNA molecular clones. The initial 

nuclear mtDNA clone, pNumt.1 was derived from a partial library of EcoRI restriction 

fragments in the 7.9 kb range that was cloned into the A Zap vector (Stratagene). 

Genomic DNA from a domestic cat, designated FCA 65. was digested with EcoRI 

restriction cndonuclease. separared by agarose gel electrophoresis. gcl purified with 

GcncClean elution kits (Bio 101) and ligated with I vector DNA. Thc DNAs wcre thcn 
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packaged in \'iTro with Gigapack Gold [I reagent (Stratagene). The isolation and 

preparation of recombinant phage clones were performed according to standard 

procedures (Sambrook et aL 1989). The 4.8-5.0 kb cytoplasmic clone, pCmt4.8, and 

the 12.0 kb clone, pCmt.12, were similar[y isolated from separate EcoRI-digested, size­

selected I ibraries derived from the same cat, FCA 65. and A Zap and Fix vectors 

(Stratagene), respectively. Purified mtDNA restriction fragments from puma (Felis 

concolor) were employed as hybridization probes for screening the phage libraries. 

Nucleotide Sequence Analvses. The pNumr. I DNA sequence was determined in both 

directions by subcloning restriction fragments into M 13 mp 18 and mp 19 (BRL) single­

stranded phage vectors (Sambrook et al. 1989). The 01 igonuc1eotide primer pairs used 

to amplify asymmetric PCR templates for DNA sequencing (Gyllensten and Erlich 

1988) of homologous cytoplasmic mtDNA genes in pCmt. 12 were derived from the 

pNumt. I DNA sequence or from literature sources for the following genes: tRNA-Q,Mf 

andNADH2-r5'GCATCCCACCTCAAACGT3'/S'GTGTAACTTCGGGCAC3'\:CO 

[ -IS'GATAGGATCTCCTCC3'/ S'GGTGCCCCTGACATAG3'\: and 12S rRNA 

(Kocher et al. 1989) -IS'AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT 3'/ 

S'TGACTGCAGAGGGTGACGGGCGGTGTGT3'\: other cytoplasmic mtDNA gene 

sequences were obtained from sequencing M 13 subc1ones. DNA sequencing reactions 

were performed by the dideoxy chain termination method using either commercial 

Sequenase™ version 2.0 kits (U.S. Biochemical Corporation) or Taq dye 
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primer/terminator cycle sequencing kits required for the automated DNA Sequencer 

(Applied Biosystems Model 373A). Sequences were analyzed by programs of the 

University of Wisconsin Genetics Computer Group (UWGCG) (Devereux et al. 1984; 

UWGCG Manual, 1994), Phylogeny Inference Package (PHYLlP) (Felenstein 1993). 

and Phylogenetic Analysis Using Parsimony (PAUP) (Swofford 1990). 

Pulsed Field Gel Electrophoresis (pFGEL High molecular weight DNA's were prepared 

according to the procedures previously described (Sambrook et at. 1989). Typically, 

about 5-10 Jl.g of genomic DNA were contained in each plug. Electrophoresis of 

restricted DNA plugs was carried Out in a hexagonal CHEF PFGE apparatus at 6.5 

V fcm in 0.5 X TBE (25 mM Tris-borate, 0.5 mM EDTA) for 36-48 h at 12°C. Switch 

times of 60-90 sec were set to provide optimal resolution in the 50 - 900 kb size range 

(Birren et al. 1988). Yeast (Sacchromyces cerevisiae) chromosomal DNAs and 

concatenated A phage DNAs (Pharmacia LKB) were run as standard molecular weight 

markers. After the electrophoresis, the gel was treated for Southern transfer as 

previously described (Birren et al. 1988). 

Fluorescent In Situ Hybridization (FISH) to Feline Chromosomes. The protocol for 

FISH has been previously described (Hoehe et al. 1991). The Numt DNA probe was 

labelled by nick translation with biotin-ll-dUTP. Hybridization to metaphase 

chromosomes isolated from primary feline fibroblast cell cultures was carried out in a 
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10 ftl volume of 50% formam ide and 10% dextran sulphate in 2X SSC at pH 7.0 for 

16 h at 37°C. Washes were performed once at 40°C in 50% formam ide in 2X SSC. 

then three times in 2 X SSC only. Chromosomes were identified by QFH (Quinicrine 

Fluorescent Hoescht) banding. Photographs were taken with Kodak Ektachrome 400 

ASA color slide film or EKTAR 1000 color print film. 

Somatic Cell Hybrid Gene Mapping Panel. The generation and genetic characterization 

of the somatic hybrid panels. Chinese hamster X domestic cat and mouse X domestic 

cat, have been previously described (O'Brien and Nash 1982). These hybrid cells 

retain all rodent chromosomes but only some cat chromosomes in different 

combinations. DNAs from 41 hybrid cell lines used in the segregation analyses of 

Numl DNA were isolated and prepared for Southern hybridizations as described above. 

PCR Amplification of Junction Regions between NUml Monomers. As a test for the 

tandem arrangement of Nunu in genomic DNA, peR primers were designed to amplify 

the DNA region spanning the unique junction between COil and D-loop gene sequences 

found at the genomic NUmllocus. The primer pair (Jl: 5'- AACTGGGACGTGGGG-

3' and J2: 5' -GCTCACGCACACAAG-3') was derived and oriented towards the 

extreme 5' and 3' termini of the pNuml.1 clone. The positions of each primer are 

indicated below the map in Fig. 5. Fragments in the expected size range of 

approximately 720 bp were then amplified by standard PCR protocols (Innis et al. 
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1991) using these primers and total genome DNA templates from several domestic and 

wild cat individuals. 

Estimation of Numr copy number. A reconstruction experiment was performed using 

known amounts of the pNumr.l clone and FCA 65 genomic DNA. First, the proportion 

(P) of Numt DNA in the felid haploid genome was calculated with the following 

equation, 

n/G = P 

where n is one copy of the 7.9 kb Numr repeat. and G is the size of the cat genome, 

estimated to be on the order of 3 X 1O'J bp. From this equation. 2.6 X 10.6 or 

0.0003% of cat genomic DNA is represented by exactly one monomer of Numr. To find 

the relative weight of Nunu in any given sample of DNA. P is multiplied by the weight 

of DNA (W). For the present case, 5.0 ug (5000 ng) genomic DNA X 0.0003% yields 

0.015 ng as the weight of one copy of Numt. Weights for different copy number 

equivalents (0.1, 1, 10 , 20 and 50) of Numr were based on this W value and 

subsequently derived by appropriate serial dilutions of pNumt.l DNA. The diluted 

pNumt.l samples were combined with about 5.0 ug of EcoRI digested carrier E.coli 

genomic DNA and then loaded onto agarose gels for standard electrophoresis and 

Southern hybridization alongside 5.0 ug of cat genomic DNA digested with Eco Rl 
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restriction enzyme. DNA concentrations were checked before restriction digests and 

electrophoresis with a TKO 100 microfluorometer (Hoefer) or DNA spectrophotometer 

(Beckman). The gel was blotted and hybridized to the complete pNumJ.l clone. 

following standard conditions (Sambrook et al. 1989). After development of the 

autoradiograph. bands corresponding to the 7.9 kb Numt were identified on the 

autoradiogram. and then cut from each lane representing a specific copy number 

equivalent or the genomic DNA sample on the original nylon filter. Radioisotopic 

signals (CPM) were quantified by liquid scintillation counting for each pNul1u.l dilution 

and used to produce a standard curve. Counts detected in the genomic fragment were 

interpolated to this curve to infer the copy number in the test cat. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

17 

RESULTS 

Nuclear Chromosome Location of mIDNA Sequences in Cats 

Nuclear mitochondrial DNA sequences (NUm!, pronounced "new might") were first 

detected in Southern hybridization analyses of F. catus DNA probed with a full- length 

mtDNA molecular clone (Fig. 2A). In both EcoRI and BamHl digestions the total 

molecular sizes of all mtDNA fragments were greater than 20.0 kb, although a mean 

size of 16.5 kb ± 200 bp has been found for nearly all mammalian IntDNAs including 

at least one felid species. (Attardi, 1985; O'Brien et aI, 1990) An extra mtDNA 

fragment of approximately 7.9 kb in EcoRI digests or 7.6 plus 0.3 kb (visible only after 

longer exposure times) in BamHI digests was evident in the nuclear and in lotal genome 

DNA preparations but absent in the supercoiled cytoplasmic DNA fraction (Fig. 2A). 

Extra fragments were also observed in digestions with other restriction enzymes (Fig. 

2B) and in several cats (Fig. 2C). The restriction patterns of total genomic DNA were 

interpreted in a restriction map (Fig. 20) that reflects the tandem repeat of NUmI in 

nuclear DNA (see below). Because mitochondrial genomes are present in high copy 

number (ca. 102-1Cf) in most mammalian somatic cells (Birky, 1978). the high 

intensities of suspected nuclear DNA fragments (comparable in intensity to authentic 

cytoplasmic mtDNA fragments) suggested that the nuclear fragments were also present 

in multiple copies. Moreover. the ralio of the intensities between nuclear and 
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Fig. 2 (A) MtDNA restriction patterns observed in fractionated preparations of domestic 
cat DNAs. DNA fractions were total genomic DNA (T), nuclear (N) and cytoplasmic 
(C) as described in Experimental Procedures. Total mtDNA fragments were detected 
with a 3zP-labe\led lambda clone. ",3,1, containing a complete F. catus mtDNA genome 
(O'Brien et al.. 1990). Band sizes are in kilobase pairs (kb). The (*) mark nucleus­
specific mtDNA fragments. (B) Restriction patterns of Nunu (labelled fragments) in cat 
FCA 65 are identical to those in (A) and sum to approximately 7.9 kb. Hybridization 
conditions were also identical to (A) except that the hybridization probe was pNunu.l. 
(C) Nuclear mtDNA bands can be visualized in several unrelated cats. Genomic DNAs 
were digested with EcoR!. blotted and probed with the complete mtDNA clone used in 
(A). (0) Interpretation of restriction digest patterns of four enzymes shown in (B) 
conforms to a tandemly arrayed model for chromosomal pNunu.l (see text). 
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cytoplasmic mtONA bands varied in different individuals as did the intensity of 

different cytoplasmic mtONA fragments (Fig. 2e). This dose fluctuation was evident 

even when equivalent amounts of DNA were controlled by feline HOX3A gene 

hybridizations (Masuda et a1. 1991) indicating varying copy numbers of both the extra 

and the cytoplasmic mtDNA among cats. As additional evidence for a nuclear residence 

of the extra mtDNA sequences. we examined a panel of genetically characterized rodent 

X cat somatic cell hybrids (O'Brien and Nash, 1982: Gilbert et al: 1988). These 

hybrids retain the full complement of rodent chromosomes plus different combinations 

of each of the nineteen feline chromosomes. Genomic DNA from 41 hybrids were 

scored for the occurrence of feline mtDNA fragments after digestions with Sstl (Fig. 

3A). Three feline cytoplasmic mtDNA fragments (9.0. 3.4 and 2.9 kb) were absent in 

all hybrids indicating loss of feline mitochondria in the hybrids. while the two "extra" 

or nuclear fragments (6.1 and 1.75 kb) appeared in some hybrids but not in others. 

The appearance of the extra fragments was highly concordant with each other (100%), 

with the presence of feline chromosome 02 (92%), and reciprocally discordant (26-

53%) with each of the other cat chromosomes (Fig. 3B). These results affirm the 

nuclear location of Numr and implicate its position on chromosome 02. This 

conclusion was confirmed by florescence in situ hybridization (FISH) using a molecular 

clone of the nuclear mtDNA (pNumr.l: see below) to metaphase chromosome 

preparations from the domestic cat. The results of this analysis revealed a prominent 

hybridization signal near t:.~ centromeric region of chromosome 02 (Fig. 4). 
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Fig. 3. Segregation of NUml with specific cat chromosomes in a panel of rodent X cat 
somatic cell hybrids (O'Brien and Nash, 1982). (A) Pattern of mtDNA hybridization in 
Sstl digest of genomic DNA from Chinese hamster X cat somatic cell hybrids probed 
with a feline mtDNA molecular clone. The 6.1- and 1.75-kb feline fragments represent 
MimI while the 9.6- and 2.2-kb bands in the hybrid lanes stem from cross-hybridization 
with hamster cytoplasmic mrDNA. (B) Discordancy plot of the NUI1l1 fragments with the 
19 feline chromosomes segregating in the hybrid panels. 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

A 

t­
c( 
u 
ro -o 
t-

6,1--1 

• 
1,75--. 

Nu mtDNA + 

~ 

! 
en 
E 
111 
:I: 

-
en 
'0 
'C 
.0 
>­
:I: _ .... _-,,----
-.,-

'f 
~:t, 

f' 
..... ,ll .......,.. _: ...... ,. .1\~-4 ~ Ii-. ...., 
..... ~ t 

< .. :,.~:... f, 

,':~ii.~..i;:?:~'~i' :<~""':'~~':\'" 
+ + + 

-
" 

+ 

B 
60 

50 
ct 
z 
0 

E 40 

:l 
Z 
-5 
.~ 30 
ClJ 
0 
C 
~ 
"0 .. 
0 20 0 
I/) 

is 
oe 

',0 

°123123412123412312X 
L-_----'" I L--J I II I L--J 

ABC D E F 

Feline Chromosome 

Figure 3, Segregation of Numt with specific cat chromosomes in a panel of somatic cell hybrids, 
hJ 
N 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

Fig. 4. Mctaphase chromosomcs of the domcstic cat following nuorcscclll in situ 
hybridization (FISH). The hybridization signals (yellow spots) are localized at the 
pericentric rcgion of chromosomc 02. Slidc prcparation, and FISH results werc kindly 
performed and provided by Dr. William S. Modi and Mary Eichelberger. N 
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Molecular Cloning of Nuclear Mitochondrial DNA (Numt) and Cytoplasmic 

Mitochondrial DNA from F. catus 

Seven clones were chosen from a size-selected EcoRI genomic library made with cat 

FCA 65 DNA and A Zap II; one clone. designated pNumt.l. contained the predicted 

size for Numt. 7.9 kb (Fig. 2A) and was sequenced and characterized in detail (Fig. 5). 

In addition, two cytoplasmic mtDNA clones (pCmr.12 and pCmt4.8) were also 

recovered from FCA 65 and represent the two EcoRI digest fragments (12.0 and 4.8 

kb respectively) shown in Figs. 2B and 5. 

The gene content and order of the feline pCmr.12 clone and the nuclear mtDNA 

clone. pNumt.l. were determined by restriction mapping. by complete nucleotide 

sequencing of pNumt.l and partial sequencing of pCmr.12 (Fig. 5). Restriction maps 

and sequence alignment of pNumt.l and pCmL12 were sufficiently conserved to identify 

all the mitochondrial gene segments present in the two constructs (Fig. 5). The 

pNuml.l DNA sequence represented a 7.9-kb fragment with strong sequence (and 

contiguous gene order) homology to the feline mtDNA (pCmt. 12) and to previously 

reported sequences of mitochondrial DNA genomes of human. cow. mouse. Norway 

rat and harbor and grey seals. and bl ue and fin whales (Anderson et al. 1981: Anderson 

et al. 1982: Bibb et al. 1981: Gadaleta et al. 1989: Amason and Johnsson. 1989: 

Arnason et al. 1993: Arnason and Gullberg. 1993). The pNul1u.l clone represents a 

truncated and moderately divergent homologue of the mitochondrial genome that has 
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Fig. 5. (A) Comparison of restriction maps and gene coment of F. earus nuclear 
(pNumt. 1) and cytoplasmic mtDNA clones. Gene sizes are drawn to a scale based on 
the complete pNu/1u.l DNA sequence and the mean sizes of previously characterized 
human. cow and mouse mtDNAs. Cytoplasmic mtDNA is represented by two cloned 
EcoRI fragments. pCmt. 12 and pCmt.4.8, and indicated by hatched and open bars. 
respectively. Black bars below the pNuml.l map represent regions of comparison which 
have been sequenced in both pNumt.l and pCmt.12. Dark boxes represent mitochondrial 
tRNA genes based on the mammalian consensus and written in standard amino acid 
notation. The precise size or order of the genes in the regions that do not overlap with 
pNllmt.l (e.g. pCmt.4.8) are approximate and have not been completely verified by DNA 
sequencing. In pCmt.4.8 (open bar), the presence of ATP synthase subunit 6 and COlli 
genes were verified by nucleotide sequencing. Jl and J2 indicate the primers used to 
amplify across the unique DL junction in Numl. 
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a COli gene interrupted downstream from the EcoRI site present in both cytoplasmic 

mtDNA and in Numr (Fig. 5). Contiguous regions of the mtDNA COll gene are found 

at either end of the EcoR I site that defines the termini of the pNumr. 1 molecular clone. 

suggesting a circular precursor of the 7.9-kb nuclear segment. The pNunu.1 COil 

sequence (552 bp) is foreshortened relative to cytoplasmic mtDNA COli genes in cat 

and other species (676 bp). COil in Numr is fused to about 200 bp of a truncated 

segment homologous to the mammalian mtDNA control or D-loop region (DL) in Fig. 

5. Taken together these data support a simple deletion of an ancient cytoplasmic 

mtDNA molecule followed by circularization, joining a truncated COIl gene with a 

deleted DL control region. 

Sequence comparison of the DL segment of pNumr.l with pCmt.12 and other 

DL regions revealed that pNunu.1 contained two segments that are very similar to 

regulatory conserved sequence blocks (CSBs) found in mammalian cytoplasmic 

mitochondrial DNA and shown in Fig. 6 (Chang and Clayton, 1984: Wallace et al. 

1991). An origin of replication was not apparent in pNumr.1. There was a notable 8-

bp motif. (ACACACGT), which was imperfectly repeated 5 times at the junction 

between COli and the D-loop control region (Fig. 5 and 6). A similar d(CA)-rich 

repeat is also present as a longer version in pCmt.12 and in other carnivore mtDNA 

(Hoelzel et al. 1993: Hoelzel et aL 1994) and thus may be a candidate region for 

recombination between cytoplasmic and nuclear genomes. 
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Nuclear Mitochondrial Sequences Occur as a Tandem Repeal ill [he Car Genome 

To account for the relatively high copy number of Numt, we postulate a tandemly 

repeated arrangement for pNumt.l which includes the 7.9-kb fragment (Fig. 5) as the 

basic repeating unit. This hypothesis is supported by the hybrid panel and tluorescel1l 

in situ hybridization (FISH) results, which preclude episomal or chromosomally 

dispersed copies of NUml (Fig. 4) and the aforementioned splitting of COlI gene 

sequences between the 5' and 3' termini of pNumt.l. The consistem size of NUl1u 

fragments (7.9 kb) with different restriction enzyme digestions plus our ability to 

produce a restriction map from genomic DNA (Fig. 2D) that was nearly identical to the 

pNumt.l restriction map (Fig. 5) are also consistent with a tandem array of Nunu 

sequences. 

To confirm a tandem arrangement, we digested high molecular weight genomic 

DNA from several cats with six base-pair cutting restriction enzymes whose target sites 

were not present in the pNumt.l DNA sequences. The restriction products were 

separated by pulse field gel electrophoresis (PFGE) and probed by Southern analysis 

for Numt DNA sequences. The genomic fragments were recovered and their estimated 

molecular size is illustrated in Fig. 7. The PFGE results revealed high molecular 

weight Nunu specific fragments ranging in size from 300-600 kb, two orders of 

magnitude greater than the mean fragment size expected from a six base-pair cutting 

restriction enzyme (I site per 4096 bp) and about twenty times the average mammalian 
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fig. 7. PFGE analysis of restriction enzyme-digested genomic DNA. (A) DNAs shown 
are from cat fCA 65. Restriction enzymes used in the digestion are indicated above the 
sample lanes. Pulse time was 65 seconds. The 32P-Iabelled pNunu.l clone was used to 

probe all of the PFGE blots. Undigested genomic DNA also hybridized to the probe and 
appears as the highest band on all of the autoradiograms. (B-D) Mendelian transmission 
determined by PFGE analysis of high molecular weight cat DNA from unrelated 
pedigrees. All samples were cut with the restriction endonuclease BglIi. Each panel 
represents separate families run under specific PFGE conditions. Numbers above the 
autoradiogram identify individuals. Pedigree 1 (B) is composed of two different gels run 
with a 60 sec. switch time: cats 34 and 43 were run at a slower velocity (4.5 V /cm). 
Pulse times for pedigrees 2-3 (C and D. respectively) were 60 and 90 sec. respectively. 
The designation of nine proposed allelic states (A-I) is indicated alongside the band sizes. 
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Fig. 8. Reconstruction experiment to estimate NUI7l1 copy number in FCA 65. IIHensities 
of DNA bands of pNunu. 1 copy number equivalents derived and cut from a Southern blot 
are shown on the left. Radioisotopic signals frolll each band were counted by liquid 
scintillation on a Beckman LS8100 counter and graphed at the right. Extrapolation of the 
hybridization signal (ca. 220 cpm) from 5.0 ug of genomic DNA indicated that the copy 
number of Numl in this cat was about 30. 
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mtDNA size. If the Numt locus were represented by a tandem array of 7. 9-kb repeats 

like the pNumt.l clone, the number of repeats would range from 38-76 copies. 

To verify whether the multiple bands represent variant length alleles of NUl1u 

loci, pedigree analyses was also performed with PFGE. The high molecular weight 

Numt DNA fragments were polymorphic among the three families (Fig. 7B-D). 

Although the patterns were complex in some cases (i.e., some alleles were represented 

by more than one PFGE fragment), in every case the transmission of fragments 

conformed to Mendelian segregation expectations. For example, in Fig. 7B, at least 

three alleles (designated A, B, and C) are segregating in the three generations. 

Additional cat pedigrees (Fig. 7 C,D) also demonstrate Mendelian transmission of at 

least one fragment from parent to offspring. The PFGE data strongly affirm the 

interpretation that the Numt locus on cat chromosome 02 consists of a tandem array of 

multiple 7. 9-kb segments of mitochondrial DNA repeated differently in cat 

chromosomes from 38-76 copies. Furthermore, estimations of about 30 NUl1u copies 

from a reconstruction experiment using FCA 65 DNA also agree with the PFGE data 

(Fig. 8). 
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Comparative Sequence Analyses of Cytoplasmic and NucLear mtDNAs 

Nucleotide sequences were obtained from ten gene segments of pNunu.l and 

pCmt.12 to address the following points: 1) confirmation of homology, gene contem 

and Numt gene coding capability; 2) characterization of the types of sequence changes 

between Numt and cytoplasmic mtDNA (e.g. substitutions, deletions, insertions, etc.); 

and 3) measurement of rates of DNA sequence divergence that occurred between the 

two distinct mtDNA sequences. The pNumt.l and pCmt.12 sequenced regions shown 

in Fig. 9 (A-E) comprise the three different types of genes (rRNA, tRNA, and protein 

coding) found in most mitochondrial genomes, plus the control region (CR). For both 

pNumt.l and pCmt.12, the previously characterized mammalian mtDNAs were used to 

identify operational open reading frames. The high degree of amino acid conservation 

between other mammal sequences and pCmt.12 indicates that the cat mtDNA structural 

genes encode functional mitochondrial proteins. A summary of the pattern and extent 

of nucleotide and amino acid differences for segments of 10 mitochondrial genes is 

illustrated in Fig. 9 and in Table 2. 

Most (67/81) of the mutations between the pNumt.l and pCmt.12 structural 

genes are synonymous and occur within non-conserved regions found in previous 

comparisons (Anderson et ai, 1982). This indicates the presence of functional 

constraints against non-synonymous amino acid replacement substitutions (Kimura. 

1983: Nei. 1987: Li et al. 1985). For instance, all three first position changes in the 
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Fig. 9. DNA sequence alignmem of feline nuclear. pNullu.l, and cytoplasmic, pCme12, 
clones with homologous gene sequences from other mammal species. Non-felid 
mammalian DNA sequences (cited in text) are abbreviated as follows: Bov, Bos taurus 
(cow); Phoca, Plzoca viruiina (harbor seal); Hum. Homo sapiens (human): Rat, Rattus 
raltus (rat) and Mus, Mus musculus (mouse). Dots directly below the FCA pCme12 
clone sequence indicate conserved nucleotides. Asterisks (*) denote gaps in the 
sequence. Underlined nucleotides designate the highly conserved sequences shared with 
prokaryotes (Eperon er al.. 1980). The underlined number below the sequences refers 
to the corresponding nt position in the published human (H) or E. coli (.1;) sequences. 
while all' other numbering refers to the feline nt positions in this study. (A) 16S rRNA 
gene; (B) Comparison of 12S rRNA sequences. A second individual cytoplasmic FCA 
sequence (FCA 42) is shown. The remainder of the sequences include Fsi-F. silvestris 
(European wild cat): Fli-F. libyca (African wild cat); Fma-F. margarita (sand cat); Fni­
F. nigripes (black-footed cat); Fch-F. chaus (jungle cat); Oma-Otocolubus manul (Pallas 
cat); Ogu-Oncifelis guigna (kodkod); Ple-Panthera leo (lion). Primer and template 
preparation, and phylogenetic analysis is given by Masuda et aI., (in preparation). Other 
abbreviations and notation are as in (A). (C) tRNA sequences: the cytoplasmic sequences 
of Leu. Gin and MetrtRNAs were derived from asymmetric PCR products amplitied 
from the pCmt.12 template. (D.E) NO\. N02, COl and COlI gene sequences. The 
deduced peptide sequences after translation of open reading frames in cytoplasmic 
pCtllL12 mtONA are written above the nucleotide sequence in standard amino acid 
nomenclature. utilizing the mitochondrial code. Each amino acid letter marks the first 
position of a codon. Underlined codons C) in the mtONA sequences denote a 
termination codon recognized in the nuclear genetic code. Double underlines (=) denote 
termination codons recognized exclusively in the mitochondrial genetic code. Other 
symbols and species abbreviations remain as in (A). 
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Table 2. Sequence comparison of feline cytoplasmic and nllcloar mtDNA and between mammalian mtDNAs. 

Types of Changes Percent Differeneo (PDt" 
btlV. N andC Codon Position' Nueleotides (NIl Amino Acids 

Gene Nt Subst. Ti Tv Ga~sl\ 1 2 3 N/C NIH N/S CIS C/H M/R C/P C/N" CIS C/H 

Protein 

CO·I 239 14 10 4 0 0 1 (1) 13(2) 5.9 23.0 24.7 20.9 21.8 16.7 19.7 2.6 0.0 76 

CO·II 250 20 20 0 0 3(0) 1(1) 16 (0) 8.0 35.2 21.9 19.1 32.4 15.0 20.0 1.2 1.0 27.0 

NO·1 345 24 22 2 0 4(1) 0 20(1) 6.9 31.4 21.9 21.3 30.3 19.3 17.4 1.8 8.7 27.0 

NO·2 326 23 18 5 2 5(4) 1(1) 17(3) 7.8 37.4 25.9 24.2 36.9 25.1 23.6 14.7 29.3 46.2 

RNA 

12S rRNA 371 12 10 2 3.5 21.0 16.4 15.6 20.0 6.9 14.3 

16S rRNA 611 18 10 8 3.1 21.6 15.7 14.1 20.8 23.2 12.0 

tRNA·Asp 69 3 1 2 0 4.3 21.7 30.4 26.1 17.4 11.9 17.6 
tRNA·Leu 75 3 3 0 0 4.0 18.7 14.7 10.7 14.7 4.2 12.0 
tRNA·Gln 74 3 3 0 0 4.0 27.8 18.2 11.0 30.6 5.6 10.8 
tRNA·Met 69 4 1 3 0 5.8 7.2 10.1 43 2.9 4.3 2.9 

Totals 2429 124 98 26 4 5.3"" 

AbbreViations N·Numt.1; C·Cmt.12; B·bovlne; P . phocine (seal); Ti-Iransitions; Tv·transverslons 
'Number of nonsynonomolls substitutions (subst ) are in parentheses 
"Translation of NlIml1 sequence with the mitochondrial genetic code 
"'. Total PO counts gaps as single residue difference Gaps are counted only in the FCA pNumt.1 and pCml12 DNA comparison. 

1\ • Nucleotide count is based only on the number read in FCA mtONA 
""The mouse (M) and rat (R) comparison encompasses regions identical to those compared in the cat. "'" v) 
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COil gene of pNunu.1 and pCmL12 occur at leucine codons. which are synonymous. 

In general. the percent sequence substitutions between the two cat mtDNAs shown in 

Table 2 are much lower than the values reported in previous studies comparing nuclear 

mtDNA and cytoplasmic DNA in other species (Fukuda et ai, 1985; Smith et ai, 1991). 

Phylogenetic Origin of Nunu Transposition 

We used 12S rRNA gene sequence data (Woese. 1987; Mindell and Honeycutt, 1990) 

for placing Nunu DNA within an evolutionary framework among the Felidae. The six 

non-domestic cat species directly following the F. caws 12S rRNA sequences in Fig. 

9B have been classified within the genus Felis (domestic cat lineage) by morphological 

and molecular techniques (Wurster-Hill and Centerwall. 1982; Collier and O'Brien, 

1985: O'Brien et al. 1987; Nowak, 1991) The Palllhera leo (lion) and Oncifelis guigna 

(kodkod) DNA sequences represent the other two major branches in the cat family, the 

Panthera and ocelot groups, respectively. 

The aligned 12S rRNA sequence data were analyzed usmg three distinct 

phylogenetic approaches: I) a phenetic (distance matrix) analysis of overall pairwise 

sequence divergence between species; 2) a maximum parsimony (cladistic) analysis of 

character changes; and 3) a maximum likelihood evaluation of all possible phylogenetic 

trees relating the sequences in Fig. 9B. The results of these analyses, illustrated by the 

maximum likelihood phylogenetic tree in Fig. 10, were topologically consistent in that 

they reaffirmed the distinction of the three lineages of Felidae {ocelot lineage. O. 
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guigna; Panthera lineage, P. leo and domestic cat lineage, F. caws, F. libyca, F. 

silvestris, F. margarita, F. nigripes, F. cJzaus and Otocolubus manu£) and indicated a 

hierarchical divergence pattern within the domestic cat (Felis) lineage. The derived 

phylogeny places the Numt origin within the radiation of the species of Felis at 

approximately the time that the ancestors of F. nigripes diverged from the common 

ancestor of F. carus, F. silvestris. F. libyca. and F. margarita. The result is consistent 

with the disposition of Numt nuclear fragments in these species as Numt nuclear 

fragments are present in F. caws, F. silveslris, F. libyca, and F. margarita but absent 

in F. nigripes, F. chaus, and O. manul. Taken together the results suggest the transfer 

of Numt from cytoplasmic mtDNA to the nuclear genome occurred prior to the species 

divergence of the domestic cat and its three closest relatives, but subsequent to the split 

of F. nigripes and F. chaus from the Felis lineage. 
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Fig. 10 Phylogenetic analysis of the 12s rRNA gene (Fig. 9B) in homologous Nunll 
and cytoplasmic mtDNA from F. calUS. from other species within the genus Felis. plus 
more divergent P. leo (lion) of the Panthera lineage and O. guigna from the ocelot 
lineage (after Masuda et al.. in preparation). The tree presented is a maximum 
likelihood analysis of ten species plus NUmL using the DNAML algorithm of PHYLIP 
(Felsenstein. 1990~ Felsenstein. 1981). The routine employed empirical base frequencies 
from the data set. a transition: transversion ratio of 5.0. and randomized input order. The 
log likelihood of the tree was -902.65. Each terminal node except the unresolved (F. 
CalUS, F. sylvesrris. and F. libyca) group has limb lengths significantly (p ~ 0.01) 
greater than O. Scale is percent nucleotide sequence differences between species~ limb 
lengths are the same units. The same data was used to produce a phenetic distance 
matrix that was analyzed using the Neighbor joining method and the least squares 
(FITCH) procedure incorporated in the PHYLIP computer package (Saitou and Nei. 
1987~ Fitch and Margoliash. 1967; Felsenstein. 1993). In addition. a parsimony or 
cladistic analysis employed the PAUP package (Swofford. 1990). Each of the 
phylogenetic analyses produced trees that were topologically equivalent but siightly 
different in limb length. The presence of NUI1l[ was investigated in other rei inc species 
based on two criteria: I) presence of mtDNA fragments in Southern blots of genomic 
DNA exceeding 22 kb~ and 2) presence of peR-generated fragments that used primers 
from NUmL COlI and D-loop sequences spanning the junction between repeat segments. 
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DISCUSSION 

The data summarized here provide evidence for the ancestral transposition of 

approximately one half of the cytoplasmic mitochondrial DNA genome to a 

chromosomal region of the nuclear genome in domestic cats, F. caruso The segment 

was subsequently amplified in tandem and occurs in modern cats as a 300-600 kb 

segment of nuclear mitochondrial (Numr) DNA that segregates as a repeat length 

polymorphism in domestic cat populations. A phylogenetic analysis of 12S RNA 

sequences from Numr. cat and related feline species' cytoplasmic mtDNA. indicated that 

the transposition was an historic event. occurring at a precise time point during the 

evolutionary divergence of species of the genus Felis (Fig. 10). The tandem expansions 

of Numl are apparently still occurring through a process reminiscent of minisatellitc 

expansion/contraction as multiple length alleles (Fig. 7) segregate in cat populations. 

The evidence for the nuclear location and concatameric mtDNA sequences 

included: 1) occurrence of 7.9 kb of "extra" mtDNA restriction fragments in nuclear 

DNA from cats; 2) segregation of these fragments concordant with feline chromosome 

D2 in a rodent X cat hybrid panel; 3) localization of Numr to chromosome D2 by 

fluorescent in situ hybridization: and 4) Mendelian transmission of large PFGE 

chromosomal Numt fragments in domestic cat pedigrees. The Numr transposition differs 

from nuclear mtDNAs described in other vertebrate species by the tandemly repeated 
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arrangement of Numr, its very recent origin, and the unparalleled magnitude of the 

feline mtDNA transposition. 

Mechanisms for the Generation of Numr 

Hypotheses concerning the origin of the Numr locus must incorporate at least two 

primary molecular processes: recombination and gene amplification. Although 

intermolecular recombination between discrete mammalian mtDNAs occurs infrequently 

due to organelle fusion (Hayashi et ai, 1985). intramolecular recombination is more 

common and has been implicated in the origin of human mitochondrial pathologies 

(Schon et ai, 1989; Waliace. 1992; 1994). An alluring hypothesis (Fig. II) would 

parallel the origin of rho' or "petite" mtDNA mutations in the yeast, Sacchromyces 

cerevisae (Locker et al. 1979: Dujon and Belcour, 1989). The mtDNAs in these 

respiratory-deficient organelles experienced illlramolecular recombination. causing large 

deletions of the mitochondrial genome. The remnant mtDNA becomes amplified 

extrachromosomally and persists as an episome. If the ancestral Nunu underwent a 

s:milar process, a chromosomal integration (reminiscent of modern transgenesis) would 

place a large segment in the chromosomal targets. The absence of inrerspersed nuclear 

DNA sequences in the Nunu repeat motif would support (but not prove) the 

extrachromosomal tandem amplification of Nunu prior to its original integration. 

Similar extra-nuclear concatonization occurs in transgenesis experiments (Capecchi, 

\989). 
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Previously described transpositions of mtDNA to nuclear genomes have involved 

transfer of both edited RNA precursors (Nugent and Palmer, 1991) and non-transcribed 

DNA segments (Quigley et ai, 1988; Gantt et ai, 1991 ) The presence of normally 

untranscribed control region regulatory elements in Nunu (Fig. 5, 6) would suggest that 

the precursor of Nunu was a DNA fragment that contained untranscribed signal 

sequences plus a portion of the d(CA) rich repeat. Similar "microsatellite-like" repeats 

are found in several carnivore mitochondrial genomes (Arnac;on and Johnsson, 1992; 

Hoelzel et al. 1993: Hoelzel et ai, 1994) as well as being widely dispersed in the 

mammalian nuclear genome (Weber, 1990: Love et al. 1990; Dieterich et ai, 1992; 

Serikawa et ai, 1992). These repeats may facilitate exchange between DNA segments 

as they appear to enhance the rate of homologous recombination in vitro (Chandley and 

Mitchell, 1988: Wahlsetla. 1990). 

Length polymorphism in a tandem array of Nunu 

The segments of Nunu found in the cat genome likely represent a tandem array of 7.9 

kb of mitochondrial DNA detected in PFGE fragments of 300-600 kb (or 38-76 copies). 

Different size fragments found in different individuals segregated in a Mendelian 

fashion (Fig. 7) supporting the interpretation that the PFGE fragments were alleles that 

differed in repeat number. In parallel with studies of minisatellite length repeats, these 

alJeles may be generated by DNA replication slippage. unequal crossing over, or both 

(Stephan. 1989: Jeffreys et al. 1991: Levinson and Gutman. 1987: Dover, 1982: 
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Zuckerkandl. 1992; Charlesworth et ai, 1994). Other interpretations for individual 

heterogeneity such as short intervening genomic (non-mitochondrial) spacer DNA, or 

the occurrence of novel restriction sites in a fraction of the repeat members are possible 

explanations for our observation of more than one fragment in a postulated allele (e.g., 

alleles A and B in Fig. 7B). 

Nurrt! as a Pseudogene: FunctionaL Implications 

Although Nunu shares several aspects of moderately repetitive DNA families, 

an important difference is that its ancestors were coding genes, albeit mitochondrial 

ones. This history makes its interpretation reminiscent of a pseudogene with an unusual 

tandem amplification in its origins. Transfer to the nucleus followed by duplication and 

divergence has been the working hypothesis for the origin of nuclear genes with 

mitochondrial functions le.g., nuclear-encoded members of the citric acid cycle, 

cytochrome chain and oxidative phosphorylation pathways] in the context of the Serial 

Endosymbiosis Theory (Margul is, 1970; Gray. 1989: Smith and Douglas. 1986: 

Ahmadhian. 1986). 

Examination of the pattern of the Numt sequence in genes present in Fig 6 

indicates several aspects that would preclude these sequences from producing functional 

gene products. First. for the protein coding genes of Nunu. there are termination 

codons or frameshift mutations in all possible open reading frames which are 

compounded by the existence of two different genetic codes between the nucleus and 
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mitochondria (Brown 1985; Anderson et al. 1981; Breitenberger and RajBhandary 

1985). For example in the Numt ND2 gene. a single base insertion causes chain 

termination codons in both genetic codes as illustrated in Fig. 9E. Second, the Numt 

control region is truncated relative to the cytoplasmic D-loop and may lack upstream 

regulatory elements. Third, the two identified regulatory elements (CSBll and III in 

Fig. 6) are involved in transcriptional promotion catalyzed by mitochondrial RNA 

polymerase and trans-activating factors that are not known to operate on nuclear genes 

(Schinkel and Tabak 1989). 

Phylogenetic Interpretations 

Alignment of Numt sequences to cytoplasmic mtDNA homologues in cat species 

demonstrated a high degree of homology (Table 2) phylogenetically consistent with a 

divergence of Numt within the radiation of the genus Felis. As this evolutionary 

divergence likely occurred toward the late Pliocene. within the last 3.0 million years 

(MY) (Masuda et aI., in preparation) (Collier and O'Brien 1985; Kurten 1968), the 

phylogenetic analyses support the divergence of Nunu at roughly 1.8 MY BP (before 

present). This date is estimated from the application of the overall genetic distance of 

Numt vs. cytoplasmic mitochondrial DNA of 5.3% (Table 2) to the estimation of Li et 

al. (1981) whereby the fraction of sequence divergence is: 
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where fJ.1 and fJ.2 are the mutation rates of diverging sequences and t is the time elapsed. 

Substituting fJ.1 = 2.5 x 10.8 substitutions/site/year for cytoplasmic mitochondrial DNA 

(Hasegawa et al. 1985) and fJ.2 = 4.7 x lO'~ substitutions/site/year for nuclear 

pseudogene divergence (Li et al. 1981). we compute l.78 MY as the time elapsed since 

NUm! and cat cytoplasmic mtONA diverged. 

We cannot discern from the available data whether the Nunu transposition and 

amplification were contemporaneous events or occurred at different times in the 

evolution of the felid genomes. The pattern of NUm! mutational divergence (Table 2) 

is relevant to this question since the observed changes appear to reflect selective 

constraints of functional genes. Most of the changes between Nunu and cytoplasmic 

mtDNA were transitions (991125 =79%) and the majority of mutations in coding genes 

(COl. COIL NOI and N02) (67/81 =83%) were synonymous substitutions. A 

selectively neutral model of nuclear pseudogene divergence would predict a much lower 

incidence (circa 33 %) for synonymous mutations indicating that non-synonymous 

(codon altering) mutations in NUm! ancestors had been eliminated by natural selection. 

which could have occured while evolving as mitochondrial genomes (Kimura 1983; 

Ohta 1992; Hughes and Nei 1988; Yuhki and O'Brien 1990). Further. the occurrence 

of NUm!-like sequences in other cat species outside of the Felis genus (e.g., lions; see 

Fig. 10) but not in all species more closely related to domestic cat is enigmatic and may 

retlect a discordance in evolutionary time between NUm! transposition and Numl 

amplification. That is, an ancient transposition earlier in the Felidae or Carnivore 
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radiation that persisted as a single or low copy number until periodic saltatory 

amplifications occurred. is possible since our methods would only detect amplified 

copies in divergent species. Resolution of these questions would offer considerable 

insight into the evolutionary patterns of genome organization and must await molecular 

genetic analysis of the homologous chromosomal target of Numt in distantly related 

Felidae species. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

- -
I 

CHAPTER 2 

COMPARA TIVE ANALYSIS OF THE COMPLETE NUCLEOTIDE SEQUENCES 
OF NUMT AND THE DOMESTIC CAT MITOCHONDRIAL GENOME 

BACKGROUND 

"Cheshire-Puss ... would you please tell me which way I ought to go from here?", 
asked Alice. 

"That depends a good deal on where you wam to get to," said the Cat. 
"I don't much care where ---: 
"--- so long as I get somewhere," Alice added as an explanation. 
"Oh. you're sure to do that," said the Cat, "if you only walk long enough." 

- from Alice's Adventure's in Wonderland (1865) by Lewis Carrol 

Mitochondrial DNA, the genetic blueprint for a small set of proteins involved 

111 oxidative phosphorylation and electron transfer on the mitochondrial membrane 

(Hatefi, 1985), has proved to be a pivotal molecule for population, evolutionary and 

phylogenetic studies (Avise, 1994; Brown, 1985: Wilson et ai, 1985; Moritz et ai, 

1987; O'Brien, 1994b). Yet, continuing discovery of idiosyncracies in mtDNA gene 

evolutionary patterns reveal important exceptions to simple interpretations. For 

example, the extremely rapid rate of nucleotide substitution combined with a typically 

slower amino acid replacement frequency for some mitochondrial genes have recemly 

56 
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raised questions about mtDNA's reliability in phylogenetic inference (Graybeal, 1994; 

Meyer, 1994). Also, relatively few analyses have examined the pattern and 

consequences of mutation during the evolutionary divergence of mtDNA genes, i.e. the 

correlation of specific replacement mutations with secondary or higher order structure 

of proteins, enzymology or the effects on electron transport processes per se (Irwin el 

aI, 1991: Adkins and Honeycutt, 1994). Pathological, somatic mtDNA rearrangements 

or deletions occur more frequently within specific regions of mitochondrial genomes 

and with increasing age (Larsson et ai, 1990: Wallace, 1992). Furthermore, recent 

demonstration of an imperfect mode of maternal inheritance due to the leakage of 

paternal genotypes (Zouros et ai, 1994) and mtDNA heteroplasmy (Buroker et aI, 1990; 

Rand and Harrison, 1989; Biju-Duval et al. 1991: Hoelzel et ai, 1993; Hoelzel et al. 

1994) have also unsettled the paradigm of mtDNA 's structural constancy or "economy" 

(Attardi, 1985). Lastly, several examples of genetic transfer between mitochondria and 

chromosomes have been described, including the macrosatellite-like locus, NUl1u, a 

transposition and tandem amplification (38-76X) of 7.9 kb of mtDNA into the nuclear 

genome of Felis caws and several closely related species of the genus Felis (Fukuda el 

aI, 1985; Zullo et al. 1991, Smith et ai, 1991; Lopez et ai, 1994). 

Substitution rates in mtDNA genes are known to vary between phyletic lineages. 

between organelles in the same cell. and between genes and gene regions within the 

same mitochondrial genome (Brown et al. 1982: Miyata et al. 1982; Britten. 1986: 

Vawter and Brown 1986; Hasegawa and Kishino. 1989; Kondo et aI, 1993; Bulmer el 
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ai, 1991; Li, 1993: Rand, 1993; 1994; Hillis and Huelsenbeck, 1992: Lynch and 

Jarrell, 1993). Factors that affect lineage-specific substitution rates include metabolic 

rates and body size, generation time, or nucleotide composition (Wolfe et ai, 1989; 

Martin and Palumbi, 1993; Li, 1993). The rate of change between nucleotide and 

amino acid ievels appears incongruent even within the same gene (Graybeal, 1994). 

Therefore, to avoid spurious conclusions, allowances for rate heterogeneity should be 

incorporated into phylogenetic studies which employ standard assays su(;h as RFLP or 

DNA sequence analysis of mitochondrial genes. For example. the UPGMA method for 

phylogenetic reconstruction can produce erroneous topologies due to the inability to 

account for varying mutation rates (Huelsenbeck and Hillis, 1993). 

Nine complete mammalian mitochondrial genome sequences (human, mouse, 

cow. rat, fin whale, blue whale, harbor seal, grey seal and American opossum) have 

been published to date (Anderson et ai, 1981; 1982; Bibb et ai, 1981; Gadeleta et aI, 

1989; Arnason et ai, 1991; Amason and Joh05son, 1992; Arnason and Gullberg 1993; 

Arnason et aI, 1993; Janke et ai, 1994). Feline mtDNA represents the first sequence 

of a terrestrial carnivore mitochondrial genome in sequence databases. The sequences 

of two distinct forms of feline mtDNA - one cytoplasmic, the c!!"ier nuclear - will be 

useful from several evolutionary perspectives including a) description of carnivore 

divergence at the genetic level, b) facilitation of population and evolutionary biology 

studies of free-ranging endangered felid species (Yuhki and O'Brien. 1994; Pecon­

Slattery et ai, 1994; O'Brien. 1994a; 1994b; Masuda et at. in prep.). c) developing thl! 
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cat as a genetic model for human disease (O'Brien. 1986: Brown et al. 1994). and d) 

characterization of substitution rate heterogeneity and divergence of mitochondrial genes 

within and between different organellar compartments. 

The phenomenon of Numt transposition represents an unusual opportunity to 

analyze a relatively intact paralogous duplication of mammalian mtDNA (Hardison and 

Gelinas. 1986; Goodman, 1981). It is most likely that Numt became a pseudogene 

immediately after transfer to the nucleus in light of organellar differences in genetic 

code. Evolutionary divergence between Numl and the rapidly evolving cytoplasmic 

genome is also probably uncoupled. owing to an environment of increased superoxide 

radicals. and less-efficient DNA repair in the mitochondria (Boulikas 1992: Miquel. 

1992: Wallace. 1992). The unprecedented large scale of Nunu transposition allows a 

comprehensive study of mutational processes across several contiguous genes in the cat 

mitochondrial genome. related to the "transparent substitutional sieve" described by 

Gillespie (1991). By comparing sequence divergence of Numt with feline and other 

mammalian cytoplasmic mtDNAs, we can directly observe the polarity. type. and 

varying rate of mutations occurring between pseudogene and functional genomes and 

different organelles. 
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MA TERIALS AND METHODS 

Cloning and Sequencing. Total nuclear and cytoplasmic nucleic acids (DNA and RNA) 

were extracted from fresh lymphocytes of a domestic cat (FCA 65) according to 

standard procedures (Sambrook et aI, 1989; Lopez et ai, 1994). All of the nuclear and 

cytoplasmic mtDNA sequences shown were encompassed in three Eco RI fragments (ca. 

12.0. 7.9 and 5.0 kb). which were purified from preparative agarose gels. Isolation 

and characterization of the original 7.9 kb nuclear (pNumt.l) and two cytoplasmic 

clones (pCmt.12 and pCmt4.8) containing all of the sequences presented in this paper 

were described by Lopez et al (1994). Sequences of both Heavy and Light-strands 

were determined by either a) subcloning 1.0 -2.0 kb fragments into MI3 mplS/mpl9 

single-stranded phage vectors (Sambrook et aJ. 1989) or b) walking in both 5' and 3' 

directions along the original intact lambda phage or pBlueScript phagemid (Stratagene) 

clones of pNumt.l, pCmL12. or pCmt4.8. For walking, forward and reverse primers 

were designed at approximatdy 300 bp intervals and synthesized on an (Applied 

Biosystems Inc.-ABI) automated 394 DNA/RNA synthesizer. The three clones served 

as templates for cycle sequencing reactions run on an automated DNA sequencer 373A 

(ABl) using a fluorescence-labeled dideoxynucleotide termination method (dye­

terminator). Some regions (about 30%) of NUm! DNA were read manually by 

polyacrylamide gel electrophoresis using 1>5S]-dATP in Sequenase reactions (U.S. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

61 

Biochemical). Verification of sequence data was evaluated with ABI analysis software. 

Sequencher 2.1 program (Gene Codes Corporation, 1994), or by visual inspection of 

chromatograms. Genetic regions which contained any ambiguous or unreadable 

nucleotides were sequenced again. 

Sequence Analysis. Feline sequences were analyzed by programs of the University of 

Wisconsin Genetics Computer Group (GCG) (1994). Phylogenetic analysis was 

performed with PHYLIP 35c (Felsenstein. 1993), and Phylogenetic Analysis Using 

Parsimony (PAUP version 3.1.1) (Swofford 1993) on VMS V AX mainframe and 

Macintosh computers. Secondary structures were predicted with FOLD by Zuker and 

Steigler (1981) on GCG. The CMATRIX program developed at the LVC/NCl-fCRDC 

was used to calculate total percent similarities in nucleotide (Ill) or amino acid 

sequences of mtDNAs. CMATRIX imposed a penalty of 1.0 for each gap encountered. 

and did not evaluate varying degrees of chemical similarity between DNA or amino 

acid residues. Therefore, our usage of the term, similarity, will be commensurate with 

the common use of sequence "identity" in the literature (Deveraux et al. 1984: GCG 

Manual. 1994). Multiple sequence alignments were created by either PILEUP or 

PRETTY in UWGCG. Most of the alignments to determine homology and gene 

boundaries within cat mtDNA were made with either cow or the harbor seal. Plzoca 

virulina. which encompass the phylogenetically nearest mtDNA sequences to cat 

available (Amason and Johnsson. 1992: Li et al. 1990). The numbering system used 
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for cat cytoplasmic mtDNA follows harbor seal conventions (Amason and Johnsson, 

1992). 

To determine relative DNA and amino acid substitution rates among all 

mitochondrial genes, all possible pairwise comparisons of percent sequence similarity 

of the following mammalian mitochondrial genomes retrieved from Genbank (release 

86, 1211994) and EMBL (release 39, 6/1994). were performed - harbor seal (Phoca 

vieulina), grey seal (Halichoerus grypus). fin whale (BaLaenoptera plzysalus ), blue 

whale (Balaenoptera musculus), human (Homo sapiens), cow (Bos taurus). mouse (Mus 

musculus). and rat (Rattus norvegicus). The American opossum (Didelphis virginia) 

genome was primarily used as an outgroup taxon. Values for the mean, standard 

deviation and range of DNA and amino acid percent similarity for each mitochondrial 

gene comparison were calculated and listed. The Numt sequence was submitted to 

GenBank in the form of the in vivo pNumLI clone, isolated by Lopez et al (1994). 

GenBank accession numbers for the cat cytoplasmic mtDNA and Numl are U20753 and 

U20754 respectively. 
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RESULTS 

Composition of Cytoplasmic MtDNA Sequences 

The F. CalUS mitochondrial genome is comprised of 13 structural ORFs, 22 

tRNA genes. both large and small subunit rRNA genes and a regulatory control region 

(CR) (Fig. 12. 13; see also Fig. 1). The feline mtONA sequence possesses several 

features found in other species. First. all of the ORFS are oriented in the same 

direction as homologous ORFs found in the other eight mammalian mitochondrial 

genomes, with no major rearrangements (Fig. 13A). Second, N01, N02. COllI. N03. 

N04 genes lack complete termination codons (Table 3). However. complete stop 

codons may be read within the tRNA-Trp gene directly downstream of the N02 gene. 

Presuming that polyadenylation of processed transcripts occurs in cat mtONA according 

to the model prescribed for humans (Anderson et al 1981). most stop codons in the cat 

mtONA appear to be TAA. Third, disregarding the ORFs which have stop codons in 

their downstream tRNA genes (e.g. NOl and N02), Coding sequences overlap between 

the ATPase 8 and ATPase 6, N04 with N04L. and N05 and N06 genes. Fourth, the 

cat Light (L)-strand origin of replication (ORL) is less d(C-G)-rich (53 %) than the 

harbor seal sequence, but the cat ORL can still fold into a stable stem-loop structure 

(Fig. 138). Neither of the two rRNA genes nor any of the major structural genes show 

large length differences relative to other mammalian mtONAs. 
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Table 3 - Characteristics of the Domestic Cat ~oe.lasmic Mitochondrial Genome 

Gene 

tRNA-Phe 
12S rRNA 
tRNA-Val 
16S rRNA 
tRNA-Leu (UUR) 
NADH dehydrogenase subunit 1 (N D 1) 
tRNA-lIe 
tRNA-Gln 
tRNA-Met 
NADH dehyrogenase subunit 2 (N02) 
tRNA-Trp 
tRNA-Aia 
tRNA-Asn 
Origin of L-strand replication (OLR) 
tRNA-Cys 
tRNA-Tyr 
Cytochrome c oxidase subunit I (COl) 
tRNA-Ser (UCN) 
tRNA-Asp 
Cytochrome c oxidase subunit II (COli) 
tRNA-Lys 
ATPase 8 
ATPase 6 
Cytochrome c oxidase subur.it III (COUl) 
tRNA-Gly 
NADH dehyrogenase subunit 3 (N03) 
tRNA-Arg 
NADH dehyrogenase subunit 4L (ND4L) 
NADH dehyrogenase subunit 4 (N04) 
tRNA-His 
tRNA-Ser (AGY) 
tRNA-Leu (CUN) 
NAOH dehyrogenase subunit 5 (NOS) 
NADH dehyrogenase subunit 6 (N06) 
tRNA-Glu 
Cytochrome B (Cyt B) 
tRNA-Thr 
tRNA-Pro 
Control region (CR) 

"ORFs end at the last base 01 putatrve slop codon. 
L· Des>gnates LISt'lt·strand transcnpl. 

From 

866 
936 
1896 
1964 
3538 
3615 
4571 
4637 
4712 
4781 
5823 
5907 
5977 
6050 
6082 
6148 
6216 
7759 
7833 
7902 
8589 
8658 
8819 
9499 
10283 
10352 
10699 
10768 
11058 
12436 
12505 
12564 
12634 
14438 
14966 
15038 
16178 
16248 
16315 

Start Stop 5' intervening 
To Size" codon codon s~cer 

935 70 
1895 960 
1963 68 
3537 1574 
3612 75 
4571 957 ATG TAa"" AC 
4639 69 
4710 74 L 
4780 69 A 
5822 1042 ATC Taa,\I\ 

5890 68 
5975 69 L CACATCTAAACCATTC 
6049 73L A 
6081 32 
6147 66 L 
6214 67 L 
7760 1545 ATG TAA T 
7828 70 L 
7901 69 ITAA 
8585 684 ATG TAA 
8656 68 AIT 
8861 204 ATG TAA C 
9499 681 ATG TAA 
10282 784 ATG Taa,\I\ 

10351 69 
10698 347 ATA TAaI\l\ 
10767 69 
11064 297 ATG TAA 
12435 1378 ATG Taa,\I\ 

12504 69 
12563 59 
12633 70 
14454 1821 ATA TAA 
14965 528 L ATG TAA 
15034 69 L 
16177 1140 ATG AGA ITA 
16247 70 IT 
16314 67 L 
865 1559 

AA. Sognoftes an Incomplele termonaloon codon as shown on Fog 1. lower case Clenoles p<eClocteCl codon arte' poIyaClenyl.'l!oon 

·In ttle compansotl Wl!h Numl a) lhere IS a 335 bp overlap 01 conl'OI 'eglOrl sequences W1!t'l Numt 
b) The 16 bp spacer 'egoon between IRNA.TIp and IRNA-Ala conlalns , gap. c) a 100ai 012 mU".aloons occu' In other 

space' 'egooos 
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Table 4 - Total codon usage in the cat cytoplasmic MtDNA 

TTT (Phe) 100(60) TCT (Ser) 33(35) TAT (Tyr) 66(50) TGT (CyD) 11 (0) 

TTC 117(163) TCC 73(74) TAC 76(84) TGC 14(16) 

TTl'. (Leu) 109(60) TCA 112(106) TAl'. (Ter) 7(7) TGA (Trp) 92(91) 

TTG 17(20) TCG 0(10) TAG (Ter) 0(0) TGG 12 (131 

CTT (Leu) 59(57) CCT (Pro) 5"/(81) CAT (lIig) 31(36) CGT ( Arg) 6(5) 

CTC 97(95) CCC 59(42) CAC 63(64) CGC 9(13) 

CTA 273(297) CCA 71(60) CAl'. (G1n) 84 (72) CGA 45(43) 

CTG 42(50) CCG 7 (7) CAG 7(14) CGG 7 (4) 

ATT (Ile) 151(131) ACT (TilL") 72 (51) AAT (Ann) 56(40) AGT (Sor) 10(17) 

ATC 179(203) Ace 101 (107) AAC 94(107 AGC 34(42) 

ATA 182(192) ACA 124(137) AM (Lys) 88(89) AGA (Ter) 1 (1) 

ATG (Met) 60(57) ACG 14(22) MG 14(12) AGG (Ter) 0(0) 

GTT (Val) 33(26) GCT (Ala) 51(46) GAT Anp) 29(26) GGT (G1y) 33(40) 

GTC 30(44) GCC 116(98) GAC 39(46) GGC 57(36) 

GTA 95(90) GClI 84(100) GM (G1u) 76 (74) GGA 97(109) 

GTG 21(20) GCG 8(8) GAG 23(25) GGG 31(22) 

Numbers in parentheses indicale lola I codon usage in harbor seal mlDNA sequence. 
(Arnason and Johnsson, 1992) 

0"-v, 
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Fig. 12 - A. The complete nucleotide sequences of domestic cat (F. eatus) cytoplasmic 
mtDNA (top) and one aligned Numt DNA repeat unit (bottom). The L-strand sequence 
is shown. Alignment of both sequences in the 7946 bp region of homology was 
performed with GAP (GCG. 1994), using a gap weight of 5.0 and a gap length weight 
of 0.3. Indels are marked by (.) and highlighted in gray shading. The translated aa 
sequences for each structural gene are given above the nucleotide sequences using 
standard nomenclature and translated with the mitochondrial genetic code. Repetitive 
regions in the control region are marked as either RS2 or RS3 following the 
nomenclature of Hoelzel (1993). At RS2, boundaries of each monomer are marked by 
an ( 'f ) and the total region is delineated by a (V). RS2 palindromes are marked by 
arrows below the sequence with the 5' -- > 3' arrows showing strong conservation to TAS 
consensus sequences (Foran et a!. 1988). All nucleotide numbering in the text refers 
to the cytoplasmic l11tDNA designations of the cat and follows homologous human 
mrDNA conventions (Anderson et at. 1982). Abbreviations for all mitochondrial genes 
was based on human nomenclature (Wallace, 1992), except for the tRNA genes which 
followed Arnason and Johnsson (1992). Due to typeset editing, sequence line 33 
beginning with nucleotide 3177 is I bp short, and line 7 beginning with 601 is I bp 
longer than normal due to an insertion. 
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TT AA TCCAACCCCCCCTT ACCCCCCCTT lACCTTG' TTT A T UC" T ACCTCCCT A TTT A TGTCTTGCCAAACCCCUAAACUCACT AGACCCTACCT AA 

700 AT AT AAGGCcTAACAAAACcCTTAT AACCTTACCUTCCCCTATTATT ACTACCTACT AATACT AAATCAT AACTCTCTTCCCACTT ATCTAT ACAT AT A 799 
, I; i I J I 1 I I I I I I I I 1 I I I I I I I I I I I I 1 I I I I I I 1 1 I I 1 ; I 1 I I I lit 1 I I I I I 1 I : I I I I 1 I : : 11 I I I i I I !I I I I I I I I I 1 I I I 1 I I 
ACA T AACCCCT AACAAAACCCTT A!!AAGCTT ACCAA TCCCCT A TCA TT ACT ACCT A TT" TACT lAA TCA T AACTCCCTTCCCACTT A TCTA T 'CAC'CA 

. . . . . . --r- tR.NA-Phe -- . . 
BOO CCCACCTGAecTCT U TTCCTCCCT A TCCAAC"CA TTTT AC, TCTCT ACCTT ACCCCCACATCCCAGTT .. TGT ACCTT UACAT AT "ACCAAGCC.C 898 

11111111111111)11111111111111111'1'111111:1111 I 1111,'11111111111111 1IIIIIIIIIillllllllllll1111 
CCCACC TCATCTCT U TTCCTCCCT ATCG"CUCATTTT ACATGTCCAAA TT UCCCC.CCTCCCAGTT lACCT "GCTT AlAC' TA T UAGCUGCC'C 

, . . . --,-1~rRNA -_. . _ _ • 
B'l.' TGUAA TCCCTACATGACTCCCCACACTCCA T AUC'C.UCCTTTCCTCCTGCCCTTTCCA TT AGTT A TT U T lAC' TT ACACA TCCUGCCTCCCC. T 998 

llltllll!" ,1111111111!1111111111111111! 111111!,111,111 Iii! 11111 ,11111 III! II l1111111111111111111111, 
TClAAA TCCCT AC' TGACTCGCC.CACTCCAT AUC.ClA'CCTTTCCTCCTGCCCTTTCCA TT AGTT A TT U T UGA TT ACACATGCAACCCTCCGCA T 

999 CCCCGTC.UA TCCCCTCT UGTCACCCACTGACCT .UCCACCTCCT A TCAACCAC,C"CCAC'CT 'CCTCA T AACACCTTCCTCAGCC;,CACCCCCA 100B 
: I I : 1 I I ! I I I ! 1 I I I I I I I r Iii 1 , I r I I I I II! I 1 I I ! I I I I I I 1 1 I I 1 1 1 I 1 I I : + I " I I ! I I ~ : I , I , I I I : I I I I I 1 I 1 I I I r I I I 1 I I I : I I I I 

CCCGGTC'AAA TCCCCTCT A.CTCACCCAGTCACCT AA.GGACCTCCT. TCAAGCACACUCCACAGT ACCTCAT "C.CCTTCCTCACCCACACCCCCA 

1099 CCCGAT ACACCACTGA T AAU;' TT UCCCATGU TCAUGTTCGACT UCCTAT A TT ... CAAcceTTCCT AU TTTCCTcCCAGCCACCcCGCCCATAC 1198 
111111111111111111111111111111111111111111:111111111 III:!III 111!"'!"'IIIIIIIII:IIIIIIIIII! 1IIII 
CcceA T .CAGCACTCA T AUU TT UGCCATGAA TCAAAGTTCGACT HCCTCT A TT UACGAGCCTTCCT lAA TTTCCTGCCACCCACCGCCCTCAT AC 

1199 GA TT AACCCUACT AA TAGACCCACGCCGTAAACCCTGTT AC'G.GAU .. ;'. TAT ACT UAGTT.U TTTT lACT ACCCcGT ACAAACCTAC.CTT AAC 1298 
I I I I I I: II II I I I I I II I II I II II I I 1 I I II I II II 11 I " I I I I 1 I I I I II " 1 I I " 1 1 " I I 1 , 1 , I I I " I I II 1 I I I I I I I I I II I I I I I I 1 

GA TT ACCCCUACT U TAGACCC.CGCCGT UAGCCTGTT ACAGACAU'U, TAT 'CTAAACTT UA TTTT UCT AGCCCCT A:;AAACCT AG.GTT UC 

1:>99 AT 'UlA T ACAGcACGAUCT AACTTT UCACCTCCCACT ACACG.CACCT .t.ACACCCAUCTcceA TT ACA T ACCCT .CT;' TCCTT AGCCCT .AlCTT A 1398 
I I , 1 , 1 I 1 I I I : I I 1 I I I I I I 1 I I I I 11 I I I , 11 I 1 1 I , I I I I I I I I I I I I I I I I 1 I I , I I I I I 1 , I I : 1 I I I I I I: I II I I I : II II I 1 I I I I 1 I I I : 
AT 'UAA T 'CACCACCAAlGT UCTTT UCACCTCCCACT AC'CG,CACCT UCACCCAUCTGGGA TT ACA T ACCCC.CTATGCTT ACCCCT AUCTT. 

1399 CAT ACTT 'CCCT A .. C .... CT ATCCCCCAC.t.G"CT ACT ACCU T ACCTT AUACTCAAACCACTTGCCcGTCCTTT .CATCCCTCTACAGcAGCCTGT ,.96 
t:I;I' ',I:ll1llill:'II:'I:IIIIII!11 '~II( IIll" 'I"~IIIII:~II!I:' ill!,:IIII"III"II""III!1 
CA T 'CTT • TCCT UACU .. CT ATCCCCCAGACUCT .CCACCUCACCTT 'C .. CTCUACCACTTCCCCCTGCTTTACATCCCTCT AC.CC'CCCTCT 

1:Q<j TCT AT U TCCAT AAACCCCGAT A TACCTCACC. TCTCTTCCT "TTCACCCT'~ AT 'CCGCCATCTTC.GCAAACCCT ..... CG .. CU.AGTAACCAC 1~96 
11,,",I,IIIIIIIIII!III:IIIIII1III1II::II:',II'III,I:lli ':'1 ,"III ,1,,111:1 (1111I!111I11I1:': 
TCT AT AA TCCAT AAACCCCCAT.T 'CCTCACCATCTCTTGCTAA TTCACCCT ATATACCGCCGTCTTCACCAlACCCT 'AAC.CCAAGU"GT AACCAC 

, ~~ ... ACi ATCTT ...... !CAT AAA ...... AGTT AGCTC ... AGCTCT "'CCTCATCACATGCG ... ACC ... ATCGCCT ACAT TTTeT A ... AATT "'CA ... CACeeACC ... AC", TeeTTA '6~:" 
, I, 1 I ," • " , , 1 : ' " I : • I I I : , I I :' , :!, I II ; : 1 1 ' , , , ~ , , : I " ", , , I I ( I 1 I I : , I I i I I ' 
... AC T A TeT T AAeeCAAAAAAAGTT ACCTCAAGGTCT ACCTeA TC;AGA TCCGAACCAA TGCGCT ACACTTTeT I. AAA T T ACA ... T AACCACCAAGA TeCTT A 

''j(~~ CCAA"CT AACT ArT AAACGACGATTT ACT ACT AAATTlGAGAAl ... CAG.1CCTCA ... TlGAATCCGCCCA TGAAGCACGCACACACCGCeCGTCACCCTCCT 1 :'Ij;" 
, I 1 : I ' , , , : ~ , ' ' 1 , I I I I , : +, ,I:", I I , : I , I 1 ' I , ' . I I ' , ' : I 1 : I I I I 1 , : : I I ' : : I 

TCA"A T T AAC T A TT A AAGCACCA T TT ACT AC T AAA TTTGCGAA T ACAGACCTCAA TTCA .. TCGGGCCA TCAAGCACCCAC"CACCGCCCCTC"'CCCTCCT 

17Q8 CAACTGCT AACTCCC .. AAA"CCT ATTT AlATT' TCAC.CCCAC"C'GGI!B!AGAT AACTCGT AACUGGT .. GCAT .CTCC .. ACTGTCCTTCCAT 16~> 
1111" 'I 11,,;11111 I I:!IIII' 111111"'1 'III 11":1:1 '1:" 1!I,i 11I1!11;111111;1111' 
CAACTGGT ACT TCCCAA .. AAACCT A TTTT AAA lCACCACACCCACACGAGGAGA TAG.&. T AAGTGeT AACA"'c;GT AAGCCT ACTGGAAACTCTGCTTGGA T 

--.--- IRNA-Val -_ ---,-- 16S r~NA --
T rll).; AACAACA' GT .celT AAACAA"CCA lClcc.cTT I.C .. CCCAGI.AGATTTCA T AT T AAACTC"'CCA TCTTCAGCT AA ... GCTAGCCCAAACA TCT ACAAACAC 199J 

1:1 1,1:111 ,lll'i:I:' 1',11::11111:1'1::1111111" ,:11 It:,I'" 1 111,:::lillll; III 11111 
AACA ACA TGT AceTT ACACA .. AGeA TCCGCCTT A:ACCCACAACA TT TCA T ATT AAACTCACCC1CT TCAGCT AAAGeT AGeCCAAACACCT ATCAACAC 

,~..: AACT AACACT AGAAAAT AAAACAAAACATTT ACTCACCTT AT AAAAGT iT AGGACAT ACAAATTT AACTTCCCGCT AT AGACAAACT ACCGeAAcecAAA 2()q3 
,::, ',:','1; li:I:lll'I:11 I" lilli, 11,'11,'11,' ,'::'111 'I,' ,111:111:11111:1111111111 
...... CT ...... CACl ACAA .. A T AAAACAAAACA TTCAClT ACCTT A!!AAAACT ... T ACCAGA T ACAAATT T ATeTTCCCGCT A T ACACAAACCACCCCAAGGGA.AA 

;'p ... .: GA TGAAACAT AAAA TT AAAACCACC .... CACAGC, ... A ... GATT "CeeClTCT ACCTTTT VC .... T AA TCAGTT AGeT ACAA.CAACCT AACAAAG"'CA.ACTTCAGCT ;'1'lj 
" ,I,' 'I I, I: I'," I:, ,I ill I,: I' :: I:: ',11: II:;': ,'I:. 

CA TG.lAACA T AAAA TT A"AAGCACCGCACAGCAAAGA 1T AeCCCTlC. ACCTT TTGeAT AATGAGTI AGCT ACI.ACAAeC':' AACAAACAGAACTTCAGCT 

:'~' •. ~ ACGCCCCCCCAAACCAGACCAGCT ACCCAIGAACAA TCI ATT ACAGGATGAACTCGTCT A TeTTce ... AAAT AGTGAGAACATTTGTCCGT AGAGGTGA ... A ~':"4J 
"",",:: I III, I' ",' : I I ,'1'111111, :t,' 

Ace TCCCCCCAAACCAGACGACCT ACCCA TGAACAATCT ATT ACACGATGAACTCGTCT A TGTTGCACAAT l.GTCAGAACA T TTGTC-GGT ACAGGTGAAA 

,~,".,,: AGCCT AACCACCCTGCTGA T AGC~TGGITGCCCAGAACAG"'A TCT TACT TC AAC TTl AAACT T ACCTC ... AAAA.!-CCT AAAA TTCCAATCT AAGTT T AAA : 1<lC 
, , I " 'I',' ,:: 111'1', , , " :,' :,:, "I:' I I,' , 

ACCC T AACCACCC TeClC .. T AGCTCTCGTTCCCC'&'CAACACAATCTT ACTle"Ae T T T "AACT T ACCTC ... .\AAACeCT AAAA TTCT AATCT AAGTT 1 A'" A 

Figure 12. (Continued) 
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2391 AT AT AGler :..c.AA.c.GGT ACAGCTTTTT AGACCTAGGA 'fACAGCCTTT A TT AG.c.GACT AACCA. T AAAT:. TAAACCATAGT rCCCCTAAA"'GCACCCATCAA :0.:90 
ll; ::,:,1'1 ,,'111111111 11111111:11111 ~JJ:: ,[11111111,11111 Illllllll!I!]I.I'1 ';111,11 
AT AT AI. TeT Ar..AAACCT AClGCTTTTTACAATTAGGATACACCCTTCA TT AGAG':'CT "AGeAT AAAT AT AAATeAT AGTTCGCCT AAAACCAGCCATCAA 

2':~1 TT AACAAACCGTTCAAGCTCAACAATcAA.i.GCArCTTAATCiTC AAAAATAA TGCAACCAACTCCT I.ACel l.AAACTCCC;CT AATCT AT ~Si'"8 
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TT AAGAAAGCGTTCAACCTCAACAA TCAAAACATCTT "ATGTeAAAAAA ... AAA"AAAAAAAAA TCCAACeAACTCCT AI. TeT AAAACTGCGCT AA TeT A T 

2Si9 T'TAAT AAT ACAACCAATAATGCTAATATCiACTAACAAGAAATATTTCTCCCTGC:' T AAGCTTAT ATCACAACGCATAACCACTCATACTTAACAACAACA 2'6;"8 
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TT AA T AA T AGAAGC" T AA TGTC .... T ATGAGT .... CUG ... U TA TTTCTCCCTGCAT AAGCTT ... T ATCAGUCCGA T ...... CCACTGAT "'GTT AACUC ...... GA 

26-:9 TAT A TAT AACCT AACCAT AAACAAAATA TCAAATTAATTCTTAACCCAACACAGGT A TCCAAA TT AGGGAAAGA TT AAAACAACT AAAAGGAACTCGGCA 2778 
111111111111:11;,111111111111111 Illlllllllill1lll,: IIIIII!IIIIIIIIIIIIII!!!!III!III:I!,:,I!llll 
T ... TATACAACCTAACCATU ... C .... UT ... TCUACTUTTGTT ...... CCCAACACAVCGATGC ....... TTAGGGAAAGATTAAAAG ...... GTUUGGAACTCGGe ... 

2779 ... i.CACAAGCCCCGCCTGTTT ACC ... UAAC ... TC ... CCTCT ... GC;' TTTCC ... GT A TGAGAGGe .. CTGCCTGCCCGGTGACGCT AGTT AAACGGCCGCGGT .. TCC 2878 
III!1:11 ,!1~1:!',1·11111I!11I111I'11I11I1I1""11'1' '1111!11111!11111111111!1:'IIIIIII'I'ill;ll: 
UCACAAGCCCCGCCTGT T T ACC"UUC .. TC ... CCTCTAGC ... TTTCCAGT .. TGAGAGGeACTGCCTGCCCGGTG"CGCr AGTT AAACGGCCGCGGT ... TCC 

ZS:9 TCACCGTGCAAAGGT AGCl T Ai. TCA TTTGTTCCCT .. U TAGCGACTTGTA TCAACGGCCACACGA=TTT ACTGTCTCTTACTTCCU TCCGTG""" T 2978 
11111111: l!I.IIIII'III! 11111111111111111111111111111' 11111111:1111111 II 1111 111111ilill 1'1 ill '11 
TGACCGTGCAAAGGT "'GCA T .... TCA TTTGTTCCCT .. U TAGGG .. CTTGT ATGAACGGCCACACGAGGGCTTT ACTGTCTCTT ACTTCCAAGCCGTG"""" T 

2979 TCACCTTCCCGTGUGAGGCc;CGU T ... T UTA ... T ..... G ... CCAc... .. G ... CCCT ... TGGACCTTT AA TT ...... CCGACCC ..... GAGACC!!! .. T A TGAACCA ... CCGAC J070 
11111'1,; II: II :I!II :I'IIIIIIIIII111I'J"'III11111111111 .. : :1111 JI'III:: 'II I 1111!! I: III: I' 'III'. 
TG ... CCTTCCCGTGAAGAGGCGGG ..... T loT ...... T ...... TAAG ... CG .. G .... G ... CCCT A TGC_GCTTT AA TT ...... CCGACCC .. AAG ... GACCCT ... T ... TCU TT AACCCAC 

J07: "'GGAACAACAAACCTCT A T A TGGGc=U TTT ... GGTT=TG ... CCTCGGACA A T ...... UCAACCTCCCAGTC ... TTT A ...... TCT AC"'CT AACCAGTCGAA 3,76 
1'![111111111!1':1' 1:11111111'"11111'1111111/11111' IlllIIIIII:I!I:I::IIII!'!;I!I'11 1,1:1 
... GGAACAACA ...... CCTCT ... TCT=CGGCAA TTTAGGTT=TG ... CCTCC;C;AGAAC ............ CAACCTCCCAGTGATTT AU TCT AGACT ACCCAGTCGAA 

3' n "'GTACT ACA TC"'CTT A TTG_ TCCAU ...... CCTTci.TC ...... CGG ...... C ...... GTTACCCT AGGGAT AAC"'GCGCU TCCT ... TTTCAGAGTCCAT _ TCC"'CUT .. C 327S 
III: 1:111111:1 1:!:!IIIIIIIIIII'"II1II1I1IIIIIIII!' ::111111111":',:1111111111111111' :1:1 
AGTA TT AC" TCACTTG TTGA TCC .............. CCTTG ... TC ...... CGGAAC ..... GTT ACCCT AGCGAT UCAGCGCAA TCCT ATTTC ... GAGTCCAT .. TCGACAA T ... C 

J2:6 GGTTT ... CGACCTCGA TCTTGG'" TC"GG ... C ... TCCCC ... TGGTGC ... ci:"'GCT ... TCAAAGCTTCGT TTGTTC ...... CGA TT AAAGTCCT ... CCTG ... TCTGAGTTCAG 337S 
1!11 lliltll:1111': ':IIIIIII1I1I1III:IIIIII"",'! ,111111:1111111:11'1111111 :11:1;:: ,11111: 
GGT T GACGACC TCGA T CT TGG ... TC"'CGAC ... TCCCGA TC;C;TGC ... GC ... GCT .. GCCA ... GC TTCGTT TGTTCG"'CC", TT ... UG TCCT GCG TG'" TCTC .. GTTCAG 

3376 ... CCGCAG T U TCC"'C;C;TCGC TTTcr ... TCT ... TTT ... i T ...... CTTCTCCC ... GT ... CG ...... AGCAC .... G ... G" ... GTG ... CGCCCACTTC ... CC ... " ... GCGCCTTT " ... CC...... 3J 7S 
III!IIII 1IIIIIIi '1IItllllll""1111111111111111111! '11111!111111111,111111111! 11I1:!I'II.ll1!1 
ACCGG'G TC A TCCAGG TGGG TTTCT ... TCT ... TTT ...... T ...... CTTCTCCC ... GT "'CGU ... GG ... C ...... C ... G ...... GTG ... GGCCC ... CTTC ... CCG ...... GCGCCTTT ...... CCAA 

-r '.RNA-l.N(UUR)--

3J 76 ... T ~Gi. TGA T ... T ...... TCTT AA TCT ... G;'C ... GTTT ... TCC ... AAC ... C ... CT;'CCCG ... G ... GCTCGGGTTTGTT ... GGGTGGC ... C .. GCCCGGT ... "CTGCAT ......... "CTT...... 3575 
IIIII:II:!I,IIIII,':IIIIIIIIIIIIII II '"111 11111111 111111I:1I111":I1"!!I:I'!I!!!111 I ':11111 
... T "'G'" TCA T ... T ...... TCTT AA TCT ... G"'C ... GTTT ... TCT ...... TC ... C ... CTGCCCG"'G"'GCTCGGGTTTGTT "'GGGTGGC"'G ... GCCCGGT ...... CTGC ... CAGAACTT AA 

'---, 1:°1
;-:-; I N V t S l I I P ! t l i. v A F' L T 

3S76 GCTTTT. TT. TC"'G"'GGTTC ...... TTCCTCTCCTT ...... C ...... C ... TGTTT ... T ...... TT ...... TGT _CTCTCACT AI. TT A T TCCT ... TTCTCCT "'GCTGT AGCCTTCCT U 367S 
III';' "I i: 1;:::1111,111111111111: II: II, .111:!1 ",III!,:I,1 II II;':. ',1:1 
GCTTTT • TT A TC"'G"'GCTTCGA TTCCTCTCCTT ...... C ...... C ... TGTTC'" T AGTT A" TG T ACTCTCAC T AA TT A TTCCT ATGCTCCTCGCTGT AGCCTTCCT AA 

l V E R I( OJ l G Y .. 0 L' R K C 'P N V V Co p Y C l lOP tAO A V K 
~76 CCCT AGTCG .... CCAAAAGTGCT AGGeT ... T ... TGC ...... CTCCGC ........ GG ... CC ...... A TCTCGT ... GG"'CCA T 'CGGCCT ACTTCAACCT ATCGC"'C'" TGCTGTAU 3'7; 

" "'" III II,' i "II:' 'I 11111!! :11. 1::' III ,,' 
CCTT AGTTCAACGA:'I.AG TGCT AGGCTATATCCAACTCCCT AAACCACCAAA TeTCeT AGGACCA 1 ACGGCTTeCTCCAACCT ATCeCACACGCTCT 1.1.1. 

l F T I( E P t R 'P L T S Slit' .. F I .. API l A l T l A L Til .. 1 
1;:"t. ACTCTTT ACCI..AAG:'CCCTCTCCCACCCCTTACATCCTCCATATT'A T A1TCA TCI. T AGCACCI.ATCCT AGCCCTeACACT AGeeeT AACCAT ATGAAlC J~:"" 
". ",,:1 i:';I; I; I" I, I" . .' , 

ACTCTTC~CCAUC"CCTCTCCGACCCCTC"'CATCCTCC'" TA TT ...... T ATTC'" T T. T AGCACCU TCCT lGCCCTCACACT _GCCCT UCCAT _ TGU TC 

PlPUPYPlJNMNlCVLfll1,.AIISSlAVYSJlR5CWI 
Jto:"6 CCACT ACCCAT ACCA T ACCCGCTCATTAACA TAAACCTGGGACTACT ATTT A TeCT AGeT AT AlCAAGCCT AeCTGTTT AT TCCATCCT ATGATCACCAT )Q:"5 

• 11' ,,1111, ,: II 1 I • II, I . III, 1.11' I II, '.I,! 
CC.CT "'CCC A T ACCA T Acce'CTC' TT ...... C ... T ......... CCT AGG ... GT ... TT ... TTT A T AC TCGCT ... T A TCAAGCC TCGCCCTCT A TTCCA TCCT A TCA TCAGGGT 

.l S N SKY A LIe A LA' V A 0 TIS Y E v T l A I t' l l S V L 
]>'6 C ... GCCTCAAATTC .... T ACCCCCT .. TCGG"'GCCCTACG"'GCCGTCGCCC",""CAA TCTC'" T ... TG ...... CTCAC ... CTAGCC ... TC'" TTCTCCTA TC"'GT ACT .o:~ 

lil,"'. 'I) 'll~III,:111111111111111111', ,1111:' 1,111 1~11111'1), Ill' .1 .. 
GAGCCTC ..... TTC'U. T ACGCCCT ...... TCGG"'GCCCT ... CG"'GCCGTCGCCCAACCAA TCTC' T .CG ...... GTCACACT "'GCCA TCATceTCCT ATCACT ACT 

l .. NGSFTt.IILITTCEy .... tl IP.wPlA .... "F I 
';I)-:~ ACT AAl AAACGCA TCCTTCACAeT ACCCAT.CTAATC'CCACTCAACAAT AT AT ATGACT AATCATTeCTGCATCACCCCT ACCCAT AlT ATG&TTT ATC .:,;"~ 

::1 j , ,. : 1111' ,,1111 1.11 :II!II t I; . I it I , ,Ii:', :1 I I , ,I 
ACT AAT A.CoI. TGGATCCTTCACACT AGCeATACTAlTCGCCACTCAACAA~", ~ AA TCATCCCTCCATG.lCCTCT AGCTCTGAT ATCATiT ATe 

STlAETNRAPFOlTEGESELVSCFOVEYAACPFA 
41 ;"1) TCAACCCT ACCAGAGACCAACCGAC;CCCCATTCCACCTGAC&CAACiGACAA TC&C':'I.CT ACTC TCCGGATTCCATGT AGAA T ATGCACC&GCccceTTec .:;,:",c, 

'1 , : III :! I' 11:' III':: I' III I .: I I 

TeAACCCT AGCAGACACC AA TCGACCCCCA TTCCACCTGACAC&AGCAGACTCI.:':'I.C T ACTC TceGeA T TCAA TCT AGAC T A TGCACCAGCCCCCT Tee 

tFFlAEYANJIlilliNllTTItrFCAfHSPYUPEl 
4;'."·, CCCT AT TCT TeC T ACe&GAA T A TCCCAACATCATCAl AAT AAAT ATCeTCACI.I.C:':' TeeT A T TeT TeGGA~eA T TCCACAGCCCl T AT A T ACCACAGe T 

I ", II 

ceCT ATCCl Tce T ACCAG.r..r. T A TCC T AACATCATCAT AATGAAT ATCCTeACAAC .. C Tec T .. C Tel TCGCACCAC TCCAT ACCCCTTCT AT :'CCAGz.:.Cl 

Figure 12. (Continued) 
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43:6 AT .. T AceA TT .c.ACT TT "CAGT AAAGACCCTTC TeCT AAC.f.ACT ACTTTCTT A TGGA TCCGAGCA TeeT ACCCACCA T TCCCAT ATGACCAACT AA T ACAe 44:5 

1 t I I I I I 1 I I; I I 1 I I I 1 I I I r 1 I I I I I I I i I I I I : I I 1 1 r I I , I I : : I I , I : I I : I I 1 I 1 r I " ! I I' ,:! 't: r I II : I I I r I I r I I I I ! J : I 

.. T .. T .. CCA TC .... CTTT ACACiT AAAC"CTCTCCTCCT uCAA TT .. CTTTCTT A TCC" TCCCACC .. TCCT ACCCACCiA TTCCCAT A TCiACC .... CT AA TACAC 

LlW KNFLPLTlAlC .. "H\lSLPI ITASIPPOT r--
""6 CTCCT .. TC!J ....... AACTTTCTCiCCTCTCACCCT .. CiCCCT ATCC" TA TCACA TCiT A TCCCT ACCT ATC" TCACACiCAACiC .. TCCCACCTCU"CA T UCiAA 4S'< 

I I I ! I I 'I I I r : I ! I II I I I I I I I 11" I I I I ! I I I I I I J I I I I 1 I t I I I ; : , ! I I I I I I I 1 I I I I : : I I ! I I ; I I I I I I r I I I I , I I I 
CTCTTCiTCiAAAA ...... CTTCCT ACCTCTC"CCCT ACCCTT .. TCCCT .. TCiCiC .. CCT .. TCACT "CCT .. TC" TC"CACiCAACiCA TCCCACCTC .. UCCiT UC .... 

IRNA-lle- -- . ,=;-
4"S .. T .. TCTCTCAC ........ GACiTT ACTTTG .. T ACiACiT .... i. .. C .. T .. Ci .. CiCiTTT ...... CCCTCTT A TTTCTAGA .. T .... C .. CiCiAA TCCiAACCT AA TCCT .. ACi"" TCCA 4674 

I I I I I I I I I I I I I 1 1 I 1 I I I " I I I t I I I I I I ! I II I I , I I l I I I I I : I I I r I I I I I I I I I I I 1 I I I I 1 : i ' I I r ; I I I I I 1 I I I I I 1 I I I I I I I r I 
AT .. TCiTCTCiAC""'''CiACTT "CTTTCi" T "Ci"CiT ........ C .. T ACiACiCiTTT UACCCTCTT ATTTCT .. Ci .... C .... T "CiCiAA TCCi .... CCT AA TCCT A .. CiA .. TCCA 

. . --. tANA-Gln ---, r- !AN""'~ --.. .. 
467> A ...... TCTTCCiTCCT "CC" TT .. TT "C .. CC" TA TTCT ...... CiT AACiCiTC .. C;CT ...... T AACiCT .. TCCiCiGCCC" T .. CCCCCiAAAA TCiTTCiCiTTT .. T .. CCCTTCCC .77< 

III Illlllllllllltllllllllllllillllllllllilllllllllltllllll"!111111 " li,II'!!111111 illllllllllll 
U .. CTCTTCCTCCT ACCA TT A TT ACACCA TA TTCT AA .. CiT AACiCiTCACCT ...... T AACCT .. TCCCiCCCCCT .. CCCCCiAAAA TCTTCiCiCTT AT "CCCTTCCC 

~N NO; "--1 F 1 1 1 .. LTV i s Ci T· .. 1 V V T T S H " L LV" ·1 Ci 
4"5 .. TACT .... TC .... CCCCCCTA TCTTT .. TT .. TT ATT .. T .. TT UCCCiTT .. TCTC"CiCiAACTA T AA TTCiTACiTCi"CAACCTCCC .. CTCACTTCT "CiTCTCAA TTCi 46" 

1111111111 II1I1I11 11111111 IlIlllllllllllllllllllllllllil:111111 1111,'11:11111111 1I111111111! 
.. Ci .. CT .... TC .. AACCCCCT .. TTTTT" TT" TCCiTT .. T .. TT .... CCC;TTA TCTC .. CiCiAACT .. T AA TTCiT "CiT .... CAACCTCCCACTCiACTC .. T .. CiTCTC .... TTCi 

FE" N l' L A I I P I l .. K K Y N P R A .. E A A T' K Y F L TO 
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4969 .. C;C .. CiCCCiCCTCC .. T AA TCCT .... T AA T .. T!G .... TC .. TT ATC .... TCT ACTCiC .. CTCCiCiCiACAA TCiCiACCCiTACT AAAAC"CCTT AA TCCCA T .. C;CA TC .... T 506' 
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5068 C .. T AA T .... C .... CCCiCTCT .. CiC .... T ........ CT .. CiCi .. CT .. C;CCCC"TTCC .. CTTCTCi"CiT .. CCCCi .... CTT ACACUCiCiAA TTTCT .. T .. TCATCACiCiCTT .... TT 516' 
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C .. T AA TCi"CUCCCiC"l"CT "C;CU T ........ CT "CiCi"CT .. CCCCC" TTCCC;CTTCCiCi"CiTCiCCCCiAACiTT "C"CAACCAA TTTCTA T A TCA TCACiCiCTT ... TT 

l L T R 6 K I .. " P l S·1 l Y 6 1 SST I N·P N l ! l T ... S I l·S V 
51 c.e CT "CT .... C .. TCi .. clI ............ TTC;C"CC"CT .. TC .... TCCTCT .. CCAA .. TCTC .. TCC"CC" TT .... CCCT AACCT .... TCCT .... C .... T A TCC .. TCTT .. TCACiTC ~ 

111I1:~iI III 1111:11 11111111111111111111111111111111111 " :' 11111::.:: ,.rIIlII!II!I!! 111111111 
CT ACT .... C .. CCiAC .......... " .. TCCiC .. CC .. CT .. TCAA TCCTCTACC ...... TCTC .. TCC"CT .. TC .... TCCT AACCT AA TCCT AAC .... T .. TCC" TTTT .. TC"CiTC 

.. icc " Ci Ci l ·N a Tal R K I .... "y S S I .. H .. Ci " .. ·T .. I .;, II Y 
5257 .. T .... TCCiCi .. CiCiCTCi"CiCi .. =T AA .. CC ...... C .. CAACT .. CCi ......... TC .. T .. C;C .. T .. CTCCTC .... TCC;CCC" T .. T ACiCiCTCiAATCi"C"CiCT .. TC .. T AA TCiT 5366 

III t1111111111111:I/ll 11111111111111""11111111111 1IIIItll:ll:IIIIII~. ,:,:1111 lillilill 111111 
.. T .. CTCCiC .. CiCiCTCi .. CiCi .. CiCiCCTC .... CC" .... C .. C .... CT .. CCi .......... TCAT .. CCCT .. CTCCTC ... TCC;CCC" T .. T "CiCiCTCAA T AAC"CCT .. TCCT AA TCiT 

s' P T .. '101 : L N l T I y t I II T l T T Fill F II H N S T T T T' A S 
s:v.;, .. C .. CiCCCC .. C .... T .... T AA TCTT .. AACCT .... CT .. TCT .. T .. rCATT .. T .... C .. CT .... CCACCTTC .. T "CT .. TTT A ~ ACACAACTCCACCACUCAAC .. CiC .. TC >466 

11111,1::: 111:1::1111111111111111111111111:111111111111111: '11!111! I,' :1111,1'1111111 till 

"C"CCCCc .. CC .. T .... T .... TCTT ...... CCT .... CT .. TCT .. T" TC .. TT .. T .... CACT AACCACCTTT .. T "CT .. TTC" T "C" T .. CiCTCCACCACC .. C .... C .. TC .. TC 

L SOT';' N K T· P liT S l i l V l·" .. S L C Ci l P P l S Ci F ! P 
>467 CCT .. TC .. C"UC:. TGAAA! A .... ACCCCTCT ~'TC .. CCTC .. CTC .. TCCT "CiT .. TT .... T AA TATCCCTCiCiCi .. CiCiCCTCCCCCC .. CTCTCCCiCiA TTT .. TCCC.. 5!.66 

III 111111, IIII,,!I;I:IIIIII'111111111111111111111111: I 'ill:, 1'1;111 :11 

CCTCTC .. C .... AC .. TCi ...... T ........ CCCCTCT U TC .. CCTC"CTC .. TCCT .. CiT .. TT AA TCiCiT ATCCCT ACACiCiCiCiCTTCCCCCACTCTCTCiCiCiTTT .. TTCC" 

K." 110 E l T K N Ell .. " .. P T l l A .. TAL L N l Y F Y" R l 
~S6i loA" TCAAT AI. TCA TCCI.ACAA TTCAC1AAAAATGAATT AATCATAATGCCAACATT ACT ACCCATAACAGCACT ACTCAACCT AT ... CTTeT ACATACCAC S666 

I ," I J I: ( : T : ! I I I I; I : I ! 1 1 II,: I 1 ' I I : ' I : 1 • : I I ; I II 

...... TCiAA T .. , TC" TCC'CiCiAACT .... CT AC ...... TCiA .... T AA TCAT AA T .. CCAAC"CT ACT "CiCC"CAAC .. C;CACT AC T T AACCCA TCCT TCT "CAT ACCiAC 

T Y T T .I. L T II F P S' N N S ' .. K II K " R FEe T I( I( .. T F l P P L 
!Xhl T AACAT ACACCACCGCACT "Ace'" TGTTCCCCTCAAACA"CAGTAT AAAAAT AAAATCACCATTTGAATCCACAAI.AAAAAT AACCTTCCT ACCCCCTCT 57(.{, 

'I:: 1" I, I,': "1'1, I::;: 11'11 j I ,I 111I t II; II: I;: 'I i I J!! I 

T .... C .. T "C"CT ACCC;C"CT .... CC .. TCiTTCCCCTC ...... C .... C .. CC .. T .......... T " ..... TG"CCA TTTC .... TC;CACACCi""""'" T AACCTTCCTCiCCCCCTCT 

* v V .. S T .. L L P LAP .. L So J L 0' r- ,RNA,Trp--
~~fi; AGTTGT AAT A TCAACCAT &cr ACTTCCACTCGCACCAAT ACT ATeT ATCCTCGATT AGAAGTTT AGGTT AAI.CT AGI.CCAI.GACCCTTCA.lACCTCTAAG 58GG 

III I 11:1 1':'1; 1'1,1 1 :11:' 11111111.:111 lllll~lilll:!i r,IIIII'" "III, "!11111111111! 

.. CiTCCiC .... T .. CC .... CC .. T "CT "CTTCC"CTT .. C .. CC .... T "CT .. TCC" TCCTCiCi" TT .. Ci .... CiTTT "CiCiT T ...... CT .. C .. CC .... C .. C;CCT TC ...... C;CTCT .... Ci 

--, ,r- ' -- tRNA-Ala 
~] CAAGTeC T ACAGACl T A ACTlClGCACATCT AAACCATTCT AACiGACTGCAACAA TCT A TCTT AC& TCAA TTCA T TCCAAA TCAAACACTTT AA TT AAGe 5%fj 

111:111 'Ill!', "TIIII:lill 1I11111i1111111111:IIIII' ", 111;11: I '11111: I,:IIII"!III 
C .... CTCCC .. C .. Ci .. CT TC"C TTCTCC"C" TclI ...... cC .. TTCT .... CCiACTC;C .... C .... TCT .. TCTT _c .. TC .... CiTC. TTCiC ...... TCA .... C.CTTT .... TT .... CiC 

--, r- -- IR~A-A~n -. OlR 
~'''';i" T AAG TCC TeACT .lCA T TGGTGGGCTC T AACCeCACGAA& T TTT ACTT A.lCAGCT AAA TGCCCT AATCAAeTCCCT TC AA TCCACTTCTCCCCCCCTCT AG (,.()(j.(, 

I, ,': I ' I: III :1111: ,1111111 :i:' ,: II: II III: 
T AAGTCeTeACT AGAT TGGTGCGCCCCAACCCCAeGAAATTTTAGTl AACACCT AAA T ACCCT AATeAACTGCCT TC.1ATCCACTTCTceCGCCGCCT AG 

r- -- tRNA-Cys -,-

t>Ot-, i AAAAAA AAGCCcc.cAGAACCCCCGGCACCGCCAAGClCCTTCTT TCAA TTT GCAA T TCAACATCACA T T CACCGC.aCGAC TTGel AAAAAGAGGGC TCC" 616f. 
': i ,'I' I I;' ,:lll,': I T I: I!, ': IIII! 1I11 I':' I:":: I ':" ,I: I: ill II:: 
AAAAACAACCCCGCACAAGCCCCGGCACCCCCAAGCTGCTGC TTlGAA TT TCCAA T TCA ACA TCACA T TCACCCCAGCACTTCC T AAAAAGAc.cGCTCCA 

ca. 
-- tRNA-Ty, --, II F .. N H " l f S T N H It; 0 I C T 

t,1/,,)7 ACCTCTC TC T T T AGAT It "CAGTCT AATGCTT ACTCAcceATTT T AeCT ATGTTCA T AAACCCGTGACt A TT T TC:'ACT AATCACA:'AGA T ATTCGT ACT (.;'tor. 
" ' :', II', ': 1 11I1 i, ,': 1'1 t", I ,'II ' 'I':, I I 111" I: I, 

ACCTCTC Ie I I T AGA T IT ACAClCCCATCCTT ACTCACCCATeTT AeeT ATGTTCAT AAACCGTIGACT AT I T TC.U.CT loA TCACAAACAAATTGGT ACT 

Figure 12" (Continued) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

70 

L Y L l F G A " A C; U. v G T At. L S L :. I RAE l C' 0 peT l l GOO 
6.'67 CTTT ~CCTnT ~ TTCCCTCCCTCACCTCCCA TCCTCCCCACTCCTCTT ACTCTTCT AATCCceceCCAACTCCCCCAACCTCCT ACACT ACT ACCACA TC 63';'; 

:11'I.I'~ :',1 11;!I!lil!IIIIII,I'III'III!1111I11I111 III1 IIIIIIIIIIIII!\ II 1111: IIII! .I!I:I,I ' 

CTT T ACC TrCT A TTrCCTCCCTCACCTCCCA TCCTCCCCACTCCTCTT ACTCTCCT AACCCCCCCCCAACTCCCTCACCC TCCCACACTCCT ACCACACC 

o 1 Y N V I V T ... H A F V 1t'1 F F .. V U p' I iii ICC FeN W l V P 
6367 A TCACA TTT ACA A TC T AA TCCTCACTCCCCA TCCTTTTCT AA TCATCTTTTTT A TCCTCA TCCC' A TT A T AA TTCCACCCTTCCCAAACTCA T TCC TCCC 0;..:65 

I I : II I I I I I : I ' I: I I : I I I I: I I I I I I I I I I I I I I ! I I I I I I I I I 11 I I I I I I I I I I I I I I ! I I I I I I I : I I : I I I I • I I I I ! I I I I I ! I I 
A .CACA TTT A T AA TCTCA TCCTCACCCCTCA TCCTTTTCT AA TCA TCTTCTTT A TCCTCATCCCT A TT A TCA TCCCACCCTrCCCAAACTCA TTCCTCCC 

L M J CAP 0 Y A F P "R M N ~ • S F" W L L "p P S ~ L L L LAS S Y 
6467 A TT AA T AA TTCCACCTCCTCACA T ACCA TTTCCCCCU T AAACAACA TCACCTTCTCACTCCTCCCTCCATCCTTTCT AC'CTT ACTCCCCTCA TCT A TC 6566 

Iii I III/I: I II I1I1I1III1I 11111111/1111111111111111111/ 11111 II 1111111/111111111: IIIIII r III II! Ii 
A TT ACT AA TTCCTCCCCCTCACA T ACCCTTTCCCCCAA T AAACAACATGACCTTCTCCCTCCTTCCCCCA TCCTTTCTACTCTT ACTCCCCTCATCT A TC 

v E A C A G T C"W T V Y P P LAG N"L A H ;. GAS" VOL"T J f S L H 
6Y.;7 GT ACAACCCCCAGCAGCUCTCCCTGAACAGT A T I.CCCACCCCT ACCCCCCAACCTCCCTCATCCACCACCA TCCGT ACACCT AACT A TTTTTTCACT AC 6666 

1III 1111,;1!!::;111 II II 11111,11/11 111111111:1 ~IIIIIIIIIIIII 111111111111111111'11:1111111111: 
GT AGCACCCCCACCACCAACCCGA TCCACACT A T ACCCCCCCCT ACCCCCCAACCTCCCTCA TGCCGGACCATCCCT ACACCT AACT A TT TTCTCACT AC 

LAC V "S S J L C A J" NFl TTl i N Y K" P PAM SOy 0 T P L F 
6667 ACCTCCCACCTCTCTCCTCAA TCTTCCC TCCT A TT AA TTTCA TT ACT ACT A TT A TT .. TAT AAAACCTCCTCCCA TCTCCCAA T A TCAAACACCTCT A TT 6 '66 

I : I I I I ; : : : : I • I I I 't 'I \ I I j I I 1 I j I I I I I " I 1 : 1 I I I 1 I I I I 1 1: I I I I : : I I I t I I I I 1 ~ I ! I I I : I' ',I I I 1 II , I : I : :' I I I 1 1 

ACCTCCCACC TC TCTCCTCAA TCTTCCCTCCT A TT AA TTTT A TT ACT ACTATCA TT AA TAT AAAACCTCCTCCCA TGTCTCAA TA TCAAACACCCCT A TT 

v w S V liT A V L l L l S l P V L' A A G 'I T If L L TOR N L N T 
67~7 TCTCTCA TCACTCTT AA TCACTCCTCTCTTACTACTTCTATCACHCCACTCTTACCACCCCCAATCACTAT ATT A TTAACACATCCAAACCT AAACACC 686Q 

III IIII!I:I" ,,'1'.:111111 I 111111:111111 111111111/1111111111111: !I IIIIIIIIIII!~III!II:I: 

TCTT TCA TCACTCTCAA TCACTCCTGTCC TGTTACTTCT A TC£CTCCCACTTTT ACCACCCCCU TCACT AGCCT ACT .. CACA TCCAAACCT "AeACT 

T ~ FOP A C C COP i L Y 0" H L F W F F C H P E" V Y , L J LPG F 
686' ACA TTCTTTCACCCCCCTCCCCCACCACA TCCT ATCTT A T ACCUCACTTATTCTCA TTCTTTCCCCATCCACUGTTT ACA TT TT AA TCCT ACCCCCTT 6966 

illll!III':11;::,I:I,11111111!11:11111! 1111I1I1111i11:llll1llll1lll 11111i11;:!1 ;,11111 !1,li'!lli 

ACA TTCTTT';;ACCCCCCTCCCCGACCACA TCCT ATCTT ACACCAACACTT ATTCTCA TTCTTTCCCCACCCACAACTTT ACCTTTT AA TTCT ACCCCGTT 

G' U 1 S H I V T Y Y S G K K 'e P F G Y .. G' .. V ,,'A U U S I G F L G 
6967 TTCCCAT AA TCTCACA TA TTCTT ACCT A TT A TTCACCT AAAAAAGAACCCTTTGCCTACATCCCAATACTTTCACCCATCAT ATCAA TCCCCTTCCTCCC 70'.;6 

, : I 1 I i I I I I 1 II ; I I I , : I : I t I I I I 1 I I I I II I I I I II I II I I I I I I I I II I I II I II I II II I I I I I I 1 I I I I [ I I 1 II 1 I I I ! 1 " I I I 1 I I I : 
TGCCCA T U TCTCACA T A TTCTT ACCT ATT A TTCACCT AAAAAAGAACCCTTTCCCT ACATGGGAA T ACTTTCACCCA TCA T A TCAA TCCCCTTTCTCCC 

F"' V W .i. H H Y" F T V "G M 0 V 0 T R" A Y F T SAT M J I A J P"T C 
7067 CTn A TCCT ATCACCCCA TCACA TGTTT ACTGT ACGAA TCGA TCTACACACACGACCA TACTTT ACA TCACCCACTAT AA TT A TTCCCA TTCCT ACCGGG 7'66 
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CTTT ATCGT ATCACCCCA TCACA TCTTTACTCT ACC" TCGI. TGTACACACACCACCA T ACTTT ACA TCACCCACT AT AA TT A TCCCCA TTCCT ACTCGG 

V K V F S W L A "T L H C C N J K • S"P AMi. W A L" C F J F L F T V C 
"67 CTGAHC T A TTT ACTTCACTCCCT ACTCTTCA TCGACCT AA TATT"A TCGTCCCCTCCT AT A n ATCACCCTT ACCCTTT A TTTTCCT A TTT ACCCT AC '266 
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CT "CAGT A TTT AGTTCACTCCCT ACTCTTCACCGACCT U TACT""A TCCTCCCCCCCT A TACTATGACCCTT ACCCTTT ATTTTCCT A TTTACCGT AG 

G LTC I V l A N S S l 0 I V L HOT Y y' V V A 'H F H Y V L S· .. G 
7~67 GACCCCT AACGGGU TTCT ACT ACCAAACTCTTCA TT ACACA TTGTTCTTCACCACACA T A TT ACCT ACTCGGCCACTTTCACT A TCTCTTGTCAA TACG 7366 

J~I~I:III;:"'" "'I:I;111111!III1111'::IIIII1IIII:!'11111111111111,11 III!;" t':I,j":'j,I!I,ll' 

GACGCCT AACCCGU T TCT ACT ACCAAACTCTTCA TT AGACA TTGTTCTTCACCACACA TA TT ACCTACTCGTCCACTTTCACT A TCTCTTGTCAA T ACC 

A 'V F A I U C G F V H 'w F P l F S G' Y T L '0 NT;' A K [ H F T'I U '3»' ACCACT A TTCCCT A TCAT ACCACCCTTCCTCCA TTCA TTCCCCCT A TTCTCACCA T A TACCCTTCACAACACTTCACCAAACA TTCACTTTACCATT ATG 7._," 
:1::1,1::':' , :' l'I':I:I!;' I ::IIIiIIIIIlI:IIII:, :11,1:111:1:11 1111:' : 11111,:':,',.11, 
ACCAC T A TTCCCT A TT A T ACC;ACCCT TCCTCCA TCCA TTCCCCCT A TTCTCACGGT ACACCCTTCACAACACCCCACCAAAAA TTCACTTT ACCA TT A TG 

FVCVNUTffPOHFlClSCUPRAYSOYPOA.YTT" 
;.6; TTTCr ACGACTCAl T. T AACCTTCTTC::CTCACCACTTCCTACCCCTCTCCCGAA TCCCACGACCTT ATTCTCACT ATCCAGATCCA TAT ACAAC~TTC. )~" 

I;' I'! I' 'I I,' 11,1111111 1.1"" I ,'1,:1, II ,I ,.' 

TTTCT ACCACTCAA TAT AACCTTCTTCCCTCACCACTTCCTACCCCTGTCTCGAA TCCCCCCACCTT A TTCTCACT ACCCACATCCAT ACACAACTTTCA 

NTlSSUGSfISlTAVIIl .. VFUV"EAfASKREV"," 
,'~ AA TACC;. T TTCCTCAA TceceTCT TTCATCTCA TTAACAC;CACTCATCTT AA TAGTTTTCATACTCTCACAACCTTTCCCA rCCAACCCACAACTGCCCA 7665 
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AA T ACAA TTTCC TCAA TceceCCTTTCATCTCA TT ""CCGCACTT A TGTT AA TAcnTTCA T AGTCTCACAACCTTTCCCA TCCAACCCACAACTCCCCA 

VEL T T ,. N l E " L H G C P P P Y H T F 'E E P T Y V l l K '*r-
'066 TACT ACAACT AACCACUCT AA TC TTCAA TCA TTCCA TCCA TCTCCTCCTCCCT ACCACACA TTTCAACACCCAACTT ACCT ACT A TT A AU T AACAAAC "65 

1111111: Ii ',' 11.111:1,' 1111111:111111111"I!III01II1I1":IIIIII:, 1 'III" "111111 
TACT ACAI TT AACCACAACT AI TCTTGAATGA TT AT" TGGATCTCCCCCTCCGTACCACACATTTCAAGACCCAACTT ATCTGTT ATT AAAAT AAGAAAG 

- rRNA·S«(UCN) ----, ~ tRNA,Asp--
~:~ CAAc;.cAA TCGAACCCTCTTT AACTGG TTTCAAGCCAA TGCCAT AACCATT A TCTCTTTCTCAATT AAGAAGT I TT ACT AAAACAA TT ACAT .\ACiTTCTC ,6(j~ 

',,:: "I:; II : II jl111111111 I Il 111111 :,',1111' 'I,"!I 11111 II 
CAACGAATCCAACCCTCCT T A~CTGGTCTCAAGCCAA TGCCA T AACCATT I TGTCTTTCCCAI TT ACCAAGeI TT ACT AAAACAA T T ACA T AACTTTGTC 

Coli -
---,U , Y P F 0 l C F a 0 A T S P 1 U E [ l l H 

,~ri66 GAAG T T AAAfT A T t.CCCT TCAI TeeT A T A TGeTTCAATGCCGT AceCCTTTCAACT ACiGTTTCCAACATCCT ACATCCCCCATT" T AG"ACAACTCCT ole :"9',') 
I 1;' i': ': " ; I " ': 1 I' III: II: I I'" I:" II: " : I: ',,'," ", " 

c.cICT T "AliT I T ICCieT TGAI TeeT AT A TCCT TCeATGGCCT ACCCCTTCCAACT AGGTTTTCIAGATGCT ACATCTceel T TAT AGAGGAACTCCT AC 

fHOHTlUJVFtlSSLVlYllSllllTTKlTHTST 
;-~'ob .leTT TCACGACC.1Ct.Cl.CT AAT AI T TGT A TT TTT AATCAGCTeTTT ACi'TCTTT A T ATTATCTCGTTCATCCT AICAAeCAICCTCICGC'CACCAGT t.c ACY', 

I I ! I'll' , 

A TTleelCGACCA T .leCT T AA T AA T1Gl A TT reT AATCAGCTCCTT ACTTCTTT AT ATT ATCTCCTTCAT ACT AACAICCAACCTCACGCACACAACT Ie 

Figure 12. (Continued) 
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8066 AA T ACATCCTCAACAACTACAAACCATCTCAACCATCCTACCTCCTATTATCCTCA TTCTTATCCCCCT ~CCCTCCTT ACCAA TTCTCT A T AT AA TCCAT e'6~ 

I:; 1111 i: .. ::;::: 1\ t 111111111111 II 111111111; III L 111 II! I:: 11111111 I: 11' I Ill!:::: 11 'I::::!: t 

AA TCCATCCTCAACAACT ACAAACCATCTCAACTATTTTACCTCCTA TT ATCCTCATTCTT ATCCCCCTCCCCTCTTCACCAA TTCTC!j!T AT AA TCCA T 

E INN P S lTV " T • G H 0 'w Y W 5 Y E Y TOY E 0 l N F 0 S Y 
8' 6(; CAAATCAACAACCCCTCCCTCACAGTAAAAACCAT!ACCACATCU TCAT ATTCAACTT A TCACT ACACTCA TT ACCAACACT TCU T TOTCACTCTT AC 8:'''''' 

11 II : ! 11 11 I : ! I 1 I I I I III 1111111111111 II 111111 : I1I1 II 11111 I I I ,; 1 II : 1 11 till' I Ii: l' .. 'I I I! I I 1 I ': . I 
CAAATCUCAACCCCTCCCTCACAGT AAAAACCATGGGGGCATCUACAT ATTC.UCTT A TCACT ACACTCACT ACCUCACTTCAA TT TTCACTCTTCT 

II I 'P TOE l It p' C E L 'R L LEV 0 N' R V V 'l P .. E .. T I R .. liS 
826~ AT AA TTCCT ACCCAAC~CCT AAUCCACCACAACTCCGGCTA TT ACAAGTTGACAACCGAGT AGTTTT ACCAA T AGAAA TGACCA TTCGCA TCTT AA TCT 6J64 

1\ 11111111'1\1:: 1111111 11111I111111111111111111111!!tll,t~l:l1111111111tt:III':t:::t!:" '1111 
A TGA TTCCT ACCCAAGAA TT AAAACCCCCACAACTCCGGCTA TT AGAAGTTGACUCCGAGT AGTTTT ACCU T AGUA TGACCA T TCGCAT A T T AA T TT 

S E 0 V l' H S W 'A V P S L G l' It TO' A I P G R l N' 0 TTL .. A T R 
8365 CA TCAGUGA TGTCTT ACACTCATCACCCGTCCCATCCCTAGGCCT AAAUCTCATCCTATCCCAGGCCGA TT AU TCAAACAACTC I AA T ACCT ACACC ... &: 

Illlt I 11111111 :!1111 1IIIIIIIII1111111111111111illll111tllllii lIlt; til: 1111 1: It: i::! II I 
CA TCACAACATGTCTT ACACTCA TCACCCGTCCCATCCCTAGGCCTAAAAACTCATCCT A TTCCAGGCCGACT AAACCAAACAACTCTCA 

P C' l Y Y C C C S E I C 
s.:6~ ACCTCCTTTA T ATT ATGGCCAATGCTCAGUATCTG 8500 

G S N H SF.. P 1 V L ELY P L T Y F E K W S . AS" l * r- fRNA-Lys --
850' TGGCTCAAACC~ T AGCTTCATACCCATTGTTCTTCAA TTAGTCCCACT UCGT AClTTGAUU TGATCTCCA TCT A T ACTGT AAA T TCA TT UGAACCT 8600 

. . . . "III ~;p.~a ~ T S T"" SIT 1 III S 
8601 AUT AACCA TT AACCTTTT AAGTTAUGACTGGGAGTTTAU TCTCCCCTTU TGACATGCCACUCT "GATACATCCACCTGA TCCATCACT .. TT AT AT 8700 

.. I .. T l F 'I V F 6 L It I S It Y L Y P 5 N PEP K S .. TTL K 0 R 
870' CAA T AA TT A T AACACT ATTT A TTCT .. TTCCAACTUAAATCTCAAAAT ACTT .. TATCCATCAUCCCAGAACCT AU TCCA T AACCACACT AAAACUCG 8800 

" ATP.M6~ " " . 

r NENLF .. SFTTPT .... CLP 
NPIIEItKIITIt I 1SPLSlPOO' 

8M' GAA TCCCTC"GAAAA .. AAA TG"ACGAAAATCTA TTCGCCTCTTTCACTACCCCUCU T AA TAGGA TT ACCT A TTGTT A TTTT AA TT A TT A T A TTTCCAA 

V II P S 

8900 

I l F' P S P N R LiN N R' L V S 'l C C ;, l V 0' l T S K 0 .. l A I H 
8901 GCATTTT ATTCCCTTCACCT AACCGACT AI. TT UTUCCGTCT AGTTTCACTCCAACU TGACTAGT ACAACT UCATCAAUCAAA T "CTGGCT A TTCA 9000 

N H K 'G 0 T ;, A L •• L • S 'l I l FIG S' T N l 'l G L L PHS F T P 
9001 T U TCAT U"CCACA~"CCTGACCCCT AA T ACTAATGTCCCT U TTCT ATTTATTGGGTCAACUACTT ATT AGGCCT A TT ACCCCACTCA TTCACCCCA 9100 

T T 0 i. S .. N' L G II'A I P i. WAG' T V I T G F R H It T K A S 'l A H F 
9101 ACTACCCAA TT ATCU T UA TTT AGGUTAGCTATCCCGCTATGAGCCGGCACTGT AA TT ACCGGGTTTCGCCACUGACT UAGCATCTCTCGCCCACT 9200 

l P O' C T P V P Lip .. L' V VIE TIS l F I' 0 P .. 'A l A V R l T 
920' TTCT ACCACAACCUCACCTG TCCCCCT AATTCCTATGCTTGTAGTC .. TTGAGACTATCACCCTCTTT ATCCUCCT A T AGCTCTCCCCGT ACGACTT AC 9300 

A NIT A G H L L .. ' H L I 'G G A ;. L A l II N 1ST S 1 A liT F T 
930' ACCCAACATCACCGCACCTCACTT A TT AA T ACATCT AA TTCCACCGGCCGCCCT ACCCCTGAT AUCA TT AGCACCTC! A TTGCCTT AA TCACCT TT ACC ~OO 

1 l I l. l TIL E F "", V A. L 1 0 ",' Y V F "T L L V SLY l H 0 NT· ~ 
~O' A TTCTCATTTT ACT UCAATCCTTGUTTTGCCGTAGCCCT UTCCUGCCT ATGTTTTT ACCCTCCT AGT UGCCT AT ACT I ACATCAT uCACCT AA T 9SOO 

ColIl_ .. 
THOTHAYHIIYNPSP .. PLTCAlSAllUTSGLA .... 

9S0' CACCCACCUACCCATCCAT "CCACATAGTCAACCCTACCCCATGGCCACTT ACACCACCCCTTTCAGCCCTCTT AA T AACCTCAGGCCTCCCT AT ATGA , ... ,,;.)() 

F H Y N l T L l L T"L G .. T T N l' L TillY 0 .... R 0 1 1 RES T F a 
9(,0, TTCCACT AChCTT AACACTGCTGTTUCCCTTCCAATUCTACCUCTT ACT AACTAT ~ T ATCU TGATGACCAGACA TT ATCCGAGAAAGCACA TTCC 9700 

GHHTPIVOKGLRYGMllFIIS[VFFFACFFlilAF 
970' AAGGCCUCAT ACACCT A TCGTTCAAAAAGGCCTTCGA TACCCAA T UTCCTCTTT A TCA TCTCAGUGl A TTCTTTTTCGCACCCTTCTTCTGCGCCTT 9800 

Y H S S lAP T P E" L C C C w P P T C I I P L N P lEv P l l N T 
9SO' CT ACCACTCAAGCCT AGCCCCAACCCCCCACCTACCACCATCCTGACCACCAACAGGCA TT ATTCCCCTGAACCCCCTCCAAGTTCCACT ACTI AA T ACC ~9OO 

S V l lAS C V S 1 'T ... Ii H S L· .. E C ~ R K H .. l. C .. l F 1 l 1 S 
Q9C' TCCCTCCTTCT ACCCTCCCCAGT ATCU TCACCTGAGCTCACCACAGTTTCATCCAGGGUATCGA lAACACA TGCT TCAACCACT A T T T A TT lCU TCT '0000 

lev Y F T l l Q A S E Y YET "s F TIS 0 ::; V yes T F F II A T 
, O'X)' C TTT ACCGGTCT ACT T T ",C .. CTCCTCCAAGCCTCCC .. AT ACT ATC ........ CA TC ... T TCACGA TCTCCC"CCC"'C T It. T "CGGA TeT AeeT TeT TeA TeGeCac 10100 

G F H G L H V I 1 C' S T F l. 1 v e F l R 0 l. K Y H F T S N H H F e 
'0'01 AGG'" TTCCATCGGeT ACATeT "ATT ATTGGCTCT &CT1TCeT AAT1CT ATGCTTCTT AeGeCA .. TT AAAAT A TCAeTTT ACATeAAATCACCAC TTCGCA 'O;'fOO 

~ 0:>01 ~TT~AA~c~e~cc;eA; A T~CA~AC~TC~T AgAC~T A~TT~GA~T A ;TC~T A; AC~TT~CT! Ti; AT~eA ~CA~A ~~C ~T~~~~'f!b;;;Y loA T.. 10.\OC) 

N03--
--," N V .. L .. l l T N 1 l l S T l l 

'iJ)Cl AGT ACAGTTCAC TTCCA &. TCAAceACTTTCCGT AT AACeCC .... AAGGA .. T "AT A"ATCT AA TACT TGCCTT ACTT ACCAAT ACACTeCl Co TeeAe~c T I.e l()..:()J 

VlIAF"lPOlNIYAEKASPYEeCFDP"CSARlP 
~ ~C~ rTCT AcrCATCCCA T TeTCt. TT AeCCCA ... CT A.&. ... CATCT ATCCAC.lAAAAGCAAc.cCCCT ~ TGACTCCGGAT TTGA TeeT AT AGCCTccCeeeGeCT ACC 10'.vo 

Figun: 12. (Continued) 
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FSMKFFlVI..ITFLlFOLEIAlLlPlP;'ASOTOK 
10~1 CTTCTCCA T AAA. T TCTTCCTCGT AGeCA T T ACA TTCTTCCT A TTTeA TCT ACA_A TTGCACT AC T ACTCCCCCTTCCCTGAGCC1 CAe AAACAGACAAA , C>&OO 

l P T M l T .. All LIS L L A A S l ATE" T 0 K G LEw T E *r-
10601 CT ACCAI.CCA T ACTCACT A T ACCCCTTCT ACT AI. TCTCA T TACT I.GCCGCAAGCCT AGCCT ACCAATGAACCCAAAAAGC;ACT AGAA TGAACTGAA T ATG 1010<J 

tRNA-A'g -, - I .. No;L-;- v v I N I F L A 

10701 AT AA TT AGTTTUACCAAAACAAA TGA TTTCGACTCA TT AGA TTA TAGCTC.CCCTATAATT ATCAA. TGTCC.TAGTCT ACATT U TA TTTTCCTGGCT '0800 

, " 

FI .. Sl .. Gll .. VRSHl .. SSllClEG .... lSlFI .... A 
10801 TTC' TC' TGTCGCTCA T AGGACT ACT AA TAT. TCGATCCC.CTTAATGTCTTCCCTCCT ATGTCTAGUGGCATGAT ATT ATCCCTA HC_ TT ATAA T _G '()<loo 

V A I· L N N H L T LAS U" T P I ° 1 L L V F A AO C E A A L G L S l L 
'090' CCGT AGCCA Tccr AAACAACCA TCTCACACTAGCCAGCA T AACCCCCA TT. TCCT. TT AGT A TTTGCAGCTTGTGAGGCAGCACTAGGTTT A TCTCT ACT "000 

N04--

I .. l It 
VIIVSNTYCTOVVONLNLLOC* 

P T A .. l U P II T 

"00' AGT AA T AGT ATCAU T ACA T. TGGCACTG.CT A TGT ACAAAACCT AA.CCTCCT ACU TGCT AUU TT _ TT ATCCCCACTGCC. T ACTCA T ACCAA T AA 

C l S' It P N .. 1 • 1 N S T' T Y S 'l lIS lIS' L S V L N 0 l G G H 
"'0' Col TGCCT. TCGAAACCT AACA T AA TCTGAA TCUCTCAACAACCT ACAGCCT ACT AA TT AGTCTT A TT AGCCTCTCCT A TCT AAACCAACT AGGTGGCCA "200 

S l N 'f S L L F F s' 0 S l SAP L L V l T T W l L pi. .. l " A S 0 "20' TAGTCT .... TTTTTCACTGTT A TTTTTCTCAGACTCACTCTCCGCACCTTT ACT AGT ACT UCUCATGACTCCT ACCGCT AA r 'CTCAT .GCCAGCCAA " 300 

S H L S K E T P S R OK K L V IT •• L T l °L 0 l L L I I. T F TAT E l 
"30' TCACACCT A TCUUGAUCTCCT 'GTCGAA AAA.lOCT AT ACA TCACAA T ACTCACTCTCCTGCAGCTTCTTTTG. TT A T UCA TTT ,CCGCT AC_GAAC ".00 

1 " F' Y I l 'F EAT LIP T l I lIT R W G 0' 0 T E 'R l NAG l V ".0' TAA TT A T ATTTTlCA TTT •• TTTGAAGCCACA TTAA TCCCCACCTTUTCATC' TTACCCGATGGGGTG.CCAGAC'GAGCGATT AAACGCCGGCCTAT A ,,~ 

F l F V T L v G S L P L LV. L L Y 1 0' NT T 'G T L NFL 1'10 Y 
"!>O' CTTTCT A TTTT ACACTCT AGTAGGCTCACT 'CCCCTTTT AGTCGCACT ACTGT A T A TCCAGAAT ACAACAGGAACTTT.U TTTCCTGA TCA TCC'" T AC "600 

W A K PIS TO T W S ON I F L " L ,,0 ell .. °A F II V K .. PLY e"L H L W 
"50' TGAGCCAAGCCCA TCTC ... CCACCTGGTCCAA TA TTTTCCTCTGACT AGC' TGCA TGA T 'GC. TTT. T 'GT 'UAA TACCTCT. T ATGGACTCC.CCT. T "700 

L P KO A H v °e APi A G SO .. \I l A I. Y L L K LO G G Y ·C iii II R : T Y· 
"]01 G.TTGCC ..... GC.C.TGTTGUGCTCCCATCGCTGGTTC ... T.GTACTTGCCGCCGTATT.CT.UACT.GGGGGATAC=.TAATGCGTATTACAGT "800 

L L N 'P A T NO" A' Y P F '" .. L S L W G'" v ,,'T S sic L R' 0 T 0 
"50' CCT ACTT AACCCCGCUCGAACC.AA TGGC. T .CCCCTTT AT U T 'CT A TCCCTGTGAGGU TGGTT' T AAC •• GCTCCA TTTGCCTGCGCC.UC'GAC "900 

L K S i. I • y' S S v 's H " .i. LVI v • v 'L lOT P W S' Y " G 'A T • L 
"90' CT AlAI. 'CCCT AI. TCGCAT ACTC. TCCGT AlGTCAC. TGGCCCT .GT AA TTGT 'GCAGTACTG' TCCAAAC.CCCTGAAGCT' T. T 'GGAGCT ,C'GCCT ':'000 

" I A H G L T S S " l F C LAN'S N Y E R V H S R T " 1 L ;. R G L '200' T U T AI. TTGCTC' TGGACTGACCTCA TCTA TGCT A TTCTGCCTTGCU.CTCAUCT A TGAACGAGTACAT 'GCCGAACU T AA TCCT .GCCCGGGGGCT ,~, ()O 

QTILPLIIAAWWlLASLANlAlPPTINllCELfV '2'0' 'CAG.CT ATCCTCCCCCT ... T.GCTGCCTGATGACT .CT 'GCT AGCCTCGCU'CCT AGCCCTACCACCC.CAATTU TCT ... TCGGAGAGCTA TTTGT. ':'10(' 

V .. ASFSWSNMTIILUGTNIII TAlVSLVMll"TO 
'.:'201 OT .lAT AGCCTCCTTCTCATCATCAAACAT AACCAT T A TCCT AATCCCT ACT I.AT ATeATCol TT ACAGCCeT AT ACTeCCTCTACAT AeTT ATT AT AACTC , :':1e;.1 

RCKVTHHIKN I NPSF TRENAlMAlHl LPlll LS 
lZ301 AACG.lCGCAAAT ACACACACCACATTAAAAAT .lTCAACCCATCATTT ACACCACI.AAACGCCCT AAT AccceTCCACCT ACTCCCCCTTCTCCTCCT A TC ' .... .;f)(I 

:. N P K I v l C P I v r- 'RNA .... I~ --

1;'':01 ACTTAACCCT AAGATlCT ACT ACiGCCCCATTT ACTGT "AI. T AT ACTTT AAT AAAAACATT ACATTCTCAATCT AA T AATGCAAClGCAACTCTTCTT ATT , :'~>;o(' 

-yo- tRNAo~IAC") -, _ -,-- tRNA-l~CU"')--, , 
12S01 T ACCCAAAAI.CT ATGCAACAACTGCT ""TTCA TGCCTCCACGTAT .... AAACCTGCCTTTTTCAACTTTT AT AGeAT AeAACT AATCCATTCCTCTTACCA T :'f..oo 

III N~5 ~f T P l " l. l A " f 1 \. l l P 1 1 .. S N 
1~1 ACCAAAAAATTCCTCCAACTCCAAA T AAAACT AI. T AAAeCT A TTT ACCCCACTC" TACT AACTeCAA T A TT':" A TTCT ACTeCTGCCCATCA TT A T A TCT A ':':-00 

TOlVKNSLYPHYVKTTISYAFI:S .. IPT .... FJS 
12;'01 ACACCCAACTCT AT AAAAACACCCTATATCCCCACT ATCT AAAAACCACAA TClCTT ACGCCTTCATCATCACCA T AATCCCAACT ol T AAT ATTl ATCTC T :!fI,;)() 

SCOEAIJSNWH"lSIOTlKLSlSFKUOYFSTIF 
'lBOt CTCACCACAACAACCAATT A TCTCAAACTCACACTCACT ATCAA1CCAAACTCTCAAGCT A1CACT ''''',GeTTT AAAA 1 AGATT ATTTCTCAACCATCTTl , ~:o 

I PVAlF VT"S IIIE F S .. WYMHSOPT JNRfFKYllIIII 
1l":~' ATCCCTCT AGCGCTTTTCCTCACATCGTCCA TCAT ACAAT TCTCAA TGTGeT ACATCCACTCACACCCA T ACA lCAI.CCGA TTCTT T AAA T A 'TCTCCTCA • :l:)f)o 

FlIT .... JlVTANNlFOLFIC"ECVCI .. SfllIG 
nXl T ATTeCT AATeACT A TGAT AATTeT ACTT ACCCCT AACAA TC T I. T TTCAACT A lTC" TCGGcrCACAGGGACT AGCAA TCAT ATCT TT TeT ACTT AleGG 

"'''YGRAOAN1AAlCAllY'NRICOVCFIM ... M ... "r 
, 3:21 ATCATGAT ATCGCCCAGCACATCCAAACACTCCCCCCCT l.CI. AGC.c.A TCC TeT ACAACCCCA T TGCACACCT ACGCTTCATCAT ACCCAl ACCA lCA TTl • t:'t~1 

Figure 12, (Cnlltinued) 
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L T N S N A 11( 0 F COl FIT 0 HEN L "N J P l. L C L' L L J.. A T G K 
132'01 CTCACC.U.CTCAAACGCA TCGCACT TCCAACAAATCTT T A TCACCCAACACCACAACCT 'AAT ATTCCATTACT AGGGCTTCl ,.1T ACCACCC:'CACCT A lj30l"l 

SAO F C l H P .. l P S A U E G P T P V SAL" l H SST" V V t. C 
'3)0, AA TCCC;CCCAA TTCGGCCT ACA TCCGTGACTGCCA TCAGCCA nGAA=CCAACTCCTGTCTCCC;CCCT ACTCCACTCAOGT ACA< T AGTCGT AC;CAGG ':;':00 

v F l l 1 R r Y P l .. E ~ N K T .. 0 T L" T L C L G A iTT L F T A 
1)401 GGTCTTCTT ACTl ATCCGG TTTT ACCCCCTCA T AGAACt.AAACAAAACTATACAAACTCTCACCCTATGTTT AGGACiCT ATTACAACCTTGTTCACACCT 1JSOC 

1 COL TON 0 1 K K V V • F S T 5 S 0 "L G L .. I V T" 1 GIN 0 P Y 
13501 A TTTGTCCTCTCACACAAAA TCA T A TCAAAAAACTTGTTCCCTTTTCAACCTCAAGCCAACTGGGCCT AA T AATTGT 'AceA lTGCeA 11 AACCAACCTT , J600 

l A F l H 1 C THO F F K 0 II l "F II C 5 G S 1 1 H 5 "l N 0 E 0 0 1 
'360' 'CCTCC;CA TTTCT ACACA TTTC;COCOCACC;CA TTCTTCAA.C;CC. TC;CT. TTCA T. TGTTC'C;C;' TCU TT A Tcc.c.GrCTGAACGACGAACAAGACA T '3'00 

R K II G G l Y K P " P F T T T 5 l 1 1 G" S l ""l T G " P F l T G F '3'0' TCGAAAA" T AGGCGGATT AT ACAAACCAATC;CCCTTCACC.CT'CCTCCCT AA TC" TTC;C;UC;CCTCC;C"CTC .. CAGGT AT"CCTTTCCT AlCAGGTTTT '31\00 

., S K 0 L 1 lET ANT S V T Nil." ALL 1 T l 1 A T S L T "A " Y S 
'380' T A TTCCUAGACCT AA TCA TCGAGACAGCCAACACGTCGT A T .. CCUCC;CCTG'C;CCCT .. CT ... TT 'CTCTC" TTC;CC.CATCCCTT AC.GCTGCCT ACA '3;.00 

T ~ J' U F F V L l GOP R F N T L N LiN E N NTH LIN S I K R 
'390' GT ACTCGAA TT A T A TTCTTTG TC;CT ACT AGGACAACCACGA TTCAA T ACCTTGU TCT "ATCU TG"U" T .. T ACCC"CCTCl TCAACTCCA TT .. ACG '.000 

l l 1 Ci S 1 F ;. G Y L J S Y N 1 P P T T"! po'.. T U P Y V L K L T 
14001 TeTeT T AATCGGAAC1A lCTTTGCAGGAT ATCT AA1TTC11 ACAACATCCCCCCAACAACTATCCCACAAAT A.ACT AT ACCCT ACTA TeT AAAACT AACT ,.: 100 

A L A V T I I. G F I L ALE L N L A A K N L K F .. y p'S N L 'F K F S 
,., 0' GCTCTTC;CCGTGACT l TCC;CAC;C;CTTCA TCCT .. C;C. TT AG"'CTT ... TCTCC;C=T ........ CTT ...... TTT .. T AT "CCCTTC ... ACCTCTTT AAGTTTT "200 

N L l C Y F P 1 V U H R l P S K .. S l T .. S O' K SitS .. L L 0 .. [ 
1':~1 CClAceTeTT AGGGr ACTlTCCAA TrCT AA T ACACCGCCTCCCATCAAA£ATCAGCCT "ACT ATCAGCCAAAAGTCCGC.c. leGA TACT A T TAGACA T AA T '.1300 

" lEN V l P K S I" S l F "0 " I( .. 5 T T" V 5 N "0 K G L V I( l Y F l 
'.30' TTGACT OGUAA TG T A TT ACCCAAA TCC' TCTCCTT A TTCCl ... T ....... TGTC"'CT "CTGT .. TCT ... TCAG .... AGG .. CT .. GTT A .... CTCT 'CTTTTT l "'00 

N G R" T "II V L V G S " G T V 
SFIIITlAlSllllNSHE* 

'''0' TCTTTCl T AA TC"CCCT lC;CCCTC"C;CCT ... TCTT 'CTT .. TTCCC'CG .. CT ... CTTee. T ... TClCC",C"C"CCAA T ... C;C ..... CA TCAC;CCC;C;TCAC .. ~ 

V V l " T G Y S y .:. A .. I" Gil .. "E E S F F G s" 0 G T "0 Y 1 V " 0 G 
14!>O, ... CC .. CT ... TC ... GTTCCA T AACT. TAT "GCC;CCC;C ... TTCCC' T=CTCCTC .. CT ...... G ... CCCTG .. GTC.CCTGT .. TC" T .... TC .. CCCAA TC .. CCT 14500 

.. G N "F K F V V EVE 0 E K L 1 Y C .. T" L L E ".. l V G T 1 F II A l 
,.~, C;C.CC. TT .. ACTT.u T ACGlCTTCT "CCTC" TCTTCCTTT ....... T .. T ... C ... GC"GTT ... T .... HCTGCT .... C .. CCCCCCT ... T ..... C .. TTGCT ... T. ,. '00 

V A K U S T ... A E P V peT A .. A TTY G F V V l .. G 'G l Y I L F V 
1470' CAC;CCTT .. TT lGACGTCCACGCCTC'CCA T ... CCCTC'GT AC;CC' T "C;CCGT ACT AT .. TCC .... C.CT ACGAGT. T .CCCCCT A ... T ... TT .. GAA"C '.800 

"lGlFSCGFNLVIGCGTGC;'VllGFGGYIPSPI( 
"801 CA 11 A"'AceT AAAAA TCATeCCCCAAAATTCAACAC"AT ACCACAACCACT ACCACCAGCCACAATTAAACCAAACCCACCAT AAATTGGACA.t.CCCTTT '''::lOQ 

S S F S V F S V V f V T S L t F V I Y -T-' :
06..r 

"901 Ct..ACAAAAACTT ACAAAGCTC.c.CT ACAA .... ACTCT "CTT .. AAATAA .. T .CAATCT ATCTT ATCATT ATTCTCACATCCAATTT AACCATCI.CT AATCA 1.. 1':>0('1..1 

CylB --
- IRNAGlu --, .. T N IRK S H P l J K J I N H S FlO l 

1~1 TGAAAAACC~ TCCTTcr A TTTC .. ACT AT AACAACTT AI.. TCACCAACATTCCAA"ATCACAeceeCTT ATCAAAATT A TT AATCACTCA TTCATCCA TCT A':,'..)0 

PAP$N I SA .... NfCSllC'tlCl TlO Il Tel F lAUHY 
'~'O' ecccccec", TCT AACATCTC"GCA TCATGAAACiTCGCCTceCTTCT AGGACTCTCCCT AACCTTAC.lAATCCTCACCGGCCTCT TTTTGGCCAT "C"CT :~.?l'o(l 

TSDTUTAFSSVTHICROVNYCWIIRYlHANCAS 
lS2'O' AC"CA TCAGACACA" T 4"CCGCCT T TiCA TeAC':'T .c.eCCACATCTCTCCCGAeCTT AA TT ATGGCTCAA TCA TeeeA T A TT ':' &CAeceCAACCCACCTTC , SJOQ 

IIFFJClVUHVGRCUVYCSYTFSETlIN1Glllll.lf 
l!,)()t TATATTCT1T A1eTCCCTGT ACAT ACATCT ACCACCGGC .. AT ATACT .lCGGeTCCT ACACCTTCTCAGACACATCAAACATTGCAATCAT ACT ATT ATTT '~N 

TV .. AT .. FMCVVlP"COIISFIIGATVITNllSAIPY 
t S4Ql AeAG TCA T ACCCAC"CCTTTT A TCGGA T ACC TeCT ACCA TGACGCCAAA TC TCC TTCTCAGCACCAACCGT AA TCACT AAeCTce TGTeACCAA TTeCA T 1 ~S0C 

tCTElVEffl"CCfS'tIOt(.lTlTRffCfHFllPFI 
'~Sl)1 ACATCCCCACTCAAC TACT ACA" TGAATCTCAGCiGCGGTTCTCAGT ACACAAAcceACCCT A"CACCATTCTTTCGCT TCCACTTCATTCTTCCA TTCA T 1 :",0:', 

ISALAC;VHLlflHETCSNNPSC;ITSDSDKIPfH 
,S6{)1 TATCTC&.CCCTT ACCACCACT ACACCTCT TAT TCCTTe&. rGAAACI.GCA TeT AACAAceCCTCAGCAATT ACATCCGA TTeACAeAAAA TeceA T TceAc ,~, ."l)t' 

PtftfTII(OJlGllVlVlTlUllVlFSPOllCOPON 
,~.;Ol eel. T ACT A T ACAA TC"AACACATCCT AGGTeT TCT ACT AC T ACTTT T AACACTC" TACT ACTCCTceT A TTTTCACCAGACCTCCT AGCACACCCACACA 1 'oI"o..~'1 

YIP ... NP l N T P PHI I( P E" Y F l r A tf A I l R SIP N K l 
'')no~ ACT ACATCCCACCCAACCC T TT .c.AAT Accce TeCCCA T AT T AAACCTGAATGAT ACT TCCT AT TeGeAT ACGCAA TTCTCCCI. TeCATCCC,. Al..CA.U,CT 

Figure 12. (Continued) 
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G G v loll V lSI· l V l . All P 1 L H· T S I( ·0 R G .... F R P l S 
1590' olGGGGGolGTCCT olCCCCT AGT ACTCTCCA TCCT AGT ACT ACCU TCA TTCCU TCCTCCACACCTCC"UCAACGAGGAA T AA TGTTTCGACCACT AACC 16000 

C C l F • L l V A ell T l T " 1 G G o·p V E H P FIT 1 G·O lAS 
1600 1 CAA TGTCT A TTCTGACTCCT AGT ACCGGATCTCCT AACCCT AACATGAA TCGGTGGCC .... CCTGT AGA .. CATCCGTTCA TCACCA TCGGGCAACT ACCCT 16100 

1 L Y F S T L L t l. .. Pt' S G 1 . 1 E H R L l K W * ~. IANA·Thr --
161 ~ 1 CCA TCCT A T A TT TCTCUCCCTCCT AA TCCT AA T olCCCA TCTCAGGCA TT A TTCUUCCCTCTACTCAU TCAACAeTCTTTCT ACT A T AT AAAAT .. CT 16.."'00 

. . . . ----r--. . . . --. tRNA~ro . 
16201 TTGGTCTTGTAAACC .. AAAAACC .. GUCA T A TCCCCTCCCT AACACTTCAAGCAACAACCAACACCCCCACT ATCAGCACCCAAAGCTGAAA TTCTTTCT 16300 

. ---r- ContrOl R~fOtt . --. " . 
16le 1 T AAACTA TTCCTTGCCAA T 'CColCAAACCAACCCCAT AACTTTCAT .... TTCAT A TO. TTCC" TATACCC .. T ACTGTCC TTGGCCAGT A TGTCCTT A TTTCC 1(,.:00 

1';':)' CACAAAAUACCAAGT AAAAACCCCCAAACACCACAACCCAAAACAC"C"A TCT AAAA TCACTCT A TT A"CCACCAACTCACCCCAGGGGGT' TT AT olCA 16500 

\1 RS.2--. . T . . . . . . . 
lb50 1 CCCA TAT ACA T AACACA TACT .. TGTACA TCGTCCA TT AA TTCCT AGTCCCCATCAA TO. TT AACCATCTACAGGAGTTT AT A T AT A TT ACA T AACACA T AC 16600 

- T.-- ...... -.- T 
16'.>01 T .. TCT A T A TCCTCCATT AA TTCCT "CTCCCC" TGAA T ATT AACCATCT ACAGT ACTTTATATA TA TT ACAT AACACA TACT A TCTATATCCTCCA TT U T 16700 

- - \1-
16'01 TCCT AGTCCCCATCAATA TT AACCATGT ACAeT AeTTT A T AT AT A TT~ AAC"CATA"TAGTCCTTA" TCGTCCA TTCACCTT AA TTCT AGGACAGTC l680C 

16801 TTCT ATGGACCTC .... CT A TTCCAAAGACCTT AA TC ... CCTGGcCTCGACA .. ACCACC .... TCCTTCCTCG .... CGTCTACCTCTTCTCCCTCCGCGCCC .. TTT 16<>00 

16!:1e' CAACGTGGGGc;TTTCT AT A"CGGAACT A T "CC TGCCA TCTGGTTCTTACTTC .. GCGCCAT .... AA TCCTTGAAACCAA TCCTTColCTTCTCTCAAA TGGGA 1 '000 

~:-:J:' CATCTCCAT 1 :"OO'_~ 

Figure I 2. (Continued) 
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The total length of the cat sequence is 17009 bp. Total base composition of the 

mitochondrial genome is 32.5 % A , 26.2 % C, 14.2 % G, and 27.1 % T. Similar to seal 

mtDNAs. the cat mitochondrial genome exhibits a high overall dG content among 

mammals but retains the strong bias against G at the third codon position in structural 

genes. The pattern of codon usage in cat mtDNA (Table 4) follows the preference 

patterns observed in other mammalian mtDNA sequences, with the possible exception 

of lie and Phe codons. Compared to harbor seal codon usage, cat mtDNA shows an 

increase of TTT. probably at the expense of TIC codons. Also, the cat initiates the 

ND2 gene with a non-AUG codon, ATC (lie). 

In contrast to other mammal ian genomes, the ATPase 8 gene is extended by the 

duplication of one Q residue at the 3' end which may have resulted from slippage 

during DNA replication. Also, a total of 34 bp comprise the untranslated spacer 

nucleotides between mitochondrial genes. 

Analysis of [RNA Genes 

The canonical secondary structure features common to most vertebrate 

mitochondrial tRNA molecules (Cedergren et ai, 1981), such as the anticodon (AC) 

stem-loops, and T-phi-C and amino acid-acceptor (A-A) arms, are also observed in 

some feline mitochondrial tRNAs (Fig. 13C). When compared with cow or harbor seal 

[RNA sequences, most differences occur in either the T-phi-C arm, dihydrouridine­

loop, or the "variable" loop region between the AC stem and the T-phi-C arm, and 
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Fig. l3. - A. Physical map of coding genes and major restriction sites within the cat 
cytoplasmic mtDNA. Genes on the inner circle are transcribed from the L-strand. 
Locations of the tRNA genes (shaded boxes) conform to the canonical placental 
mammalian arrangement and have been previously drawn (Lopez et al. 1994). Listed 
enzymes recognize 6-base bp sites and cut less than four times, except HindUl which has 
five sites. The following abbreviations were used: HSP - putative heavy-strand promoter. 
OHR - origin of heavy-strand replication; OLR - origin of light-strand replication. B, 
Predicted secondary structure of the OLR (L-strand origin of replication) (energy = -
14.0). Sequences are shown in H-strand orientation; C, Representative tRNA cloverleaf 
secondary structure of tRNA-Lys in cat mtDNA. Diagram was produced with FOLD 
program of Zuker and Steigler (1981) in GCG (energy =-11.0). 
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many substitutions in one stem strand were compensated in the corresponding stem 

strand. Insertion or deletion mutations (indels) are observed in the cat dihydrouridine­

loops of His, GIn, Phe, Pro, Tyr, Leu and Asp-tRNAs relative to bovine mtDNA 

genes. For example, the tRNA-Phe gene is 3 bp longer in cat than in cow mtDNA. 

The AC loop region is the most conserved tRNA region among alI comparisons. 

Furthermore. the cat tRNA-Leu (CUN) gene is longer relative to the harbor seal 

sequence, which is best explained by an arbitrary placement of the NDS S' gene 

boundary in P. vituLina mtDNA, causing it to be three residues (M-K-V) longer and 

discordant with all other mammalian NDS sequences. Feline tRNA sequences for Ala, 

Val and Met contain a large number of mutations in the AC stem when compared with 

bovine mtDNA, although most changes are compensated. 

MitochondriaL DNA COJZ!roL Region of the Cat 

The feline control region (CR) spans about 1560 bp (Fig. 14A). An unusual 

characteristic of the cat mtDNA CR is the presence of two distinct sites of repetitive 

sequences (RS2 and RS3) on opposite sides of the highly conserved core of the control 

region, which together extend the CR 447 bp longer than the human sequence. The 

locations of these repeats appear to be highly conserved when compared to other 

mammalian CR repeats (Wilkinson and Chapman, 1991; Ghivizzani et ai, 1993: 

Arnason and Johnsson, 1992). RS3. a 294 bp d(C-A)-rich repeat, which resembles 

nuclear microsatellites (Love et ai, 1990) as well as other carnivore CR repeats 
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Fig. 14. - A, Schematic diagram of the feline control region (drawn to scale). Numbers 
correspond to cytoplasmic mtDNA nucleotide positions shown in Fig. 1. Hatched boxes 
represent repetitive sequence sites, RS2 or RS3, following terminology of Hoelzel 
(1993). CSB I-Ill designate closest matches to previously identified "conserved sequence 
blocks" (Saccone et ai, 1991; Lopez et ai, 1994). B, Multiple alignment of three 
complete RS2-type repeats (80, 80, 82 bp respectively) in the cat cytoplasmic CR. The 
RS2 region spans nt positions 16504 to 16779 in the cat mtDNA. Evening bat and 
masked shrews sequence are also listed for comparison. C, Secondary structure of two 
of three 80 bp repeats at the RS2 site (pos. 16538) in the CR (energy = -25.3) produced 
by the FOLD. Black arrows mark the location of palindromic sequences shown in Fig. 
I A. and white arrows indicate the dG substitution observed in two repeats. 
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(Hoelzel et al. 1994), is found at the L-strand 3' end (beginning at nt. pos. 270) of 

feline mtDNA (Fig. 12). RS3 contains a 6-8 bp core unit. ACACACGT, imperfectly 

repeated 37 times int he mtDNA sequence. The RS2 element at the 5' (left) end of the 

CR L-strand consists of three complete 80-82 bp monomers (a-c), which are highly 

conserved among each other (91-98% similarity) (Fig. 14B). The cat RS2 repeats also 

show 72-75 % and 67-74 % sequence similarity to homologous mtDNA CR repeats 

observed in the evening bat and masked shrew, respectively (Wilkinson and Chapman, 

1991: Stewart and Baker. 1994). The 3' -most cat repeat (RS2c) showed the greatest 

divergence at its own Tend. while the most 5' repeat unit (pos. 16504), possessing 

94 % similarity and one deletion relative to the consensus, is truncated after only 34 bp 

in cat mtDNA. The cat RS2 sequences contain several palindromic motifs (5' TACAT­

---ATGTA 3') beginning at pos. 16507 which could potentially form secondary 

structures and possibly function as terminal associated sequences (TAS) involved in D­

loop replication (Foran et ai. 1988; Saccone et aL 1991: Madsen et ai, 1993; Brown. 

1986). Array secondary structures appeared more stable with two or three RS2 repeats 

versus one repeat unit. These secondary structures may have facilitated the 

expansion/contraction of repeat numbers following the mode! of Buroker et al (1990). 

The non-integral repeat number may reflect mutational decay or misaligned slippage 

during rounds of duplication. Preliminary data indicate that the RS2 region is hyper­

mutable and highly heteroplasmic within individuals of other species of Felidae (M. 

Culver, unpublished observations). 
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Comparison of Cytoplasmic MtDNA and Numt Homologous Region 

Homologous Numt DNA sequences extend 7946 bp and were derived from a 

single monomer of the tandemly repeated chromosomal array estimated to range from 

about 38-76 copies (Lopez et ai, 1994). The overlapping homologous region between 

cytoplasmic mtDNA and Numt begins at cytoplasmic nt. pos. 529 within the RS3 repeat 

and includes about 80% of the COli gene to nucleotide 8454 (Fig. 12). The last 304 

bp of the Numt COIl gene in Fig. 12 occur upstream of the CR RS3 repeat sequences 

in the original pNumt. 1 clone, corroborating the observations of an ill situ excision, 

circularization, nuclear integration and tandem amplification at the chromosomal Numt 

locus (Lopez et ai, 1994). 

Tables 5 and 6 summarize the pattern of mutational divergence between Numt 

and cytoplasmic mtDNA genes of cat and other species. A total uncorrected nucleotide 

sequence difference of about 5.1 % exists between the two feline complements. The 

overall base composition of Numt did not increase in dA and dT content relative to 

cytoplasmic mtDNA: Cytoplasmic- (33.3%) A, (26.4%) T, (24.8%) C, (15.4%) G vs 

Numt- (32.6%) A, (25.8%) T, (25.2%) C, and (16.3%) G. When changes in the cat 

homologous region are grouped according to codon position, 72 % of the base 

substitutions occur at the 3rd position. and 23/51 (45%) 1st codon substitutions are at 

synonymous Leu codons (Table 5). These data suggest that more changes than 
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Table 5. Nucleotide Substitutions in Protein Coding Genes of the 
Homologous Region between Cat Cytoplasmic mtDNA and Numt 

by each Codon Position 

Codon position 
Gene # Nts. 1** 2 3 

NO 1 957 14 (23%)/3 3 (5%) 11 44 (72%) 15 

NO 2 1042 16 (21%) 16 9 (12%) 13 52 (68%) 16 

COl 1544 15 (17%) 13 7 (8%) 14 64 (73%) 16 

CO 11* 250 6(17%) 11 2 (6%) 11 28 (77%) 11 

Totals 3793 51 (20%) 113 21 (8%) 19 188 (72%) 118 

-Entry values: (Total # Substitutions (% Substitutions) / # Tv 
* Includes only the homologous mtDNA region in Numt. 
**- 23 substitutions at Leu codons are synonomousi the remainder 
are nonsynonomous (NS) 

Total 
Subst. 

61/9 

77/15 

86/13 

36/3 

260/40 

00 
t.,) 
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expected by random chance were synonymous. and further indicate that most of the 

divergence between Numt and cytoplasmic mtDNA occurred in the cytoplasmic genome, 

where selection pressure constrained random mutational drift. 

A comparison of the pattern of mutational divergence between feline cytoplasmic 

mtDNA and Numt. relative to mtDNA divergence between related species from other 

mammalian families (e.g. fin/blue whales. harbor/grey seals) is presented in Table 6. 

All three comparisons involve recently diverged mtDNA sequences (seals: 2-2.5 MY A­

Million Years Ago: whales: <5.0 MYA: and Numt/cywplasmic ca. 2.0 MY A) 

(Amason et al. 1993: Arnason and Gullberg. 1993). The percent similarity values for 

each gene appear comparable among the three datasets and likely reflect gene-specific 

evolutionary rates. Thus. CO subunit and rRNA genes are the most conserved, followed 

by the NDI and ND2 genes in all three comparisons. Moreover. the varying Ti:Tv 

ratios observed between the different gene classes (protein, tRNA and rRNA). probably 

reflect the different selective constraints acting on each gene class. For all three 

groups. rRNA genes consistently show the lowest Ti:Tv ratios. Despite having the 

longest estimated divergence times among the three data sets, the whale data set retains 

a high overall Ti:Tv ratio of 9: I, similar to the seal ratio of 12: 1. I n contrast, overall 

(3.5: 1) and individual feline gene Ti:Tv ratios greatly deviate from both seal and whale 

data sets. while corresponding sequence similarities remain relatively uniform (Table 

6). Furthermore. between the two seals. only 5 percent of third codon position changes 

were transversions. while twice as many transversions accrue at the same position in 
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Table 6, Nucleollde Substitution Patterns from Pairwise Comparisons of Closely Related Mammalian Taxa 

NumVDomeslic Col Horbor SoaUGroy Seal Fin WhalolBluo Whalo 

Geno Subs!. Gap Ti Tv Ti:Tv "kSimiiar Subsl Gops Ti Tv Ti:Tv % Similar Subs!. Gaps Ti Tv Ti:Tv "kSimilor 

Control region" 

I·PHE 

12S rRNA 

I·VAL 

16S rRNA 

I·Lou (UUR) 

NOI 

I·ILE 

I·GLN 

I·MET 

N02 

I·TRP 

I· ALA 

I.ASN 

OLR 

I·CYS 

I·TYR 

21 

32 

3 
42 

3 

61 

o 
3 

4 

77 
2 

3 

2 

5 

o 
10 

12 

o 
9 

o 
o 
3 

15 

I 

o 

3:1 

1.0 

2:1 

2:1 

2:1 

3.0 

6:1 

3.0 

1:3 

4:1 

1:1 

0:1 

3.0 

1:1 

0:1 

3:1 

92 

96 

96 

96 
97 

95 

93 

100 

96 
94 

93 

97 

99 

96 
94 

96 
94 

11 

20 

2 

35 

o 
29 

I 

46 

1 

o 
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o 
o 
5 

o 
1 

o 
6 

o 
o 
2 

1 

o 
1 

o 
o 
o 
I 

o 

10 

1 

16 

2 

26 

o 
29 

o 

43 

1 

o 
o 
o 
o 
5 

o 
2 

o 

o 
o 
I 

o 
o 
3 

o 
o 
o 
o 
o 
o 

10:1 

1:0 

3:1 

2:0 

4:1 

29:0 

0:1 

1:0 

1:0 

14:1 

1:0 

5:0 

97 

99 

96 

97 

97 

100 

97 

97 

99 

96 

96 
99 

100 

100 

100 

100 

93 

12 

6 
44 

2 

60 

2 
72 

o 
I 

101 

I 

2 
o 

2 

o 

o 
6 

o 
3 

2 
o 
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o 
o 
o 
o 
o 
o 
o 
o 
o 

7 

36 

I 

67 
2 
70 

1 

o 
I 

69 
1 

2 
o 
1 

2 

o 

5 

1 

6 

13 

o 
2 

o 
o 
o 
12 

o 
o 
o 
o 
o 
o 

1.4:1 

7:1 

5:1 

1:1 

5:1 

2:0 

35:1 

o 

1:0 

7:1 

1:0 

2:0 

1:0 

2:0 

cal 
4 

66 
3 
3 

36 

5 

o 
2 
o 
5 

o 
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o 
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o 
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o 
o 
o 
I 

o 
o 
2 

16 

I 

22 

2 

30 

3 

52 

o 
3 

I 

62 

I 

o 
3 
I 
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3 
73 
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1 
33 
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the cat mtDNAs. The greatest flux of cat Ti:Tv values appear in the tRNA class. 

which had the lowest ratios (1.6: 1). In several studies. the ratio of transitions to 

transversions has been shown to exceed 20: 1 in recently diverged mtDNA sequences 

(Brown et al. 1982; Ruvulo et aI, 1993), and generally, transversions cause more amino 

acid replacements, which accumulate with increasing divergence time (Aquadro and 

Greenberg. 1983; Jukes, 1987). 

The feline mtDNA homologous region contains a total of 21 gaps. representing 

indels that ranged from 1-10 bp in length (Fig. 12): of these. 12 were single nucleotide 

indels. Fourteen of the gaps (66%) are insertions in the Nurru sequence. which lengthen 

Nurru by at least 20 bp over the homologous cytoplasmic mtDNA. Five gaps occur in 

the CR, 7 in the rRNA genes. 5 in the ND subunits and only 3 in the CO genes. A 

large proportion (25 %) of gap mutations are found in the variable 3' term inus of the 

CR, reconfirming the relaxed mutational constraints in this region. These mutations 

may derive from DNA polymerase slippage during DNA replication. since at least eight 

indels occurred at sites which are "simple", homopolymeric. or with one alternating 

nucleotide motif (Tautz et aJ. 1986). For example. two gaps involving > I bp occur 

at sites with alternating residues or direct repeats (m pos. 1848. 4124). Other long (12 

bp. 6 bp) insertions of poly-A sequences occur in the 16S rRNA gene (pos. 2533) and 

in the ND2 gene (pos. 4918). respectively. These observations plus preliminary 

measures of cryptic simplicity suggest the influence of stochastic DNA turnover 

mechanisms with respect to indel mutations and other sequence changes (Dover. I 9~2: 
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Tautz et al, 1986; Hoelzel et ai, 1993). Lastly, because two-thirds of the indels would 

disrupt ORFs in mitochondrial structural proteins, the lineage of these mutations likely 

derive from the Numr sequence. 

Variable Evolutionary Rates of Individual Mitochondrial Genes among Mammals 

To quantify relative divergence rates of mitochondrial genes for molecular 

evolutionary studies, mean percent similarities in DNA and amino acid sequences for 

all 37 mtDNA genes and the CR within five mammalian orders (rodents, primates, 

carnivores, aniodactyls, and cetaceans) were calculated (Tables 7-9). In addition, the 

average divergence of mammalian mtDNA genes from an outgroup species, chicken 

(Gallus gallus) was also computed. The most consistently conserved mitochondrial 

genes were COl, COllI. and 12S rRNA sequences. while the most rapidly evolving 

mtDNA sequences were both 5' and 3' CR termini. the ATPase 8, ND2 and ND6 

genes (Table 7, column I). At the DNA level, the 5' L-strand (left) CR was the most 

rapidly evolving region between closely-related pairs of taxa (i.e. both seals, both 

whales, seal-cat), while the 3' CR became almost equally divergent in more distant 

comparisons. Sequence divergence from the outgroup, chicken mtDNA (Table 7, 

column II), did not always produce the same ranking as mammalian-only estimates 

(Table 7, column I). For example, the 12S rRNA gene and the conserved core of the 

control region showed greater divergence from chicken mtDNA, while the ND4 and 

ND5 genes exhibited higher overall conservation. The 16S rRNA gene also had highly 
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Table 7 Pairwise comparisons of nucleic acid sequence similarity in Mitochondrial genes and the Control region (CR).' 

III IV V VI 
mammal' Std. nommal • chicken II cat· mouse· rat harbor seal· fin whale· 

region size average range Dev. order II overage order II harbor seal order II order /I grey seal blue whale 
CR·3· • 1014 47 28 9 1 42 1 73 2 70 1 96 97 
CR·S' • 576 48 33 13 2 44 2 52 1 79 4 89 87 
ATP8 204 67 17 5 3 51 3 76 3 80 5 97 93 
ND2 1044 67 15 5 4 58 6 78 5 75 2 96 90 
N06 549 69 18 6 5 54 5 80 9 81 10 94 91 
NOS 1851 70 11 4 6 63 11 76 4 77 3 96 91 
ND3 350 72 12 5 7 60 8 80 10 80 6 98 91 
N04 1378 72 t2 3 8 63 12 78 6 80 7 95 90 
ND4L 297 73 14 5 9 58 7 79 7 81 9 98 91 
ATP6 684 73 7 2 10 61 9 80 8 85 15 97 91 
16S 1669 75 14 5 11 62 10 86 17 80 8 97 95 
NOI 976 76 10 3 12 70 15 64 15 61 II 97 93 
CR·C + 264 76 20 6 13 52 4 86 18 87 17 96 99 
CO2 664 76 13 5 14 69 14 62 12 85 16 96 92 
Cya 1146 77 7 3 15 73 17 81 11 64 14 95 92 
12S 1010 78 8 2 16 66 13 84 16 92 18 96 95 
C03 786 78 6 2 17 72 16 82 14 62 12 96 93 
COl 1554 79 3 1 18 77 18 62 13 83 13 96 93 

'·A lJPOMA alignment olgorithm with gap weighta5 and gap length welghta O.3 was used except for the CR where stringency was reduced 10 a 
gap weighta I and gap length welghtaO.05. For Similarity calculaUons a gap penalty of 1 subslilution was used. 

'.Average percent similarity of pairwise comparisons between a represenlative species from 5 mammalian orders (human. domestic cat, 
fin whale, cow & mouse) 

II·Average percent similarity between chicken and a representative speCies from S mammalian orders (human, domestic cat. r,n whale, cow, 
and mouse) . 

• ·The CR was spilt into three regions, the highly conserved region (CR·C) and the two variable regions located S' and 3'to the conserved region 
(CR.S' nd CR·3' respectively), relative to light s\rand replication, 

". The crder was determined by using four decimal places to order the similarity values. An order number of 1 was assigned to the least similar 
comparison and 18 was assigned to the most similar comparison. Ties In order number occurred In the cat· harbor seal and mouse·rat 
columns, In both cases the mammal order number was used to break the lie, 

_ ·A cluster analysis was performed on the mammal comparisons and the clusters with significant dillerences occur above and below the line. 

I 

I 

I 

00 
00 
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Table !3. Pairwise comparisons of nucleic acid sequence similarity In MltochondrlaltRNA genes.' 

III IV V VI 
mammalA Std. mammal· chicken II cal· mouse· ral harbor scat· fin whale· 

region size average range Dev order # average order # harbor seal order # order II grey seal blue whale 
tTHR 72 68 24 9 1 48 1 83 7 84 3 96 93 
tCYS 69 68 33 15 2 59 5 91 17 87 7 99 97 
tVAL 73 66 23 7 3 56 4 85 9 87 8 99 97 
tGLY 70 70 28 11 4 63 12 73 1 80 9 100 97 
tSER (AGY) 67 72 30 11 5 54 3 97 20 72 1 98 95 
tPRO 70 72 17 6 6 60 8 82 5 91 15 100 94 
tGLN 84 73 24 6 7 63 13 69 14 65 5 99 100 
tTRP 76 75 34 11 6 59 7 61 4 91 14 97 99 
ILYS 72 76 20 6 9 60 9 68 11 65 6 96 94 
lPHE 73 17 19 5 10 59 6 87 10 82 2 99 86 
tASP 70 76 17 5 11 67 14 82 6 84 4 100 100 
tHIS 70 79 14 5 12 73 19 80 3 90 12 99 93 
tARG 69 80 19 6 13 52 2 66 12 93 17 100 97 
tASN 75 80 10 " 14 69 16 85 8 95 20 100 100 
tSER (UCN) 76 82 18 5 15 69 15 92 16 90 13 99 94 
tLEU (UUR) 75 82 13 5 16 74 20 89 15 97 22 100 97 
tALA 69 84 16 2 17 73 18 90 16 86 10 100 97 
tGLU 69 84 18 6 18 62 10 88 13 94 18 99 100 
tTYR 71 90 4 2 19 72 17 79 2 90 11 93 100 
tLEU (CUN) 72 90 7 3 20 84 21 99 21 96 21 100 99 
tiLE 72 92 7 2 21 62 11 96 19 91 16 99 99 
tMET 69 95 6 2 22 91 22 97 22 94 19 99 99 

'·A UPGMA alignment algorithm with gap weight-S ond gap length weight-0.3 was used except for the CR where stringency was reduced to a 
gap weight-I ond gap length welght-0.05. For similarity calculations a gop penalty of 1 substitution was used. 

A.Average percant similarity of pairwise comparisons between 0 representative species from 5 mammalian orders (human, domestic cat, 
fin whale, cow, and mouse). 

II·Average percent similarity between chicken and a representative species from 5 mammalian orders (human, domestic cat, fin whale, COVl, 

and mouse). 
II-The order was determined by using four decimal places to order the similarity values. An order number of 1 was aSSigned to the least similar 

(omparison and 18 was assigned to the most similar comparison. Ties In the order number occurred in the mammal, cat·harbor seal 
and mouse·rat columns. The mammal·chicken order number was used to break the mammal tic, the mammal order number Vias used 
to break the other tics. 

I 

I 

C/J 
\0 
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variable rates between different lineages (e.g 80% conservation in the mouse-rat pair 

vs. 95 % between whales and 97% seals). The tRNA genes showed the greatest 

fluctuation in sequence similarity between lineages (Table 8). Also, the lowest Ti:Tv 

ratios were seen in the CR, and highest ratios were observed in the tRNA genes (avg. 

ratio of 0.6 in the CR, 0.91 in protein; 0.92 in rRNA and 1.55 in the tRNA genes). 

In the amino acid comparison (Table 9). the ATPase subunit 8 gene was the 

most variable mitochondrial gene with the lowest mean similarity of 55 % (range = 

34 % pts) among all five mammalian species. The ND6 and ND2 genes followed with 

63 % mean similarity. As seen for nucleotide sequences. the CO subunit amino acid 

sequences were ranked high in overall sequence similarity with the COl gene (93 % 

similarity) as the most consistently conserved gene followed by the COlli gene (~8%). 

The cyt b gene was also relatively slowly evolving with 83 % mean similarity. although 

a slight rate increase may have occurred in the carnivores (Table 9. column Ill). On the 

other hand. the ND4L gene was highly conserved between seals and cats reiative to all 

mammals (p < 0.01). 

Phylogenetic analysis with feline mtDNA and Numl 16S rRNA sequences was 

conducted to show its relationship with the other mammalian mtDNA sequences (Fig. 

15). A maximum parsimony topology extends the conclusion of Janke et al (I994), with 

additional cat sequences. and recapitulates phylogenetic relationships produced with 

other algorithms (e.g neighbor-joining, maximum likelihood) (Felsenstein. 1993). We 

used the 16S rRNA gene. since missense mutations in Nunu usually obliterated any 
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identity (but not homology) after alignment of the translated amino acid sequences. 

Nevertheless, other conserved mitochondrial genes, such as COl and COlli, produced 

branching hierarchies similar to the 16S rRNA results, which show the affinity of the 

two cat mtDNAs with each other and the seal sequences, as well as the recapitulation 

of an artiodactyl-carnivore grouping (Li et ai, 1990). 
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Tab!e 9. Pairwlle Percent Similarity (PS) in Amino Acid Sequences of Mt Genes 
among Five Mammalian Orders. 

III IV V VI 
Size Mammals Range" Sid Order Chicken vs. Ordor Cal vs. Order Ral vs. Order H. Seal F. whalo 

Gene (N res.) (All Orders)' olPS Dev. II Mammals" II H. Seal " Mouso " G. Soal B. whale 

ATPase 8 67 55 29 9.4 34 72 80 4 96 92 

NO 6 175 63 30 11.1 2 37 2 85 4 79 3 97 94 

NO 2 347 63 24 8.5 3 45 3 76 2 75 98 95 

NO 5 606 70 18 6.1 4 56 6 82 3 78 2 98 96 

NO o1L 98 73 20 7.8 5 46 4 94 10 85 6 100 93 

NO 3 115 75 24 9 6 57 7 89 6 86 8 99 100 

NO 4 459 76 20 6.8 7 59 8 88 5 87 9 98 97 

ATP<lsC G 227 78 12 3.6 8 55 5 92 8 85 7 97 95 

r'ml 318 81 13 5.1 9 72 10 92 9 81 5 99 99 

Cyt B 379 83 10 3.9 10 73 11 89 7 94 10 97 97 

CO II 227 85 26 10.6 11 67 9 96 12 99 13 100 99 

CO III 261 88 7 2.7 12 75 12 94 11 96 11 99 99 

COl 514 93 6 2 13 87 13 98 13 97 12 99 99 

• Lislmgs ore orderod Irom Icast (" 1) to highest percent similarity <" 13) among mt gon05. 
'. All statistics (mean. range. std. dov.) are based on vall/OS dorived Irom all pairwiso comparisons between 

human, mouso, fin whalo, cot, and cow mt genes . 
• Gap penaltios equivalent to ono substitulion were imposed on all Similarity calculations by CMATRIX. 
". Chicken (Gallus gallus) sequencos dorived from (Dosjardins and Morals, 1990) '-D 

• "The rango statistic may bo viewed as D measure 01 consistency, proportional to tho amount 01 rato variation among tho fivo lineages . 
'.-.) 

. T,cs were resolved by carrying out numbers to the fourth decimal placo. 
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Maximum Parsimony Analyses of 16S rRNA Sequences 

84161 

(92) 

101171 

(55) 

126164 77/44 
(96) 

(100) 

173167 -
213/95 

3161164 

~ ~- --

(100) 

11117 

(100) 

120181 

I 1~~0 
Homo sapiens 

Mus musculus 

17112 Fells catus 

l~ Numt 

'allchosrus 
rypus 

22114 I 

~~ 

Didelphis v, 

'hoea vltullna 

Balasnoptsra 
physalus 

Bos taurus 

rglnlana 

Pig. 16. Phylogenetic reconstmction with total 16S rRN A gene sequences. TIle 50% majority-mle consensus tree was created with 
PAUP 3.1.1 cmploying unwcighted maximum parsimony criteria and branch-swapping options (Swofford. 1993). Alignment of the 
complete gene (ca. 160() hp) from the respcctive taxa was done with defaull parameters (gap weight = 3.0) of PILEUP in GCG. TIle 
trec length equals 1615 steps. with consistency index of 0.755. Numhers ahove the branches designate the numher of total 
changes/homoplasics. Bootstrap percentages in support of each node from 100 iterations arc shown below the branches in italics 
and parentheses for cach node. 

\D 
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DISCUSSION 

Domestic cat mtDNA can be distinguished from other mammalian mtDNA 

sequences by its possession of a large, 7.9 kb tandemly repeated, homologue in the 

nuclear genome, termed Numr (Lopez et al. 1994). The remarkable transposition and 

amplification of Numt provides the opportunity to examine evolutionary leitmotifs, such 

as inter-organellar substitution rate differences, mutational polarity and frequency and 

synonymous substitution rates within both mitochondrial and nuclear compartments. 

Evidence that mtDNA genes can transpose to the nucleus, creates the alluring prospect 

of directly analyzing intracellular (paralogous) duplication events (Goodman, 1981; 

Hardison and Gel inas, 1986; Fukuda et ai, 1985; Smith et al. 1991; Zullo et a!., 1991). 

Structural aspects of cytoplasmic nuDNA organization 

In the cytoplasmic mitochondrial genome, the control region is longer than 

average due to two repetitive motifs, RS2 and RS3, at opposite ends, but its length does 

not exceed the 1838 bp CR of lagomorphs (Mignotte et al 1990; Biju-Duval, 1991). 

The compact vertebrate mitochondrial genome structure as defined by Attardi (1985) 

is probably maintained by selective pressures and therefore may limit the accrual of 

novel features such as CR simple repeats. Furthermore, length variation at 

homopolymer tracts has recently been associated with molecular drive mechanisms in 
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the Drosophila gene. mastermind (Dover. 1982: Newfeld et al. 1994). and DNA repeats 

in non-CR regions have been implicated in various mtDNA deletions associated with 

human disease states (Wallace. 1992). Other evolutionary explanations for mtDNA 

repeats are described elsewhere (Hoelzel. 1993; Hoelzel et ai, 1994; Ghivizzani et al. 

1993; Buroker et al, 1990; Rand. 1993). With respect to codon usage. base 

composition. gene order and gene size, and site of mutations, the cytoplasmic mtDNA 

sequence of F. caws conforms to most placental mammalian mtDNA genomes 

(Gadeleta et al. 1989; Anderson et al 1982; Kumazawa et aL 1994). 

Substitution patterns between homologous fetid nuDNAs 

Several salient reasons indicate the transcriptional silence of Nunu genes. 

including the disruption of ORFs by indels. genetic code differences between 

organelles. and the resemblance of the Numl locus to satellite DNA and likely 

proximity to heterochromatin-enriched centromeric regions (Lopez et al. 1994; 

Charlesworth et aL 1994). Therefore. Numr is expected to resemble pseudogene 

evolution through a stochastic pattern of substitution. presumably after its "release" 

from functional constraints (Kimura. 1983). Nevertheless. NUl1u can proceed under 

several possible modes of evolution relative to cytoplasmic mtDNA: 
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a) Numt and cytoplasmic mtDNA evolve at the same rate; 

b) Nllmt evolution is virtually "frozen" compared with the rapid (up to lOX) substitution 

rate of cytoplasmic mtDNA (Brown et aI, 1982. Nei, 1987); 

c) Numl as a pseudogene evolves faster than the mitochondrial genome. 

To determine which of the above models best describes the evolution of Numt 

and cytoplasmic mtDNA in the cat, we performed relative rate tests (Wu and Li. 1985) 

with both cat mtDNA homologues using gene sequences from ocelot or panthera lineage 

species (ocelots. lions etc.) as outgroups (Table 10). For 12S rRNA sequences. the 

relative rate tests indicated that Numt sequences were evolving faster (not statistically 

significant at p = 1.0) than cytoplasmic mtDNA. supporting previous conclusions and 

the topology showing unequal branch lengthS leading to Numl (Lopez et al. 1994). 

Using the more rapidly evolving 16S rRNA (Table 7). however. Numl and cytoplasmic 

mtDNA substitution rates appeared nearly equivalent in comparison to various oUlgroup 

felids (Table 10). 

The relative rate results. together with the analysis of variation among different 

mitochondrial genes (Tables 7-9. discussed below). provide an important corollary to 

the assumptions of rate variation between nuclear and cytoplasmic mtDNAs: namely. 

each model can realistically reflect the situation between nuclear and cytoplasmic 

mtDNAs. but ultimately depends on the specific mitochondrial gene being compared. 

Moreover. by default. the more rapidly evolving mtDNA homologue will more 
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Table 10. Comparison of Relative Evolutionary Rates between Numt and Cytoplasmic MtDNA 
in Two Different Mitochondrial Genes and with Diverse Outgroup Taxa. 

MAXIMUM PARSIMONY 1\ 

12S rRNA 16S rRNA 
% DNA Similari~ % DNA Similari~ 

Out group species Numt FCA-C~o Ratio' Numt FCA-Cyto 

Pallas cat (OMA) 16.0 3.0 5.3 19.0 6.0 

Lion (PLE) 16.0 3.0 5.3 14.0 12.0 

Tiger (PTI) 22.0 3.0 7.3 13.0 13.0 

Puma (PCO) 16.0 3.0 5.3 19.0 6.0 

Leopard cat (PSE) 16.0 3.0 5.3 18.0 7.0 

Ocelot (LPA) 16.0 3.0 5.3 18.0 7.0 

Kodkod (OGU) 15.0 4.0 3.8 19.0 6.0 

Combined Taxa 16.0 3.0 5.3 13.0 13.0 

•• Represents Ihe ratio of Numt : C~oplasmlc mlDNA branch lengths . 
• Numerical values representlhe branch lengths In character changes (parsimony analysis) leading to either Numt or 
to Ihe corresponding c~oplasmlc mlDNA sequence. Parsimony analysis more effectively "filtered out" the variation 
on the Internode branch leading from Ihe oulgroup to the bifurcating feline sequences. 

- Although differenllndividuals may have been used for the different genes, comparisons between Numt 
and c~oplasmlc mtDNA were determined within one Individual of the species. 
• - Weighted parsimony analysis was performed with each outgroup, using PAUP 3.1.1 (Swofford, 1993). 

Transitions were typically weighted 5X more than transverslons. 

Ratio' 

3.2 

1.2 

1.0 

3.2 

2.6 

2.6 

3.2 

1.0 

'-C 
--J 
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profoundly affect the overall pattern of the gene being compared. Also, higher overall 

mutation frequencies (ca. 70%) observed at third, versus first or second, codon 

positions in structural mitochondrial genes re-emphasize the presence of selected, 

functional constraints on cytoplasmic mtDNA substitutions (Table 5; Brown et ai, 1982; 

Miyata et ai, 1982). For gene sequences (e.g. 12S rRNA, COl) which evolve slowly 

in the mitochondria, the nuclear pseudogene rate of Nunu will appear rapid relative to 

the cytoplasmic rate. 

These interpretations of rate variation in mitochondrial genes and between 

organelles can also be viewed in the context of recent arguments in support of 

equivalent substitution rates between the nucleus and mitochondrial (mode a) (Lynch 

and Jarrell. 1993) or unequal rates (modes b or c) (Slade et aI. 1994). Besides the cat 

data. however. we are unaware of examples demonstrating the third mode of faster 

evolution at nuclear loci in mammals. 

As a secondary observation in the above analysis. similar proportions of 

mutations (ca. 70%) at the mostly silent third codon position in four different genes 

(Table 5) provide indirect evidence for constant synonymous substitution rates within 

felid mitochondrial genome. The constancy of synonymous substitution rates among 

coding genes continues to spark investigation and discourse (Langley and Fitch. 1974; 

Gojobori et ai, 1982; Li et ai, 1985; Ticher and Graur. 1989; Wolfe et al. 1989; 

Bernard i et al. 1993; Kondo et aI., ! 993). 
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Dating the birth of Nunu in the cat nuclear genome 

Choice of the most appropriate model (a-c) has a bearing on estimates for the 

precise date of NUm! integration into the cat nuclear genome. Using model (a) with 

equivalent rates between Numt and cytoplasmic mtDNA probably facilitates the simplest 

method for dating Nunu integration. For example. with preliminary data indicating 

4.4% mean 16S rRNA sequence divergence among several of the large cats of Panthera 

genus (lion. leopard. jaguar. clouded leopard. snow leopard). whose divergence times 

are known from fossils at 1.8 - 3.0 MY A, a date of only 1.0 - 1.6 MY is calculated for 

the birth of Numt (Wayne et al. 1989: 1991: lanczewski et al. in press: Johnson et al. 

in preparation). Alternatively, a previously calculated value of about 1.8 MY for the 

birth of Nunu was based on the second assumption of a faster cytoplasmic rate and 

5.3 % total divergence between Nunu and cytoplasmic mtDNA (Lopez et al. 1994). 

With a final value of 5.1 % total divergence presented in this study. the date of 

integration decreases to 1.7 MY, using the same calculation. These values define a 

fairly robust time frame from 1.0 - 1.7 MY since the original Nunu integration within 

an ancestral Felis species. 

A curiosity in the comparison of nucleotide substitution patterns between the 

three closely related mammalian pairs is the finding of lower bias against transversions 

and net decreases in dA and dT content in NUl1u relative to felid cytoplasmic mtDNA 

(Table 6). which challenges expectations for pseudogenes and non-coding sequence 
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evolution (Gojobori 1982; Li et ai, 1984, 1985). To help explain the disparity, elevated 

Ti:Tv ratios are usually more pronounced in mtDNA rather than nuclear sequence 

comparisons (DeSalle et ai, 1987). The disparities in mutational spectra probably also 

relate to the exceptionally dissimilar cellular environments within the mitochondria and 

the nucleus, which encompass differences in amounts of oxidative damage to DNA, the 

presence or absence of different enzymes and DNA polymerases involved in repair 

processes, and the physical structure of the double helix in vivo (Clayton, 1991; 

McBride et al. 1992: Miquel. 1992; Wallace. 1992). For example, Feig and Loeb 

(1993) observed a relationship between hypermutable nucleotide hotspots and the 

"pausing" of mammalian beta-polymerase at specific DNA secondary structures. 

Furthermore, since DNA repair of the nuclear genes may be directly influenced by the 

presence/absence of methylated residues (Hare and Taylor. 1985), the integration of 

NIl17l1 with a novel or non-existent pattern of methylation could dramatically affect 

repair mechanisms. However. the paucity of comprehensive studies directly quantifying 

methylation in mitochondrial genomes (Pollack et ai, 1984; Mazin et ai, 1988) restrict 

the capability of deriving general or reliable interpretations of these mutation patterns 

between Nunu and cytoplasmic mtDNA. Although overall DNA content is expected to 

become dA/dT-rich, due to the action of common mutagenic agents, it is possible that 

an insufficient amount of time has elapsed since the relatively recent divergence of 

Nian! from cytoplasmic mtDNA for the expected accumulations. Lastly. the ancestral 
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population of cytoplasmic mtDNAs that donated the original Nunu fragment, may have 

been polymorphic and possessed an a priori bias in base composition. 

Mutation Rates of Individual Mitochondrial Genes lvithin Functional Genomes 

Tight linkage between genes on the same mitochondrial genome does not 

predispose them to the same rate. Although similar conclusions have been previously 

derived using more rigorous statistical methods (Adachi et ai, 1993; Lynch and Jarrell, 

1993), the present analysis of relative sequence similarities and mutational dynamics in 

functional mitochondrial genes, was broad in scope and verifies rate heterogeneity 

between i) different mammalian phyletic lineages ii) different organelles (previous 

section) and iii) different mitochondrial genes within the same genome, especially with 

respect to nonsynonymous substitutions (Tables 7-9). Since it could impose a strong 

influence on the interpretation of rate heterogeneity between different mitochondrial 

genes from divergent lineages (Li et aI, 1985), base composition and codon usage in 

feline mtDNA was assessed but did not show any major deviations compared to harbor 

seal (Table 4) or other mammals. In general, primates (e.g. human mtDNA) represent 

the only lineage which significantly differs in both codon usage and base composition 

among five mammalian orders (Janke et ai, 1994). 

Within single genomes, understanding the variation in evolutionary rates between 

distinct mitochondrial genes is similarly meaningful for phylogenetic studies, since 

genes with higher substitution rates will better distingui~h closely related taxa, while 
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slower genes can resolve older bifurcations (Mindell and Honeycutt, 1990; Wainright 

et al, 1993; Ruvulo et al 1993; Lynch and Jarrell, 1993; Graybeal, 1994; Slade et ai, 

199~). Among five mammalian orders, mitochondrial genes can be divided into three 

groups with either very fast (CR), fast (ATPase 8, ND2, ND6 etc.) and slow (l2S 

rRNA, COl etc.) substitution rates. Although others have demonstrated that amino acid 

substitutions accumulate more linearly compared to the DNA level for distantly related 

phyla (Brown et ai, 1982; Brown, 1985; Lynch and Jarrell, 1994; Adachi et ai, 1993), 

pairwise comparisons of amino acid similarities for many mitochondriai genes have 

higher variances and ranges (Table 9) compared to the same statistics at the DNA level 

(Tables 7, 8). This likely reflects the expected mutational saturation for many mtDNA 

sequences in the time frame of mammalian radiations spanning about 80 MY (Carroll, 

1988; Novacek, 1992; Graybeal, 1994). 

Each gene carries its own peculiar biases in base composition (Wolfe et ai, 

1989; Kondo et ai, 1993; Bernardi et aI, 1993; Adachi et ai, 1993), codon preferences 

(Li et ai, 1985: Moriyama and Hartl. 1993), hypermutable or invariant sites (Palumbi, 

1989), response to selective or mutation pressures etc. (Kimura, 1983; Gillespie, 1986: 

1991; Hasegawa and Kishino, 1989), which can all significantly affect substitution 

rates. Overall, these data suppon the contention that molecular evolution or 

phylogenetic studies view each mitochondrial gene as distinct units with various levels 

of rate heterogeneity. 
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CHAPTER 3 

TRANSCRIPTIONAL INACTIVITY OF THE NUMT LOCUS 

BACKGROUND 

Non sum qualis eram - "1 am not what I used to be" 

Several compelling reasons support the transcriptional silence of NUm! locus 

genes, such as the differences in genetic code between organelles, (Barrell, 1980; 

Attardi, 1985), indel mutations, and a computer searches of the NUm! sequence 

revealing a paucity of potential ORFs (Fig. 16). Nonetheless, the empirical verification 

of NUm! transcriptional inactivity was a major objective of this dissertation, because 

bestowing pseudogene status on NUm! genes can profoundly affect the implications and 

interpretations of evolutionary patterns. such as Numt's potential utility as a neutral 

reference for calibrating felid-specific mtDNA mutation rates, or as a novel source of 

mitochondrial proteins. The last point bears directly on a primary (but rarely 

addressed) assumption of SET, which is that the transfer and successful integration of 

genetic information between symbiotic organelles should be immediately followed by 

their activation and expression at the new locus (Gray 1989; Margulis, 1981; Margulis. 

1993). Also. Li (1985) has postulated that "with the non-functional ity of pseudogcnes. 
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FRAMES of: Uumtl.Rea Ck: 2939, 1 to: 7.946 February 7. 1995 11:15 
ASSEMBLE October 8. 1993 16:26 

1 I ~ ~ q 1-.1] I I h 1--1 h 11 I q I ~ h h h hh q ~J~-U1~ 

5 ' ~I q h q---Wl-il--lfq q II Ih Q q-QQ-4-\.q h Ih hi ~ h· 3 . 

1~ ~-1l '1---Il h hh h \ 1---1i-~ \ I \ ~ h ~ IA 

-flw,P-WW-li-iLrLrW p-pp I p ~ p -fW-I-p f11 I II p pilI P Pf 

3' p~ " I ~ IM-p·J~p~ p rlpllll" I I ~ I I~ IW=LtII--l-W 5' 

In ~ pi Il-I-fJ--P - I~ , p pp~ ~~ p P ~PP-I~p I r= 
I I I 

2,000 4,000 6,000 
fig. 16. Lack of substantial ORFs in NII/1lt. Analysis was performed with the FRAMES 
program of UWGCG. using the nuclear genetic code. all six possible frames and the 
complete 7.9 kb NlIlIlt sequcnce in Fig. 12. Potential start codons are indicatcd by lines 
extending above the reading frame box and stop codons are denoted by lines extending 
below the box. Numbering corresponds to the mtDNA sequence in Fig. 12. The longest 
frames observed were < 400 bp and did not correspond to expected canonical mtDNA 
ORFs. 
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all mutations in them will be selectively neutral, and therefore become fixed in the 

population with equal probability. Thus the pattern of nucleotide substitution in 

pseudogenes should reflect the pattern of spontaneous point mutation.· Lastly. since 

only one unit (pNurru.l) of the multimeric Nurru tandem array was effectively 

characterized in previous chapters, the possibility remains that other repeat units at the 

Nurru "macrosatellite" locus could be transcribed and translated by mutations which 

eradicate apparent nonsense differences in pNurru.l. In fact, evidence exists that 

apparently "functionless" satellite DNA can be transcribed if they are transposed and 

read through by illegitimate promoters or visa versa (Miklos, 1985; Sealy et aI, 1981). 

The high sequence conservation between Nurru and cytoplasmic mtDNA 

sequences (ca. 95%), however, makes the differentiation of mtDNA gene expression 

from either source non-trivial. For example, the precise origin of RNA transcripts 

immobilized on Northern ("filter") blots (Sambrook et aI, 1989) would be difficult to 

discern, since probes could theoretically cross-hybridize to both mtDNA complements 

under standard conditions. 

Therefore, I chose to employ the ribonuclease protection assay (RPA) to identify 

specific mRNA transcripts (Fig. 17; Myers et aI, 1985; Muraka\\'a et aI, 1988). 

Briefly, the RPA involves "solution" hybridization of RNA probe molecules to cellular 

mRNA. which is preferable to filter methods due to more predictable hybridization 

kinetics. higher sensitivity and increased capacity for quantifying numbers of hybrid 

RNA molecules. Nurru and cytoplasmic mtDNA-specific RNA probes can be 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

106 

Sequence nuclear + 
cytoplasmic mtONAs 

I 
DeSign'tmPlementary 

PCR primers with 

Isolate + purify 
total cellular 

C"i\ RNA or mRNA 
.. -V ~ ~ ~~ 

extra T7 promoter to 
mtDNA regions with mutations 

I PCR amplify both templates 

V 
r--::T7=----,_ Cyto-mtDNA 

'---V ~ ,_/~ ........ 
o /' ",--1"1 444 

IV Transcribe 

T7 I Nu-mtDNA - - - - - 2n~ S~r;~d - -~ t 

Probe: 

Source 
RNA: 

Full ~ 
Length 

+ 

Cyto-mtDNA Nu-mtDNA 
II .... 

co 
IV ~ 

I 
Nu Cyto c3 

? 

IV 
I 

Nu Cyto 

~ __________ ~ __ ~ __ -L __ ~ 

Sequencing gel 

. .. ---'--.--~""" 

( 

Treat with 
RNAaseAfT1 

'f 
Digestion of 

unprotected duplexes 
produce dull-length 

fragments 

4 ~= 
anOnn ~rmn 

Fig. 17 RNAase Protection Assay designed to differentiate 
cytoplasmic and Numt mtDNA transcripts. 
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CYTO 
Nur~T 

CYTO 
NUMT 

CYTO 
NUMT 

CYTO 
NUM'P 

CYTO 
NUMT 

CYTO 
NUMT 

1362 
GGGATTAGATACCCCACTAT GCTTAGCCCTAAACTTAGAT AGTTACCCTAAACAAAACTA 
.................... · ................... ..... T .............. 

1422 
TCCGCCAGAGAACTACTAGC AATAGCTTAAAACTCAAAGG ACTTGGCGGTGCTTTACATC 
.......... ...... e ... · IC ...... G .......... · ................... 
1482 
CCTCTAGAGGAGCCTGTTCT ATAATCGATAAACCCCGATA TACCTCACCATCTCTTGCTA 
.................... · ................... · ................... 

1542 
ATTCAGCCTATATACCGCCA TCTTCAGCAAACCCTAAAAA GGAAGAAAAGTAAGCACAAG 
................... G .................. G. · ................... 
1602 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~:' ~~~~~~~~~~~~~~~~~~~~ 
1661 
ACATTTTCTAAAATTAGAAC ACCCACGAAGATCCTTACGA AACTAAGTATTAAAGGAGGA 
.. IC .............. IT .A .............. IT .. 

1728~ 
TT'I'AGTAGT7 PRO I 

· IT ........... I ••••• 

Fig. 18. Alignment of homologous cytoplasmic (top) and Numt (bottom) 12S rRNA gene regions 
selected for RNAse protection assays. Symbols and terminology are identical to those in Fig. 19. 
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Cyto 
Nu 

Cyto 
Nu 

Cyto 
Nu 

Cyto 
Nu 

Cyto 
Nu 

Cyto 
Nu 

Cyto 
Nu 

Cyto 
Nu 

4671 
TCCAAAAATCTTCGTGCTAC 
•..•... G ..•••••••... 
4731 
GCTATCGGGCCCATACCCCG 
............ C .. G .... 
4791 

~:~:~:::~::~~:~:~ 
4851 

~~~~~:~~~:~~~:~:~~ 
4911~ 

~:~~~.~~~~~~: 
4965 

:~:~~~:~:~::~~:~~~ 
5024 ~. 
GGACAATGGACCGTACTAAA 
.•...•.. A ... A .. T .... 
5084 
CTAGCAATAAAACTAGGACT 

tRNA-Gln I tRNA-Met 
CATTATTACACCATATTCTA AAGTAAGGTCAGCTAAATAA 
. . . . . . .. . . . . . . . . . . .. ......... '1' ... NO'2" . 
AAAATGTTGGTTTATACCCT TCCCATACTAATCAACCCCC 
......... . c .............. G .•..•...• A .•.. 

TTAACCGTTATCTCAGGAAC TATAATTGTAGTGACAACCT 
•••••••••••••••••••••••••••••••• A ••••••• 

ATTGGCTTTGAAATGAACCT ATTAGCCATCATCCCCATCC 
•••..••• G ••••• A •.•••...•••.••....•. T •... 

AACCCACGAGCCATAGAAGC AGCCACAAAATATTTCTTAA 
.................... c .................. . 

~:~~:~~:~~:~~~:~~ :~~:~~~:~:~~:~~~~:~~ 
AGACCTTAATCCCATAGCAT CAATCATAATAACAACCGCT 
........ . c .......... . G ..•...•• G ..•••••.. 

5117 ......c 
TAGCCCCATTCCACT T7 Promoter I 
............ G .. 

Fig. 19. Alignment of homologous NADH dehydrogenase subunit 2 (ND2), tANA-Gln and tRNA-Met gene regions in 
cytoplasmic (cyto) and Numt (Nu) mtDNA. Primer sequences used for PCR amplification of templates for anti-sense RNA 
probes, were originally derived from pNumt.1 sequences and are underlined. The single bp mismatch In the primers did 
not inhibit amplification from cytoplasmic pCmt.12, when employing standard reaction condHions (Innis et ai, 1990) 
and 500 C annealing temperatures. The box at the 3' terminus marks the attachment of T7 promoter sequences 
necessary for in vitro transcription of the PCR product. Internal boxes highlight gap mutations. Bars Indicate gene 
boundaries and nucleotide positions correspond to the cat mtDNA sequence (Fig. 12). 
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synthesized directly from templates derived from either pNumt.l or pemt.11 clones by 

PCR (Stoflet et ai, 1988: Murakawa et al. 1988; Innis et al. 1990). For the present 

experiments. three mitochondrial gene regions (11S rRNA, NOI and N01) were 

chosen for analysis, since they contain a relatively high number of mutations (especially 

indels) between Numt and cytoplasmic mtONA. By the attachment of a n promoter 

sequence to the appropriate peR primers, amplification products can be transcribed in 

vitro to produce "anti-sense" RNA probes which are complementary to cellular mRNAs 

predicted from the sequence alignments (Fig. 18, 19). After radioisotopic labeling, 

these synthetic probes are hybridized to either poly-(A +) mRNA, total cellular RNA, 

or control ill vitro RNA transcripts. Hybrid RNA duplexes are then subjected to over 

digestion with ribonucleases T1 and A to detect mismatches. Fragment sizes should 

correspond to completely protected duplexes or the distances between cleaved 

mismatches. For example, full-length fragments would result from complete protection 

of Numt or cytoplasmic mtONA probe by cellular transcripts (Fig. 17). More 

complicated patterns of protected fragments are possible when probes span tRNA gene 

boundaries involved in processing polycistronic mtDNA mRNAs (Clayton, 1984; 1991). 

The experimental regimen of RPA aims to demonstrate the plausibility of 

detecting either cytoplasmic mtONA or Numt-specific RNA messages. Absence of the 

latter in the context of the cytoplasmic controls, will permit the rejection of Numt 

transcription (null hypothesis), and consequently support the alternative hypothesis that 

Numt is an unexpressed pseudogene. 
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MA TERIALS AND METHODS 

RNA extraction and preparation. Total cellular RNA was extracted from fresh or snap­

frozen kidneys or liver of a sacrificed cat (FCA 65) using the standard guanidine salt 

method and the following modifications (Sambrook et aI, 1989). Tissue was ground 

with mortar and pestle in liquid nitrogen, added to 20 ml of 8 M guanidine-HCL and 

homogenized (one pass) and then spun at 12,000 RPM for ten minutes. The supernatant 

was filtered L~rough 25 micron cloth to remove lipid and precipitated with 0.1 vol of 

3M sodium acetate and 0.5 volume cold 95 % ethanol at -20°C for > 2 hours. The 

pellet was resuspended in 10 mls 4 M guanidine HCL and precipitated two more times 

and then dissolved in 0.02 mM EDTA for one round of chloroform extraction. NaCI 

was then added to 150 mM (in ten mls), and the solution was heated to 56°C for 10 

minutes and cooled on ice. After spinning at 12,000 RPM for 10 minutes the 

supernatant was sav~ and stored by precipitating with ethanol overnight. Poly-A 

mRNA was either derived from total RNA samples or from fresh tissue using protocols 

of commercial isolation kits (Invitrogen). The integrity of purified RNAs was evaluated 

by formaldehyde gel electrophoresis and Northern blotting (Sambrook et ai, 1989). 
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Ribonuclease Protection Assavs (RPAL The mitochondrial 12S rRNA. ND2 and NDI 

subunit gene regions were chosen for assays after determining that a sufficient number 

of mutations between pNumtl and cytoplasmic pCmt.12 clones existed (Fig. 12; Table 

2). The Nunu and cytoplasmic mtDNA sequences are aligned to show the expected 

mismatched nucleotides, which would be cleaved by RNAase (Figs 18 - 19). To offset 

the possibility of less than 100% cleavage at base substitutions by RNAse, the selected 

ND2 gene region includes two gaps, such as the 6 bp insertion of A residues at position 

4914, while the 12S rRNA sequence has one gap at position 1609. Digestion of RNA 

heteroduplexes at these sites would prohibit the observation of fragments larger than 

244 bp in either RPA. 

The following oligonucleotide primers were derived from the above gene 

sequences showing the highest conservation between the Numt and cytoplasmic mtDNA. 

For each pair, the 25 bp sequence of the Tl promoter [Tl] 

5'ACCTAATACGACTCACTATAGGGAG 3' was added to the 5' end of the 

appropriate RC primer to permit the in vitro transcription of anti-sense RNA molecules 

from the original PCR product (Stotlet et aI, 1988; Krieg et aI, 1991). Consequently, 

in vitro transcripts would be complementary to in vivo H-strand transcripts and provide 

protection from RNAse. 

Optimal PCR reaction conditions were determined empirically for each primer 

pair, but essentially followed guidelines previously described (Ehrlich et aI, 1991; Innis 

et aI, 1990). Amplifications were visualized on ethidium-bromide stained agarose gels 
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and were considered acceptable when the PCR product equaled the predicted size plus 

the extra IT7]-promoter DNA. After spinning amplification products through 

Centricon-100 filter units to remove salts and unincorporated nucleotides and washing 

with sterile DEPC-treated water. labeled probes were prepared by in vitro transcription 

of the PCR templates with kits from Ambion Inc. (Austin, Texas) or Stratagene. 

Reactions included 4.84 J.LM 32P_rCTP 5' triphosphate, 80 uM of cold CTP. 400 J.LM 

for each ATP, GTP and UTP, 1 J.LI DTT, RNAse inhibitor, and n RNA polymerase 

in about 25 J.L1. After labeling, probes were run and cut from 6% polyacrylamide gels 

and then eluted into 0.5 M NH40Ac, 10 mM Mg acetate, 1 mM EDTA, and 0.1 % 

SDS. Approximately 3 X 105 
- 3 X 106 cpm of probe were recovered, which was then 

diluted to 1 X 105 cpm for each hybridization reaction. 

Solution hybridizations of labeled probes with total RNA. poly-A mRNA or ill 

vitro RNA transcripts were carried out in 20 ul of Ambion hybridization bulTer (80% 

deionized formam ide. 100 mM sodium citrate (pH 6.4). 300 mM sodium acetate (pH 

6.4), and 1 mM EDTA) at 47-50°C overnight, after heating each reaction to 90"C for 

3-4 min. A control reaction containing yeast tRNA was included in every hybridization 

experiment to test RNAse activity. 

RNAse digestions were carried out in Ambion digestion buffer or 5 mM EDTA. 

lOmM Tris IpH = 7.51. and 300 mM NaCI. Concentrations of RNAse TI/A enzyme 

mixtures (250 Kunitz units/ml RNAse A + 10,000 units/ml cloned RNAse TI) were 

empirically determined or followed the manufacturer's guidelines (c.g I: 100 dilution 
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of Ambion's enzyme mixture into hybridization buffer}. The following general 

guidelines were also used to assess digestions: RNAse A preferentially cuts at 

pyrimidines IC:A, C:C, C:T. U:T] (Myers et al, 1985). while Tl cuts at the 3' end of 

GpN runs. Also. the stability of hybrid duplexes generally decreases from RNA:RNA 

> RNA:DNA > DNA:DNA. Digestions were incubated at 37°C for 30 min. and 

stopped with inactivation/precipitation mixture (Ambion). After resuspension in loading 

buffer, samples were run on 6% polyacrylamide sequencing gels for about 2 hrs and 

processed according to standard sequencing gel protocols. 

To provide positive controls. similar procedures were performed on transcripts 

derived from the opposite PCR strand of both pNunu. I and cytoplasmic pCmL12 

templates. These PCR-derived "sense" transcripts were hybridized with complementary 

test anti-sense RNA probes in parallel with cellular RNA to test whether the test probe 

could "protect itself". 
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RESULTS AND DISCUSSION 

Table 11 summarizes the expected and observed protected fragment sizes for 

each gene tested in the RPA. The expected sizes are based on the location of mutations 

shown in the sequence al ignments (Fig. 18-19). 

In the ND2 RPA (Fig. 20), the cytoplasmic RNA probe Clearly exhibited greater 

protection of transcripts from total cellular (and poly-A) RNA than the Nunu probe. 

Although showing lighter band intensities due to lower concentrations, poly-A mRNA 

band patterns usually paralleled those in total RNA lanes. The protected 320 bp 

fragment probably corresponds to the processed ND2 transcript. Smaller processed 

transcripts of 69 and 41 bp. also predicted from the alignment of Fig. 19, would code 

for tRNA-Met and 3' portion of tRNA-Gln, respectively. but have run off the gel 

shown in Fig 20. Nonetheless. an unprocessed, 447 bp full-size transcript is also 

protected in lane 3. and probably derived from H-strand polycistronic messages. The 

cytoplasmic band at \97 bp was unexpected and could only be explained by a random 

cleavage or duplex formation with an incomplete or anonymous RNA message. 

in contrast, RPA results with the Numt-specific ND2 probe (Fig. 20; lanes 7-11) 

greatly differ from the cytoplasmic probe hybridizations by revealing virtually no 

protection of predicted full-size cytoplasmic transcripts with in vitro reactions. total 
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Fig. 20. RPA results for the N02. tRNA-Q. tRNA-M region. The dried polyacrylamide 
gel begins with the tRNA positive control (lane 1). which appears completely digested 
and confirms RNAse activity. Although probes and hybridizations were immediately 
used in hybridization reactions, some degradation of both are evident in the observation 
of smearing and non-specific bands. Additional streaking may have been caused by a 
combination of overloading probes and film overexposure. As a size standard, the 
sequences of M 13mp 18 single-stranded phage vector initiated from the universal primer 
are shown alongside RPA reactions. 
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Figure 20. Results of the RPA in the ND2 region. 
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cellular or poly-A + RNA. Also, the aberrant 197 bp band was less visible in NunZl 

probe hybridizations of the with in vivo cytoplasmic transcripts. 

An example of the positive control reaction's ability to detect non­

complementary regions in hybrid duplexes is shown in lane 5. where the cytoplasmic 

probe and peR-derived pNuml.1 transcripts are severely degraded. Although the 

negative control (lane 2) with the pure cytoplasmic mtDNA hybrids exhibited a high 

degree of smearing. a full-size transcript comparable to the protected probe and the 

ND2 fragment in the total RNA lane (3) may be present. Generally. control 

hybridizations with in vitro transcripts derived from peR products complementary to 

either cytoplasmic (lane 2) or NUml sequences were less clear than cellular RNAs. due 

to high backgrounds or insufficient digestion. Also the hybridization of the NUml probe 

to its in vitro sense strand was lost due to mishandling. 

Ribonuclease Protection Assay of 12S rRNA gene sequences 

Since the 12S rRNA gene sequences chosen for RPA do not overlap with normal 

processing sites (Attardi. 1985). the cytoplasmic probe was expected to protect a 

transcript of equivalent size (Table 11). As with the ND2 and tRNA-Met and tRNA­

Gin gene results. protection of nearly full-size cytoplasmic transcripts of the 12S rRNA 

cytoplasmic probe was evident after hybridization with total RNA (lane 4) and possibly 

the peR negative control (lane 2) (Fig. 21). A slight decrease in size of the in vivo 

cytoplasmic transcript in the total RNA control lane was apparent. but probably due to 
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Fig. 21. RPA results for the 12S rRNA gene region. The largest band in the cytoplasmic 
probe lane (5) is 375 bp. Although it cannot be precisely determined due to 
overexposuie of the signal, the cytoplasmic probe appears to be at least one bp shorter 
than the Numr probe, as predicted from the primary sequence. Smaller fragments in the 
probe lanes again probably represent non-enzymatic degradation products. Amounts of 
total RNA used in hybridizations with the Numr probe are indicated above the lanes at 
the far right. The M 13 phage was again used as the size standard. 
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the digestion of the n promoter tail from the original primer after annealing. This 

could not be seen in Fig 20 due to overexposure of the ND2 probes. The reciprocal 

hybridization of the cytoplasmic probe with Numt sense RNA (lane 3) did not yield a 

full size transcript. 

In hybridizations with the Numl-specific probe, some protection was afforded 

to two prominent digestion products of approximately 230 and 133 bp in the total 

cellular RNA hybridizations (Fig. 21: lanes 9, 11-14). These fragments are larger than 

sizes predicted from the sequence alignmenr. and may be explained by less than 100% 

or preferential cleavage at mismatches between Numt and cytoplasmic mtDNA. These 

two bands can be dismissed as artifactual, since they i) are present in the hybridizations 

with cytoplasmic comrol (lane 7) yet ii) do not appear in the negative control reaction 

(lane 8). Furthermore, the lack of fragments over 250 bp with the Numt-specific ami­

sense RNA is consistent with the predictions based on the highly susceptible indel at 

mtDNA position 1609 (Table II). These resuits reiterate the previous ND2 findings in 

the ND2 gene region. of the failure of the Nunu probes to fully protect in vivo, cellular 

transcripts. 

Unlike the ND2 assay. peR-derived 12S rRNA sense transcripts in the control 

hybridizations better protected both cytoplasmic and Numt probes, generating nearly 

full-size protected fragments (lanes 4 and 8. respectively). For example, the fragment 

at about 375 bp produced in the Nunu negative control hybridization (lane 8), probably 
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results from the same phenomenon of T7 linker degradation observed with the 

cytoplasmic 12S rRNA probe in lane 4. 

Although irrelevant due to the negative results with the Nunu probe. serial 

dilutions of total cellular RNA were also hybridized to the Nunu probe, to evaluate the 

sensitivity of the RPA. Despite the pipetting error between the 0.05 and 0.02 dilutions. 

transcripts appear to be detectable down to a concentration of about 0.0005 Jlg. Also. 

gel results for the NDI RPA are not shown, due to excessive smearing in probe and 

control lanes. However. similar conclusions could be drawn with this gene (Table 11): 

namely. an inability of probes derived from pNul1u.l DNA templates to protect full­

sized in vivo transcripts. 

Based on predictions from the primary sequence, multiple bands observed in 

several of the RPA gels probably result from in vivo processing of the multi-cistronic 

mtNDA transcript. Unexpected fragments (e.g 197 bp. Fig. 21) in cytoplasmic RNA 

control lanes may stem from heteroplasmic mtDNAs. which are cleaved at substitutions. 

Alternatively, production of these bands could be directly related to specific reaction 

conditions. and a consequence of incomplete or non-specific cleavage by RNAse. 

Nevertheless, these artifacts do not alter the primary. striking observation that NunlI­

specific transcripts appear to be non-existent (even in total RNA preparations) or at 

least not expressed at normal levels comparable to cytoplasmic mtDNA RNA messages. 

Conversely. full-length or processed cytoplasmic ilZ vivo mtDNA transcripts were 

protected only with the anti-sense probes derived [rom .:ytoplasmic mtDNA sequences. 
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While these RPA results eliminate the likelihood of Numl expression in the cat, 

the paradox of gene expression implicit in the SET remains unsettled. If the concept of 

genetic transfer between organelles is to remain a viable mode of integration, 

diversification and general evolution of eukaryotic genomes (Gray, 1989~ Margulis, 

1993). inauguration of functional gene expression in new organelles or chromosomal 

environments after indiscriminate genetic transfers should be accounted for. For 

example. plants possess the ability to edit RNA messages, which explained the 

transcription of nuclear mtDNA fragments in the cowpea (Vigna unguiculata) and other 

legumes (Nugent and Palmer, 1991). Mammals. however, lack this capability, and 

therefore, transcription of mitochondrial genes displaced to the nucleus must overcome 

the organellar differences in genetic code, potential inhibiting effects of any surrounding 

satellite DNA (e.g. scarcity of promoter sequences) and also re-roUle the targeting and 

active transport of nuclear-encoded proteins (e.g. gamma-RNA polymerase) and 

transcription factors required for mitochondrial metabol ism (Clayton, 1984~ 1991 ~ Hurt 

and van Loon. 1986~ Fisher et aI, 1991: Rose et al, 1992). At this stage of evolution, 

mustering the necessary means and flexibility to overcome these obstacles may be too 

difficult for present-day vertebrate genomes. 
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CHAPTER 4 

FL4NKING SEQUENCES AND IMPLICATIONS OF NUMT IN EXOTIC 
SPECIES OF FELIDAE 

BACKGROUND 

t, I n the dime stores and bus stations/People talk of situations, 
Read books. repeat quotations/Draw conclusions on the wall. 
Some speak of the future/My love she speaks softly, 
She knows there's no success like failure 
And that failure's no success at all." 

-Love Minus Zero/No Limit, Bob Dylan 

Although the objectives of this dissertation have heretofore primarily 

encompassed the characterization of nuclear mtDNA fragments in the one felid species 

(F. caws) actively targeted as an alternative model for human disease and genetics 

research (O'Brien, 1986: Lyons et al. 1994). continuing characterization of nuclear 

mtDNA fragments in exotic species of cats impacts ongoing evolutionary studies in our 

laboratory. For several years. mtDNA data (DNA sequences. RFLP) has been routinely 

employed to elucidate popUlation substructure. quantitate standing genetic variation and 

infer phylogenetic relationships within and among diverse groups of mammals (O'Brien 

et ai, 1990: Miththapala, doctoral dissertation, 1992: lanczewski et ai, in press: 

Johnson et ai, in press; Masuda et al. submitted; O'Brien. 1994: Baker et ai, 1990: 

Hoelzel et ai. 1993; Avise, 1994). Among felids. the genetic status and differentiation 

124 
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of various subspecies of puma (P. concoLor) and the increasingly threatened tiger (P. 

tigris) are being investigated with mtDNA gene sequences. 

Clarification of a cat family (Felidae) phylogeny, involving most of the 38 

recognized species. has been a goal of this laboratory for several years (Collier and 

O'Brien, 1985; O'Brien et ai, 1987), and to expedite the endeavor, many types of 

molecular data have been employed. For example, techniques such as microcomplement 

fixation to determine serum albumin immunological distances, differential segregation 

of endogenous retroviruses. comparative cytogenetics (Modi and O'Brien. 1988) and 

protein electrophoresis (O'Brien et al. 1987: Pecon-Slattery et ai, 1994) have 

established at least three major cat lineages: domestic cat, pantherine and ocelot (Fig 

22A; Janczewski et ai, in press). These studies also complement non-molecular 

(morphological. behavioral, reproductive) phylogenetic interpretations (Salles, 1992). 

Overall, gene trees can provide a reliable portrayal of species radiations within 

mammalian families and orders (Nei, 1987; Irwin et ai, 1991: Miyamoto and Cracraft, 

1991; Meyer et al; Slade et ai, 1994: Avise, 1994). 

To illustrate the vital role of mtDNA data for phylogenetic inferences in the 

Felidae, a current view of the cat family tree recently derived with mitochondrial cyt 

b sequences is depicted (Fig. 22B) (Masuda et ai, in prep). This topology involves a 

greater number of felid taxa, does not include Nunu sequences, but remains similar to 

the phylogeny shown in Fig. to (Chapter I), by recapitulating a monophyletic Felis 

genus. Nonetheless. resolution of felid phylogeny with mtDNA characters remains 
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Fig. 22A. Phylogenetic relationships based upon diverse molecular methods (see text). 
(a) indicates likely integration point of endogenous retrovirus RD-114; (b) and (c) 
indicate the diiferentiation of karyotypes in either Panthera group (2N = 36 
chromosomes) or South American ocelot lineages (2N = 38). This figure was borrowed 
with permission from D. lanczewski and the Laboratory of Viral Carcinogenesis. 
(Rationale and explicit methods of phylogenetic analysis used to derive this consensus are 
described in articles by Janczewski et aI, in press). 
B. Neighbor-joining tree derived with mtDNA cyt b DNA sequences. The topology was 
constructed with the MEGA 1.01 program (Kumar et aI, 1993), applying a Ti:Tv ratio 
of 6: 1 and all three codon positions. Bootstrap percentage values derived from 100 
replications of the cyt b data with replacement, are shown below the branches in 
parentheses (Swofford and Olsen, 1990; Hillis and Bull, 1993). Branch lengths are shown 
as genetic distances estimated with Kimura's 2-parameter model of evolution (Kimura. 
1980). Sequence data and analysis are described in more detail in the article by Masuda 
et al (submitted) in which the candidate collaborated. (+) indicates the detection of Nunll­
like fragments by either extra restriction fragments on Southern blolC; or amplification of 
unique (klClinn junctions in wild cats. 
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equivocal, as the NJ tree indicates that the highest bootstrap values mostly support 

terminal (more recent) nodes and clades, while internal branching order is less robust. 

Considering the ambiguities among some felid associations, identification of 

homologous Numt sequences in one or more of exotic felid taxa could improve the 

power of phylogenetic reconstruction with mtDNA. This was partially demonstrated in 

Chapter 1, as Nunu served as a reliable phylogenetic marker among the Felis species 

most closely related to F. caruso 

Before these observations can be fully exploited to consolidate phylogenetic 

relationships, however, it is imperative to determine whether the different Nunu loci 

among Felidae are truly orthologous (divergent due to speciation rather than another 

duplication event) or at least homologous (Schlegel. 1994). In other words, are the 

putative nuclear bands observed in lion and other exotic species derived from the same 

integration event which produced Numl of the domestic cat? According to the 

phylogeny of Fig. IO and this chapter, and preliminary RFLP data (Johnson et al. in 

prep), the occurrence of Numt in non-Felis species appears enigmatic. The tree suggests 

that the distribution of Numt fragments among felid taxa is not congruent with 

phylogeny but rather sporadic. Thus, multiple integrations of mtDNA into the nucleus 

during Felidae radiation remain plausible, which can conflict with idea of Numt 

homology. An alternative explanation is that a single Numl integration occurred in an 

older common ancestor to both pantherine and domestic cat lineages. followed by 

random losses of nuclear mtDNA in certain lineages or species (serval, caracal. puma 
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etc.) during Felidae radiation. This second explanation is not supported by the 

relatively high DNA sequence conservation between cytoplasmic mtDNA and NUmI in 

F. catus, however. Also, no evidence for mtDNA in the nuclear genome in any ocelot 

lineage species currently exists. 

Due to the high sequence conservation between nuclear and cytoplasmic 

mtDNAs. paralogous mtDNA fragments could be confused with bona fide orthologous 

mtDNA. A more definitive means of establishing the orthology/homology of NUmI loci 

in divergent felid taxa may be achieved by characterizing chromosomal DNA which is 

directly adjacent to the Numt locus (Goodman. 1981: Hardison and Gelinas, 1986). 

After isolation of these genomic flanking DNAs from the domestic cat, they could be 

used as hybridization probes or enable the design of oligonucleotide primers for PCR 

to determine the status (presence/absence) and general characteristics of other putative 

Numl loci in exotic felid genomes. Secondly. tlanking sequences could elucidate or 

refute some of the hypothesized mechanisms of NUmI integration into the nuclear 

genome. For instance, the involvement of stochastic processes such as recombination 

at hotspots or turnover at microsatellite (repetitive) loci or transposons or "retroid"-like 

elements that could act as shuttling vectors between organelles (Wakasugi et ai, 1985: 

Tsuzuki et ai, 1983; Li and Graur. 1991: Charlesworth et ai, 1994) may be 

distinguished with molecular characterization of flanking DNA. 

Several key factors were considered in designing experiments (e.g. cloning. 

PCR) to isolate NUI1u genomic flanking sequences: 
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i) As demonstrated in chapter I, Nurru is a tandem repeat (up to 75 X in some 

individual cats), with sequences clearly homologous to cytoplasmic mtDNA. Since 

overall conservation reaches to about 95 % sequence identity, precautions had to be 

incorporated which would eliminate cloning artifactual fragments stemming from either 

a) multiple Numl repeats or b) numerous cytoplasmic mtDNA copies. The second 

problem could be precluded by using restriction enzymes which did not recognize any 

cytoplasmic sequences, prohibiting their uptake into a recombinant library. However, 

since no cloning vector. other than yeast artificial chromosomes (Y ACs) (Burke et aI, 

1987; Anand et al. 1990; Franke and Zimmer, 1994), can accommodate a full size 

Nurru locus ( > 240 kb) plus its tlanking genomic DNA. one enzyme had to be chosen 

which cut at least once within Nunu (Nurru+) sequences. thus lowering the size range 

of clonable fragments. Candidates for each type of enzyme are shown in Fig. 23A. 

ii) If Nurru actually exists as a single-copy locus in the domestic cat, then a minimum 

of 4 unique Nurru/genomic DNA junctions will be present per diploid cat genome. In 

contrast, the high copy number of mtDNA genomes per cell (101_104
) (Birky. 1978) 

will generate a proportionately high number of clonable restriction fragment termini in 

spite of the use of single-cut restriction enzymes, thereby increasing the probability of 

cytoplasmic mtDNA or internal Nurru inserts. 
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iii) Determination of the physical distance between the end of the NUl7u locus and the 

nearest cloning restriction site was not possible with preliminary data available. Due 

to the aforementioned high copy number of NUl7u and cytoplasmic mtDNAs. mtDNA 

fragments on standard Southern blots produce signals of high intensity on 

autoradiograms (Fig 2 and 24; see also O'Brien et al. 1990). Increasing X-ray film 

exposure times to detect minor bands (and determine their distance from NunU) would 

only exacerbate this condition, due to the expected overexposure from canonical 

mtDNA fragments during autoradiography. This problem will also be encountered with 

DNA enriched for nuclear sequences. since Numt is also present in high copy number. 

iv) Although the complete NunU sequence has been determined (Chapter 2). the actual 

identity of Numt sequences at the junction with chromosomal DNA was not evident in 

the original pNunUl clone. Consequently. an informed decision in choosing Numt+ 

single-site enzymes that could lessen the distance to chromosomal restriction sites. was 

not possible. 

In Chapter 1, it was alluded that nuclear mtDNA fragments could be detected 

in other members of Felidae by Southern hybridization and PCR. In this chapter. the 

results of those pilot experiments are formalized and quantitated in greater detail using 

the same techniques. Furthermore. major emphasis is directed towards the description 

of a multi-pronged strategy to isolate chromosomal sequences directly tlanking Numl 

in F. caruso 
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MATERIALS AND METHODS 

Determination of heretical nuclear mtDNA in other felid species. Total felid 

genomic DNA was purified from lymphocytes or fibroblasts and utilized in Southern 

hybridizations according to standard protocols previously described (Sambrook et ai, 

1989~ see also Chapter 1). The following felid species (with their tree letter species 

codes) were analyzed and represent a cross-section of all three major cat lineages 

(Collier and O'Brien, 1985): lion (PLE- Panrhera Leo), leopard (PPA - Panrhera 

pardus). jaguar (pON- P. onca), snow leopard (PUN- P. uncia). tiger (PTI- P. tigris). 

marbled cat (PMA-Pardofelis marmorara), Canadian lynx (LCA - Lynx canadensis), 

lynx (LLY - L. lynx). LRU (LRU - L. rufus). jaguarundi (HYA - HerpaiLurus 

yagouaroundi), cheetah (AJU- Acinonyx jubatus), caracal (CCA- Caracal caracal), 

serval (LSE- Leplailurus serval), flat-headed cat (lPL-lctailurus planiceps), fishing cat 

(PVI- Prionailurus viverrina). leopard cat (PBE - Prionailurus bengalensis), clouded 

leopard (NNE- Neofelis nebulosa), African golden cat (PAU- Profelis aurata) , 

Temminck's Asian golden cat (PTE- Profelis temmincki). puma (PCO- Puma concolor), 

ocelot (LPA- Leopardus pardalus), margay (LWl-L. wiedir), tigrina (LTl- L. tigrina), 

Geoffroy's cat (OGE - Oncijelis geoffroyi), kodkod (OGU- O. guigna) and pampas cat 

(LCO- Lynchailurus colocolo). Felid species in the domestic cat lineage or genus Felis 

are described in Chapter 1. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

134 

Purified DNAs were digested with various SlX bp-recognizing restriction 

enzymes. Total mt genome sizes were estimated in each species by adding all fragments 

detected with the complete mtDNA probe in each lane and computing the average. 

PCR amplification of Numr junction. The unique junction presumably stemming from 

the deletion and/or recombination which juxtaposes COli and CR DNA sequences in 

Numr can be amplified with the following primer pairs. and which were described in 

Chapter 1 (Fig. 5): 1. 112) 5' GCTCACGCACACACAAG 3'(8048) (or more 

downstream fKS/230j - 5' TACACTCATGAGCCGTCCC 3' (8380» and 2.IJIIRC-

5' AACTGGGACGTGGGG 3'(854). Primer names are in I ), while their exact 

nucleotide position in F. eatus cytoplasmic mtDNA (Fig. 12. Chapter 2) is shown in 

O. Primer 2 is writren as the reverse complemem (RC) of control region sequences. 

Both of these primers (50 pm) were used with various exotic felid genomic DNA 

templates in standard 100 ul PCR reactions: 94°C denaturation for 1 min. 50"C 

annealing for 1 min. noc polymerization for 1 min for 30 cycles in a Perkin Elmer 

480 ThermoCycler. 
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Isola1ion of flanking chromosomal sequences. 

The following strategies (numbered 1 - 4) were implemented to isolate 

chromosomal DNA which flanks F. catus Numt. 

1. Asymmetric cloning. To facilitate cloning nuclear sequences and eliminate 

contaminating cytoplasmic mtDNA, genomic DNA from cat FCA 65 was enriched for 

nuclear DNA by isolating nuclei (Hewish and Burgoyne, 1973; Wu, 1980; Lopez. 

Master's Thesis. 1988). One strategy was to clone directionally, by generating 

asymmetric restriction fragments, where both 5' and 3' termini of a potential insert are 

derived from two different restriction digestions (Sambrook et ai, 1989). A restriction 

enzyme which does not cut within the Nunu repeat (Nunu-), but presumably has a site 

in genomic DNA at some unknown physical distance from the Nunu locus, generates 

the chromosomal terminus of the flanking fragment (see Fig. 23A). The opposite end 

of the fragment is generated by a restriction enzyme which cleaves within Numl 

(Nunu+) preferably only once to simplify the range of restriction fragments. and 

guarantee the presence of Nunu sequences in a positive clone which could then be 

detected with a homologous Nunu probe. Under these criteria. suitable enzymes were 

limited to a small pool of candidates enzymes (Fig. 23A). For example, Bgl II was 

chosen as an appropriate non-cut (Nunu-) enzyme, since it produced high molecular 

weight fragments in the PFGE experiments (Fig. 7). EcoRI or EcoRV was typically 

used as the single-site Nunu+ enzyme. Overall. this strategy would produce a fragment 
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Fig. 23A. Diagram of directional cloning strategy for cloning genomic DNA tlanking 
Numr. Restriction enzymes are listed from the pool of possible candidates meeting the 
criteria discussed in Methods. Hatched box indicate the actual junction abutting both 
Nunu and chromosomal sequences, whose sequences are currently anonymous. Also, all 
adjacent Numt sequences are unknown. Blackened region in the target represents DNA 
overlapping with Numt, which is essential for recognition by homologous probes. 
B. Diagram of the Vectorette linker primer system utilized for identifying anonymous 
DNA sequences (after Riley et ai, 1990). Instead of Y AC vector sequences, for which 
the procedure was originally developed, Numt sequences provide the second anchor 
primer (black bar) which allow synthesis of the complementary template essential for 
primer 224 binding.. 
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with one end homologous to Numl sequences. while the other end would consist of 

uncharacterized genomic flanking DNA. (The exact proportions of either would remain 

unknown until sequencing could be performed). 

The choice of cloning vectors was dictated by the criteria outlined above. 

pBluescript plasmid vectors (Stratagene) served as the most convenient and effective 

vectors for directional cloning, since they can accommodate large recombinant inserts 

(5-20 kb) and typically possess asymmetrical polycloning sites. Cosmid vectors were 

not used, since a) even the smallest continuous NUml fragment (ca. 240 kb) could not 

be accommodated within a single cosmid, which typically has a size limit for inserts of 

about 50 kb. and b) most cosmid vectors have symmetrical polycloning sites which 

would preclude their use in asymmetric cloning (Sambrook et ai, 1989). 

Vectors and purified DNA from nuclei were double-digested with the 

appropriate enzymes and ligated. Probes for screening recombinant libraries were 

derived either from specific PCR amplification products or gel-purified fragments 

derived from the pNuml.l clone. Bacterial transformations, probe labeling, plaque and 

colony hybridizations were performed according to standard procedures (Sambrook et 

al. 1989). Electroporation at 2.0 - 2.3 kV was the method of choice for introducing 

recombinant plasmid into bacterial hosts (e.g E. coLi NM554, Stratagene). 

2. Svmmetric cloning of partial digests or the "shadow" Sst I mtDNA band. A second 

cloning strategy involved the use of symmetric genomic DNA fragments derived from 
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partial digestions with one restriction enzyme. The possibility of cloning multimers of 

Num! repeats would be diminished by constraints on insert size imposed by specific 

cloning vectors. For example, rapid plaque screening would be facilitated in Lambda 

(A) vectors such as the A DASH phage (Stratagene), which holds inserts of 9-23 kb 

(less than 3 Numt repeats). Furthermore, putative tlanking sequences could be identified 

by any deviation from 7.9 kb Numt monomers. generated by single site Numt+ 

enzymes. 

In a second experiment. the low-intensity Sst I restriction fragment which 

migrates around 4.5 kb in Southern blots of domestic cat DNA was targeted for cloning 

(see Fig. 2. Chapter I). This procedure would also involve symmetrical cloning. This 

fragment was hypothesized to contain genomic tlanking DNA, since its size did not 

conform to map predictions and its signal intensity was much reduced. 

Sst I fragments in the 4.5 kb size range were purified with GeneClean (Bio 101) 

and ligated to a pBluescript II KS(+) bluescript plasmid vector. also cut with Sst 1. 

This library was screened with radio-labeled NU11l1 probes as in strategy I. 

3. Vectorette or "Bubble" PCR. This PCR-based method was developed by Riley et 

al (1990) to amplify terminal sequences from a defined starting point in high-molecular 

weight yeast artificial chromosomes (Y AC) (Burke et al. 1987; Roberts et ai, 1992: 

Franke and Zimmer. 1994). The procedure hinges upon synthetic duplex 

01 igonucleotide linkers. termed "vectorettes" . wh ich possess 4 bp overhangs 
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complementary to appropriate restriction enzyme sticky ends. The linkers also have a 

region or bubble of non-complementarity nucleotides (Fig. 23B). Other oligonucleotides 

could be generated for different restriction enzymes with 3' overhangs or blunt ends. 

Ligation of these duplexes to genomic DNA digests creates vectorette libraries with the 

specified terminal sequences of the linker. 

After creation of the library, PCR amplification is performed using a) a primer 

(oligonucleotide 224) which is identical to the bottom primer of the bubble and b) a 

Nunu-specific (Nunu+ )primer. The crucial aspect of this step is that the complementary 

strand, essential for primer 224 binding will be generated only after an initial round of 

DNA polymerization has successfully occurred from the Nunu-specific primer. In this 

way. PCR products can be generated containing both Numt and anonymous DNA 

sequences. which may be subsequently identified by direct DNA sequencing. In a minor 

modification prior to the PCR step. genomic DNA was digested with a single NUl1u+ 

restriction enzyme to decrease the length of potential PCR amplification products from 

felid DNA. 

As in the cloning protocols, the Numt+ enzymes, Eco RV and EcoRI. were 

used for digestion within Numr, while the non-cutting Nunu- enzyme. Bgi II, was 

chosen as the target chromosomal site for linker annealing. Also many different 

Nunu+ oligonucleotide primers spanning most of the 8.0 kb clone were available after 

sequencing the entire pNunu.1 clone (Chapter 2). and utiiized in various combinations 

of PCR as the second primer with primer 224. 
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Prior to PCR. oligonucleotides were synthesized on an Applied Biosystems Inc. 

(ABI) automated DNA/RNA synthesizer (model 394). Equimolar concentrations 11.0 

ug] of top and bottom oligonucleotides comprising the vectorette linker were heated to 

60°C and then allowed to anneal at room temperature. Duplexed vectorette linker 

primers (ca. 2.0 ug) were then kinased with 10 U T4 polynucleotide kinase (Bethesda 

Research Labs). purified with Centricon-50 or -100 (Amersham) spin filters. and ligated 

to Bglll-digested genomic DNA. 

As a positive control, pNumt.l or cat genomic DNA was digested with the 

Numt+ enzyme. Bam HI (which has sticky ends compatible with the Bgi II linker). 

ligated with kinased vectorette Bgi II linkers. and amplified with the 224 vectorette and 

Numl+ primers in parallel with genomic PCR reactions. Specific amplification product 

sizes could be predicted based on the second Nunu+ primer used in the reaction and 

Bam HI sites mapped in Numt. 

4. Alu- PCR. Another PCR-based strategy was developed to take advantage of any 

"short interspersed repeated" (SINES) or Alu-like (Deininger and Batzer. 1993) 

sequences in the cat genome. SINES comprise a family of short (ca. 300 -500 bp) 

DNA repeats. numbering about 105 in several mammalian genomes (Li and Graur. 

1991: Weiner et al. 1986). For example. the 3-6% representation of SINES in the 

human genome suggests an occurrence of an Alu repeat about every 10 kb on average. 

SINE DNA sequences contain species-specific conserved regions. which have facilitated 
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the design of primers to obtain chromosome-specific probes for gene mapping in the 

human genome project via Alu-PCR (Nelson et aI, 1989). 

With this technology, SINE sequences can be used to anchor one end of an 

anonymous PCR reaction. DNA sequences for carnivore-specific Alu-PCR in the cal 

were obtained from H.J. van der Vlugt and A. Lenstra (unpublished data): 

1. CANSINEI - 5' TAACCCACTGAGCCACCCAG 3' 

2. CANSINE2 - 5' CCTTGGGCTCAGGTCATGATC 3' 

Together with various combinations of Numt+ primers, standard and long PCR 

reactions were performed on cat genomic DNA derived from lymphocytes or somatic 

cell hybrids which segregate known portions of the cat genome in a rodent background 

(see chapter 1; O'Brien and Nash, 1992). If it was necessary to identify potential NUI111 

SINE products from within a smear, aliquots of completed PCR reactions could be 

Southern blotted and hybridized with Nunu-specific probes. 

For the above PCR methods of 3 and 4, it was assumed that the distance 

between the Numt-chromosomal junction and Alu or vectorette linker sites would be 

longer than the typical size range of products generated by standard PCR reactions 

(Innis et aI, 1991). Therefore, various PCR conditions (reaction buffers, annealing and 

polymerization times) were tested by the candidate that could best generate "long-PCR" 

products (over 7-10 kb) (Innis et al. 1990). In general, reaction buffers with 0.5-2.5 

mM Mg++(Boehringer Mannheim), 2.5 U Taq polymerase, temperatures and limes for 

denaturation (94°C, 1 min) and annealing (50-60°C for 1 min, depending on thc primcr 
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pair) followed standard recommendations. Conditions which varied included increase 

of polymerization (72°C) time up to 7 minutes and lower concentrations « 50 

ng/reaction) of template DNA (Maga and Richardson, 1991). Using the A clone 

pCmt.12 as a template, it was possible to generate fragments > 10 kb (Fig. 268). 
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RESULTS AND DISCUSSION 

Confirmation of Nunzr Loci in £mtic FeUd Species 

A representative Southern blot of felid mtDNA fragments is shown in Fig 24. 

Besides the domestic cat (FCA), felid species which show extra mtDNA fragments in 

the Bam HI digest, making their total mtDNA complement significantly greater than 

17.0 kb, are the sand cat (Felis margarita - FMA) and the European wildcat (Felis 

silvestris - FSl). These results were repeated with five different restriction enzymes, 

and distinguish felid species possessing a total mtDNA complement greater than the 

17.0 kb expected for felid or other mammalian cytoplasmic mt genomes (Table 12). For 

all digestions. ethidium-bromide staining of the gels prior to blotting was performed and 

verified sufficient digestion of total DNA. Mean values of total mtDNA size were 

based on enzymes which produced the best profiles, i.e unequivocal autoradiograms. 

For example, Xho I digestions were not scored since it seldom cleaved mtDNA or was 

generally inefficient in cutting genomic DNA. Large variances associated with 

mtDNA sizes of some taxa (e.g. PAU, HY A) should be treated with caution, since they 

were often attributable to faint or ambiguous scoring of bands on autoradiograms. The 

reciprocal error of overestimating mt genome size is more difficult, however, when at 

least two different enzymes were used for scoring, and many of the larger genomes 

were scoied with at least two enzymes. This data shows that besides the above Felis 
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BamHI 
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Fig. 24. Autoradiogram with the total mtDNA profile of genomic DNAs in various 
exotic felids. Approximately 1.0 ug of Bam HI-digested genomic DNAs, were loaded 
and used in electrophoresis. The clone 1\3-2 (O'Brien et al. 1990) containing a 
complete felid mt genome was used as a hybridization probe for detecting all possibk 
mt fragments. Bands which migrate at the same size range and therefore most likely 
analogous to the 7.9 kb Nunu of F. calUS are indicated by the arrow. 
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Table 12. Molecular Weights (Kb) ot Total Felid and Carnivore MtDNA Fragments 
in Five Different Restriction Digestions 

Enz~s 
Hpal Sst I EcoRI BamHI Hind III Std. 

Species Mean Dev VAR 

IPL 18.2 15.1 16.0 17.7 nJa 16.8 1.4 2.1 
PVI 14.4 17.0 14.2 18.1 nJa 15.9 1.9 3.7 
PBE 14.5 18.2 18.8 18.1 nJa 17.4 2.0 3.8 
NNE 14.7 18.0 16.3 15.8 nJa 16.2 1.4 1.9 
PAU 14.1 32.0 29.3 18.7 nJa 23.5 S.4 71.2 
PTE 17.1 17.5 13.3 19.2 nJa 16.8 2.5 6.3 
PCO 17.1 17.5 17.4 17.3 nJa 17.3 0.2 0.0 
FMA 20.3 23.6 16.4 25.6 nJa 21.5 7.4 54.8 
FNI 14.4 17.8 17.5 17.1 nJa 16.7 1.5 2.3 
FCA 21.2 31.0 25.8 25.6 nJa 25.9 4.0 16.0 
FSI 21.2 31.0 25.8 25.6 nJa 25.9 4.0 16.0 
FCH 18.3 18.1 17.5 17.1 nJa 17.8 0.6 0.4 
OMA 17.5 18.0 18.1 16.9 nJa 17.6 0.6 0.4 
LPA 17.3 18.0 17.8 17.3 nJa 17.6 0.4 0.2 
LCO 18.6 18.0 15.3 17.3 nJa 17.3 1.4 2.0 
LWl 16.8 18.0 17.1 15.2 nJa 16.8 1.2 1.4 
LTI 19 18.0 17.6 15.9 nJa 17.6 1.3 1.7 
OGU 19 18.0 17.6 15.9 nJa 17.6 1.3 1.7 
OGE 19 18.0 16.3 15.9 nJa 17.3 1.4 2.0 
LSE nJa n/a 16.3 14.3 19.7 16.8 2.7 7.3 
CCA nJa n/a 17.5 15.8 19.0 17.4 1.6 2.6 
AJU nJa n/a 18.2 14.8 12.3 15.1 3.0 9.0 
HYA n/a n/a 31.5 16.1 18.8 22.1 8.2 67.2 
LRU n/a n/a 369 15.5 22.4 24.9 10.9 ~18.8 

lLY n/a n/a 17.5 14.5 20.7 17.6 3.1 9.6 
LCA n/a n/a 17.5 15.1 14.8 15.8 1.5 2.3 
PMA n/a n/a 16.7 15.5 12.8 15.0 2.0 4.0 
PTI nJa n/a 22.4 232 18.3 21.3 2.6 5.5 
PUN nJa n/a 18.6 17.5 25.1 20.4 4.1 16.8 
PON n/a n/a 24.0 26.0 nJa 25.0 1.4 2.0 
PPA nJa n/a 27.9 n/a 22.9 25.4 3.5 12.3 
PLE n/a n/a 27.9 19.1 22.7 23.2 4.4 19.4 
Spotted Hyena n/a n/a 21.0 132 18.0 17.4 4.0 16.0 
Mongoose nJa n/a 21.0 28.5 18.2 22.6 5.3 28.1 
Siberian Polecat n/a n/a 7.7 14.9 15.9 12.8 4.4 19.4 
Racoon n/a n/a 21.0 136 14.3 16.3 4.0 16.0 
Bear n/a n/a 21.0 7.9 18.0 15.6 6.8 46.2 
Dog n/a n/a 17.6 188 17.0 17.8 0.9 0.8 

• - Derived from a single high MIN band; n/a - data not available 
A Faint bands or \ow amount of DNA observed on gel. 
- Although aU species were digested with the rIVe listed enzymes. some blots produced 

equivocal results (e.g. faint or monomorphic banding patterns), and therefore 
were not included. 
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species, most of the Panthera species (especially lion and leopard), lynx. jaguarundi, 

African golden cat, and the non-felid mongoose exhibit mtDNAs greater 20 kb, which 

is also more than 9 standard deviation units (±430 bp) from the average genome size 

among five orders of mammals, including Carnivora (p < .001) (Appendix C). 

Although preliminary Southern blot results indicate the presence of extra cyt b 

sequences in the nuclear mtDNA of large cats, which differs from F. ca(us Nunu (N. 

Yuhki, personal communication), the presence of nuclear mtDNA fragments can 

reconstitute the Panthera genus as a monophyletic clade. 

To verify the presence of Nunu in wildcats closely related to F. cacus, and 

confirm Southern hybridization results, PCR amplifications using primers flanking the 

unique Nunu junction were performed (Fig. 25). The results indicate positive PCR 

products similar to sizes predicted from the domestic cat Nunu sequence. It was 

interesting that jungle cat (FCH) and black-footed cat (FNI) were also positive for this 

junction, since neither showed significantly larger mitochondrial genomes by Southern 

blotting (Table 12). Subsequent DNA sequence determination of these products 

confirms their similarity to the F. cacus deletion junction (data not shown). This 

suggests that analogous Nunu-like bands in these species are present but not amplified. 

Conversely, the same primers proved negative on cats of the ocelot species, lion. lynx 

and African golden cat. which can be interpreted as either sufficient DNA sequence 

divergence at the respective primer-binding sites that inhibit PCR with F. catus Nunu 

primers, or the existence of different Nunu-like junctions in these non-Felis species. 
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Fig. 25. PCR amplification of the internal Nunu-specific junction region in several wild 
FeLis species. The primers are located in COIl and control region sequences which flank 
the unique junction shown in Fig. 5 (Chapter I). Species which were positive for Numr 
junction fragments by Southern analysis but negative by PCR amplification with J1 and 
KSi230 primers included PLE. PTl, AJU, PAU. HY A LRU and OMA. 
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peR Amplification of Internal Numt Deletion Junction in Diverse Felids 
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region in several wild Felis species. 
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Overall, these preliminary results suggest the possibility of multiple integrations 

of mtDNA during the evolution of the Felidae. Effective testing of this hypothesis will 

require more in-depth characterization of nuclear mtDNA loci in exotic felids and 

interpretation in the context of the phylogenetic divergence of the Felidae (Janczewski 

et ai, in press; Masuda et ai, submitted). 

Cloning of chromosomal DNA flanking Nunu 

Four separate libraries, one A-based library and three separate plasmid libaries, 

were constructed and screened according to strategies 1 and 2. Each of these libraries 

typically yielded few positive hybridization signals (e.g. 10-20 in number for each 

library), representing putative flanking clones. The hybridization signals were also of 

low intensity and difficult to detect. Overall. screening two genomic libraries following 

strategy 1 in plasmid vectors failed to yield candidate clones containing chromosomal 

DNA flanking the Nunu 10l:us. 

The nuclear preparation procedure did not completely eliminate the possibility 

of cytoplasmic contamination, although there was a reduction of cytoplasmic mtDNA 

molecules by about 75 %, as gauged in Southern hybridizations. Increasing the number 

of washes of the nuclear pellet could have lowered contamination, but also would have 

increased the risk of damaging intact nuclei. Nonetheless, these results indicated the 

efficacy of using nuclear preparations and the directional cloning procedure to reduce 

pOlentiaily contaminating cytoplasmic mtDNA. 
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Four positive clones from the A DASH partial digestion library were isolated 

with strategy 2. After purification, digestion with either Eco RI revealed the presence 

of non-canonical Numt restriction patterns, which was expected from cloning novel 

genomic fragments (Fig. 26A). Southern hybridization of this gel with Numt probes 

confirmed the presence of Numt DNA sequences within the novel set of fragments. 

However, sequencing the insert in clone Ll51.01 indicated that the junction between 

Numt sequences and anonymous genomic sequences was precisely demarcated by an 

Eco RI cloning site, suggesting they were ligated by the cloning procedure. To verify 

this conclusion, the non-Numt sequences derived from the clone were used to synthesize 

oligonucleotides for PCR with appropriate Numt primers. Results of these subsequent 

PCR experiments using F. catus genomic DNA as a template did not yield products of 

the predicted size. 

Similar negative results were obtained after screening the symmetric Sst I library 

generated with strategy 2. In general, difficulty was encountered differentiating the 

likely faint signal of any positive recombinant clones from the high background of false 

positive plaques or colonies. 

peR strategies for obtaining flanking chromosomal DNA 

For both PCR strategies, the primary objective was to obtain discrete 

amplification products within. at most, 1 - 4 fragments. each potentialiy representing 

a unique junction of the single copy Numt locus in the diploid genome of FCA 65. 
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Fig. 26A. Restriction profile of four putative clones identified in one A DASH library 
(LlSl) cut with Eco RI enzyme used in cloning. The two largest bands represent phage 
arms. Several of the smaller bands hybridized to Numl probes in Southern blots, which 
prompted further characterization by DNA sequencing (see text). 
B. Agarose gel showing amplification of a long PCR product. Using the cat primers 
[13330] - 5' CCAACACGAGAACCTAAATATICC 3'(ntpos. 13245) and [7280 RC]-
5' GGGAAGAACGTIATATIGACTCC 3' (7473) and the cloned mt genome in 

pCmt. 12 as a template, the predicted 11,259 bp PCR product was generated. Reaction 
conditions varied from standard conditions primarily by increasing the n"c extension 
to 7 minutes. and using 20 cycles. Only 10% of the reaction was loaded on the gel. 
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Various combinations ( > 20) of different Nunu+ primers. canvassing the entire length 

of the pNunu.l sequence. with 224 vectorette or carnivore SINE primers (CANSINEs) 

did not generate desired amplification products resembling flanking chromosomal DNA 

in either type of PCR reaction. In Alu-PCR pilot experiments using either CANSINE 

primers, as well as either total cat genomic DNA or somatic cell hybrid DNA identified 

as chromosome 02+ as templates, only a smear of amplification products was 

produced, suggesting non-specific or excessive priming from SINEs. 

These results occurred in spite of affirmative control experiments. For example. 

after vectorette linkers were ligated to cat genomic DNA digested with Nunu( +) 

BamHI, instead of NUmI(-) Bglll. PCR reactions with a NumI+ primer (nt position 

3556) and 224 primer yielded the expected 530 bp product. Likewise. long-PCR 

products up to 11 kb in size were generated in control reactions (Fig 26B). 

Obstruction of the vectorette strategy could have occurred at anyone of the 

many steps (annealing. ligation of linker to genomic DNA. kinasing or long PCR) of 

the protocol. Also optimization of the long peR procedure was conducted on the DNA 

of clone pCmt.12 (Lopez et al. 1994). Since Cheng et al (1994) subsequently 

demonstrated that genomic DNA templates were more difficult to amplify than cloned 

DNA and also produced lower total yields of amplified products. the conditions I used 

for generating large PCR products may not have been optimal for the potentially large 

distances involved in traversing genomic DNA flanking NUmI. 
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[n ALU-PCR experiments, heavy smearing patterns suggested an excess of non-

specific amplification products. These could have resulted from too many SINE 

elements being recognized, in spite of the inclusion of a specific Numt+ primer in each 

reaction. Failure of the Alu-PCR method could also have been due to non-specific or 

mis-binding of the primer to its target site under the PCR conditions used. In 

retrospect, different ratios of concentrations for each respective primer pair, as well as 

annealing temperatures, could have been tested more thoroughly. However. the 

carnivore ALU-like sequences, CANSINE 1 and 2. were derived from unpublished 

data, and subsequent testing or corrections by the original authors (l.A. Lenstra and 

H.H.J. van der Vlugt) may have revealed errors in the DNA sequence unknown to the 

candidate. Also similar to vectorette experiments. size constraints for the Alu-PCR 

product could have been a major limiting factor. if the physical distance between the 

closest CANSINE element and the Nunll-genomic DNA junction was beyond the range 

of conditions utilized for PCR. Lastly, although useful in the human genome project, 

the objectives for using Alu-PCR in mapping the human genome was to generate > I 

DNA fragments as probes for specific chromosomes. and therefore multiple, non­

specific PCR products which exhibit a fair amount of smearing in PCR reactions was 

not considered a hindrance in that context (Nelson et al. 1989; Li et aL 1994). 

However. the specific single-locus target of Nunu tlanking DNA sequences may have 

been overwhelmed by the potentially manifold representation of SINE elements in the 

cat genome. 
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CHAPTER 5 

SYNTHESIS AND CONCLUSIONS 

"Similarity is observation. Homology is conclusion." - Walter Fitch 

Applying modern, versatile biotechnologies and experimental strategies, this 

dissertation has answered many of the pressing questions related to heretical mtDNA 

fragments in the nuclear genome of cats. The NUI1l1 characterization followed a typical 

paradigm of genetics studies, whereby the "mutant" is identified or thoroughly 

described before the wild-type form. The major conclusions of the research follow. 

I. Transposition of mtDNA to the nucleus has occurred in F. caras and its close 

relatives in the domestic cat lineage, and now segregates with nuclear genomic DNA. 

2. Nuclear mtDNA. or Numt. is homologous to half of the cytoplasmic mitochondrial 

genome in the domestic cat. 

3. The 7.9 kb Namr monomer is arranged as a head-to-tail tandem repeat array in siru, 

ranging in size from 240-600+ kb at a single locus on cat chromosome 02. 

156 
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4. Overall sequence divergence between cat cytoplasmic and Numt mtDNAs is relatively 

low (5.1 %). In rapidly evolving protein genes most substitutions can be attributed to 

neutral synonymous mutations stemming from the cytoplasmic genome. which supports 

the notion of more rapid evolution in the mitochondria versus nuclear sequences. In 

rRNA genes, however, the rate of Numt substitutions appears faster or equivalent to the 

cytoplasmic mtDNA. 

5. Although Numt is considered a pseudogene sequence. it had a lower than expected 

transversion:transition ratio and no increase in dA/dT content compared with 

cytoplasmic mtDNA. 

6. The central core of the control region, 12S rRNA, COl and COlli subunit genes 

were the most conserved mitochondrial gene sequences. while the ATPase 8. ND2 and 

ND6 genes were the most rapidly evolving among five mammalian orders. 

7. In the carnivore lineage, the ND4L (at the protein level) and ND6 (at the DNA 

level) genes may have experienced a slow down, while the cyt b gene appeared to be 

evolving faster at both levels. 

8. Nunu appears transcriptionally silent. 
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9. Similar Nunu-like loci appear in the nuclear genomes of other species of Felidae. 

Numt closely resembles satellite DNA 

For various reasons which are discussed below. viewing Numt as a nascent 

satellite DNA (Miklos, 1985; Grieg et aI, 1993; Modi, 1992: Warburton et al. 1993) 

can shed further light on the mechanisms surrounding its origin, amplification and 

evolution. Although not a typical satellite per se, the data presented thus far. strongly 

indicates that Numt closely matches the definition of this ubiquitous. highly repeated 

DNA of eukaryotes by its a) large physical expanse, b) the telescoping of smaller repeat 

motifs within the a single Numt monomer and the total tandem array. and c) possible 

proximity to centromeric regions (Fig. 4. 11: see also Miklos. 1985: Charlesworth et 

ai, 1994). However, the 7.9 kb length of one Numt unit would qualify the locus as one 

of the largest satellite DNAs ever described. 

Not entirely synonymous with one another. constitutive heterochromatin and 

highly repeated satellite DNA sequences have been studied for many years, but their 

precise functions remain conspicuously enigmatic (Brutlag, 1977: Miklos, 1985). 

Structurally, heterochromatin can consist of simple tandem repeats from 10 bp to 171 

bp (found in alpha satellites of primates) to over 2.0 kb in some rodents (Charlesworth 

et ai, 1994; Modi. 1992). Despite the relative simplicity of these tandem arrays in 

heterochromatic regions (Lohe et aI, 1993). the entire span of high I Y repeli tive loci can 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

159 

reach up to 5 MB (Charlesworth et ai, 1994). which is similar to NumJ. Most 

eukaryotic chromosomal centromeres possess different families of repetitive satellite 

DNA (Willard. 1990: Miklos, 1985). 

Cats have relatively stable karyotypes (few centric rearrangements) but only a 

small amounts of C-banding, which define most heterochromatic regions (Matthews et 

al. 1980: Pathak and Wurster-Hill, 1977). Previous cytogenetic studies have indicated 

that amounts of C-band heterochromatin are more variable among different felid species 

than in other mammal or carnivore groups (Fanning et ai, 1988; Modi et aI, 1988). 

Also. felid satellite DNA described by Fanning et al (1988) was localized at telomeric 

rather than centromeric regions of felid chromosomes. In general. many species exhibit 

specific centromeric or kinetochore variants of satellite DNA. but their possible roles 

in speciation mechanisms. such as postzygotic chromosome mispairing, remain largely 

unsubstantiated and are often dismissed (Miklos. 1985). 

Although the cytogenetic data (Fig. 4) did not unequivocally localize Numt 

sequences within the primary constriction region of chromosome D2 (Willard, 1990), 

the possible proximity of Numt to centromeric regions has implications on cell function 

and genome evolution. As a parallel, mouse major satellite DNA lies beyond 

centromeric regions. yet is probably involved in sister chromatid contact and 

kinetochore apposition (Radic et al. 1987; Willard, 1990). Furthermore. the initial 

Nurnr integration presumably occurred on a single haploid chromosome. creating 02 

chromosomes of unequal size (if pre-amplified) in an individual of a Felis species 
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(possibly F. nigripes or F. chaus; see Fig. 4 and 10) ancestral to the domestic cat. 

which must have survived and propagated through that ancestral population and species. 

If Numr had deleterious effects on chromosome pairing and fitness. natural selection 

would be expected to purge it soon after its appearance. Consistent with the finding 

that autosomal pairing does not depend on heterochromatin (Yamamoto. 1979). Numr 

does not appear to interfere with normal pairing of D2 chromosomes in cats. For 

example, recent studies involving interspecies crosses between modern domestic cats 

and leopard cats (PBE- PrionaiLurus bengalensis), which do not possess NUl1u-like loci. 

produce viable Fl hybrids which are available for subsequent backcross matings (Lyons 

et aL 1994). 

Although the sequential timing of Numr amplification. either before or after 

integration in the nuclear genome, was not precisely determined (Fig. 11). continuing 

generation of Nunu repeats would be consistent with models that simulate the expansion 

of repetitive arrays in regions associated with low recombination (Stephan. 1989: 

Charlesworth et al. 1994). According to these models. lower recombination rates 

coupled with weak selection against tandem arrays will increase the tendency to longer 

and more complex repeat units (Stephan, 1989). These models are not totally 

inconsistent with the invocation of unequal sister chromatid exchange (SCE) (vs. 

homologous chromosome exchange) in satellite DNA to explain the "concertina" -like 

behavior - expansion/contraction - of tandemly repeated monomers (Cabot et al. 1993: 

Wu and Hammer. 1991; Begun and Aquadro, 1992). SCE has been observed within 
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centromeric heterochromatin, which has low recombination frequencies between 

homologues. For example, in the Drosophila tandem array. Responder. Cabot et al 

(1993) found evidence of meiotic drive and low imerchromosomal differences primarily 

due to sister chromatid exchange. which is necessary to produce the copy number 

variability often associated with tandem arrays. 

A similar type of mechanism may be operating at the Numtlocus to produce the 

pattern of polymorphic PFGE fragments observed among different individual cats (Fig. 

7: Warburton et al. 1993). The presence of short repeat motifs (at RS3: Fig. 6) in the 

CR of felid mtDNA and Numt may facilitate unequal crossing-over by homologous 

recombination (Ayares et al. 1986). which may be necessary for array elongation. The 

extreme monomer length of Numt precludes strand slippage as a major alternative 

mechanism for array amplification. Moreover. the detection of an F. calUS NUl7l1 

deletion junction in F. chaus and possible F. nigripes by PCR (Fig. 6. 26). sans 

amplification of Numr bands. suggests that the above mechanisms may be absent. 

modified, or inactive in these exotic species. 

Lastly. various examples from Xenopus to cattle demonstrate that amplification 

of satellite DNA can continue after the insertion of single-copy. foreign non­

homologous DNA within an array, which subsequently becomes repeated (Lam and 

Carrol, 1983: Miklos, 1985). This raises the possibility that Numt is also embedded in 

an unrelated stretch of highly repetitive DNA, as a result of random integration into the 

nuclear genome. For example, the moderately repeated nuclear mtDNA found in 
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Locusta migratoria (Table 1: Gellissen et aI, 1983) appears (0 be directly flanked by 

simple repetitive DNA. By increasing the distance to nearby restriction sites and 

biasing the primary DNA code, long stretches of simple repeats adjacent to Nurru could 

explain the failure of cloning Nurru flanking chromosomal sequences in Chapter 4. In 

spite of these close parallels with satellite DNA, the Nurru phenomenon unfortunately 

does not resolve the concomitant mysteries associated with this ubiquitous element of 

eukaryotic genomes. 

Numt e:remplifies a fossilization process at the molecular level 

With the realization of its cellular origin and previous capacity of coding for 

essential mitochondrial proteins and translational elements. Numt also matches the 

description of a molecular "fossil". Likewise. processed pseudogenes are RNA 

transcripts copied by reverse transcriptase into DNA that integrates back into the 

genome. and represent another type of molecular fossil which abounds in mammalian 

genomes (Weiner et aI. 1986: Deininger and Batzer. 1993). Similar to Numt, 

pseudogenes have lost their original functions - tRNA, rRNA. snRNA or 7SL RNA (Li 

and Graur. 1991). When other types of "retro-elements". which encompass retroviruses 

(0 transposable elements carrying sequences for reverse transcriptase. lose the ability 

of transposition from a chromosomal locus, they can effectively become fossilized. The 

heterochromatin of Drosophila has been described as a graveyard for many types of 

previously-mobile elements (Li and Graur. 1991). Also. the ALII family of shon 
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interspersed repeats discussed briefly in Chapter 5, matches these characteristics of 

being simultaneously a transposable and non-functional DNA sequence. The cumulative 

evidence in this dissertation did not support an RNA intermediate for Numr origin, 

however. 

This discussion leads to further questions of the contribution of 

nongenic/noncoding elements to the growth of genome size and the C-value paradox, 

which refers to the incongruence of genetic information (or organismic complexity) and 

the absolute DNA content among many living organisms. For example, several 

unicellular protists have larger genomes than Homo sapiens (Cavalier-Smith. 1985), 

while organisms of similar phenotypic class vary widely in genome content or C-value. 

Most of this variation has now been attributed to the presence of non-genic or "junk or 

selfish" DNA, which exhibits virtually no phenotypic effect on the organism (Ohno. 

1972; Dawkins, 1976; Orgel and Crick, 1980: Doolittle and Sapienza, 1980). In spite 

of these comprehensive and thoughtful theories, evidence concerning specific factors 

or mechanisms that maintain nongenic DNA has been scarce. It is highly unlikely that 

selection drives Numr amplification in the fashion of "homogeneous staining regions" 

(HSR) or double minutes (Schimke, 1980). 

By demonstrating that Numr genes are not expressed in vivo and therefore 

equivalent to pseudogenes, the working hypothesis of the SET could be rejected in the 

cat, but describing Numr as junk or selfish DNA may be premature and should be done 

with caution. For example, the Responder tandem repeat locus of Drosophila mentioned 
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above has been shown to affect organismal fitness, when present at higher copy 

numbers (Wu et ai, 1989). Another intriging hypothesis for the maintenance of junk 

DNA is its inhibitory effect on rates of development, which may be advantageous for 

some organisms (e.g. plants) (Pagel and Johnstone, 1992). Also, the role of satellite 

DNA in kinetochore anchoring and binding of specific centromeric proteins can be 

recalled in this context (Willard, 1990). Since the histone-less or "naked" DNA form 

of mtDNA would not be expected to persist on Nunu in the nuclear genome, the effects 

of Nunu integration on the phasing of nucleosomes or chromatin condensation on 

chromosome 02 are largely unknown, yet highly dependent on primary DNA 

sequences. The possibility therefore remains open that specific protein-binding. 

capabilities or other ancillary genomic/ceilular functions, apart from a strict RNA­

coding capability. could subsequently evolve for Numt (Zuckerkandl. 1992). 

FIlLUre research directions 

The data provided by this research should facilitate and assist the interpretations 

of ongoing and future molecular genetics studies on the domestic cat. and its felid 

relatives who possess Numt-like bands. The possible advantages to having inert mtDNA 

sequences in the felid genome are worth analyzing and emphasizing in the context of 

directions for future research in population genetics, felid systematics, and molecular 

evolution. As elaborated in the previous two sections, the ramifications of meiotic drive 

(Cabot et al. 1993) and putative fitness components of tandem arrays may be applicable 
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to Nunu in a populations genetics context. The competing hypotheses of multiple 

integration and orthology/homology of Nunu loci among the Felidae. and perhaps other 

carnivores (e.g. herpestids; Table 12), could also be pursued more rigorously and with 

better techniques. The concordance of Nunu appearances in wild felids may be useful 

for consolidating Felidae phylogenies. 

With respect to molecular evolution. isolation of other Nunu monomers from the 

same array could test the tenets of the molecular drive hypothesis (Dover. 1982; 1986) 

and enable a more detailed study of homogenizing mechanisms. while a Nunu-like 

repeat from an exotic felid species would allow a better assessment and comparison of 

rate constancy and/or variation in both pseudogenes and functional mtDNA sequences 

within a single species. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

References 

166 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

References 

Adachi, 1., Cao. Y., Hasegawa, M. (1993) Tempo and mode of mitochondrial DNA 
evolution in vertebrates at the amino acid sequence level: Rapid evolution in warm­
blooded vertebrates. 1 Mol Evol 36:270-281 

Adkins, R.M., Honeycutt, R.L. (1994) Evolution of the primate cytochrome c oxidase 
subunit II gene. 1. Mol. Evol. 38:215-231. 

Ahmadhian. V. (1986) Symbiosis: An Introduction to Biological Associations. Univ. 
Press of England. Hanover. 

Alberts. B .. Bray, D., Lewis. 1 .. Raff. M .. Roberts. K .. Watson. 1.0. (1989) 
Molecular Biology of the Cell. Garland. New York. 

Anand. R .. Rilley. 1.H., Butler. R .. Smith. LC .. Markham. A.F. (1990) A 3.5 genome 
equivalent multi-access Y AC library: Construction. characterization. screening and 
storage. Nucl. Acids Res. 18:1951-1956. 

Anderson. S .. Bankier, A.T .. Barrell. B.G .. de Bruijn, M.H.L. Coulson. A.R .. 
Drouin. 1 .. Eperon, I.C .. Nierlich. D.P .. Roe, B.A .. Sanger. F.A .. Schreier. P.H .. 
Smith. A.J.H .. Staden. R .. Young. I.G. (1981) Sequence and organization of the 
human mitochondrial genome. Nature 290:457-465. 

Anderson, S., De Bruijn, M.H.L., Coulson, A.R .. Eperon. I.e.. Sanger. F .. Young. 
I.G. (1982) Complete sequence of bovine mitochondrial DNA (Conserved features of 
the mammalian mitochondrial genome). 1. Mol. BioI. 156:683-717. 

Aquadro. e.F .. Greenberg. B.D. (1983) Human mitochondrial DNA variation and 
evolution: Analysis of nucleotide sequences from seven individuals. Genetics 103:287-
312. 

167 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

168 

Arnason. U., Gullberg. A .. Widegren. B. (1991) The complete nucleotide sequence of 
the mitochondrial DNA of the fin whale. Balaenopteraphysalus. J. Mol. Evol. 33:556-
568. 

Arnason. U., Johnsson, E. (1992) The complete mitochondrial DNA sequence of the 
harbor seal. Phoca vitulina. J. Mol. Evol. 34:493-505 

Amason, U .. Gullberg, A. (1993) Comparison between the complete mtDNA sequences 
of the blue and fin whale. two species that can hybridize in nature. J. Mol. Evol. 
37:312-322. 

Amason. U .. Gullberg, A., Johnsson, E .. Ledje. e. (1993) The nucleotide sequence 
of the mitochondrial DNA molecule of the grey seal. Halichoerus grypus. and 
comparison with mitochondrial sequences of other true seals. J. Mol. Evol. 37:323-
330. 

Attardi. G. (1985) Animal mitochondrial DNA: An extreme example of genetic 
economy. Int. Rev. Cyto. 93:93-145. 

Avise, J.C. (1986) Mitochondrial DNA and the evolutionary genetics of higher animals. 
Phil. Trans R. Soc. London. B312:325-342. 

Avise. J.C. (1991) Ten unorthodox perspectives on evolution prompted by comparative 
population genetic finding on mitochondrial DNA. Ann Rev Genet 25:45-69 

Avise, J.e. (1994) Molecular Markers. Natural History and Evolution. Chapman and 
Hall. New York. 

Ayares. D .. Chekuri. L.. Song. K.-Y .. Kucherlapati. R. (1986) Sequence homology 
requirements for intermolecular recombination in mammalian cells. Proc. Natl. Acad. 
Sci. USA 83:5199-5203. 

Baker, C.S .. Palumbi. S.R .. Lambertsen. R.H., Weinrich. M.T.. Calambokidis. J .• 
O·Brien. S.J. (1990) The influence of seasonal migration on geographic distribution of 
mitochondrial DNA haplotypes in humpback whales. Nature 344:238-240. 

Ballinger. S.W .. Shuur. T.G .. Torroni. A .. Gan. Y.Y .. Hodge. J.A .. Hassan. K .. 
Chen. K.-H .. Wallace. D.e. (1992) Southeast Asian mitochondrial DNA analysis 
reveals genetic continuity of ancient Mongoloid migrations. Genetics 130: 139-152. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

169 

BareH. B.G .. Anderson. S., Bankier. A.T .. de Bruijn, M.H.L.. Chen. E., Coulson. 
A.R .. Drouin. J .. Eperon. I.e.. Nierlich, D.P., Roe, B.A .. Sanger, F., Shreier. P.H., 
Smith, A.J.H .. Staden, R., Young, I.G. (1980) Different patterns of codon recognition 
by mammalian mitochondrial tRNAs. Proc. Natl. Acad. Sci. USA 77:3164-3166. 

Begun, D.J., Aquadro, e.F. (1992) Levels of naturally occurring DNA polymorphism 
correlate with recombination rates in D. melanogaster. Nature 356:519-520. 

Bentzen, P .. Leggett, W.C., Brown, G.G. (1988) Length and restriction heteroplasmy 
in the mitochondrial DNA of American shad (Alosa sapidissima). Genetics 118:509-
518. 

Bermingham, E .. Lamb. T., Avise, J.C (1986) Size polymorphism and heteroplasmy 
in the mtDNA of lower vertebrates. J. Hered 77:249-252. 

Bernardi. G .. Mouchiroud, D., Gautier, e. (1993) Silent substitutions in mammalian 
genomes and their evolutionary implications. J. Mol. Evol 37:583-589. 

Bibb, M.J., Van Etten, R.A., Wright, C.T .. Walberg, M.W., Clayton, D.A. (1981) 
Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167-180. 

Biju-Duval, e., Enafaa, H., Dennebouy, N., Monnerol. M .. Mignotte. F .. Soriguer. 
R.e., Gaaied. A.E .. Hili, A.E .. Mounolou. J.-e. (1991) Mitochondrial DNA evolution 
in Lagomorphs: Origin of Systematic heteroplasmy and organization of diversity in 
European rabbits. J. Mol. Evol. 33:92-102. 

Birky. e.W .. Jr.. Fuerst. P .. Maruyama. T. (1989) Organelle gene diversity 
undermigration. mutation, and drift; equilibrium expectations. approach to equilibrium. 
effects of heteroplasmic cells. and comparison to nuclear genes. Genetics 121 :613-627. 

Birky. e.W .. Jr. (1978) Transmission genetics of mitochondria and chloroplasts. Ann. 
Rev. Genet. 12:471-512. 

Birren. W.B .. Wai. E .. Hook, L., Simon. M.l. (1988) Optimized conditions for pulsed 
field gel electrophoresis separations of DNA. Nucleic Acids Res 16:7563-7582. 

Boulikas. T. (1992) Evolutionary consequences of nonrandom damage and repair of 
chromatin domains. J. Mol. Evol 35:156-180. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

170 

Breitenberger. c., Rajbhandary, U. L. (1985) Some highlights of mitochondrial research 
based on analyses of Neurospora crassa mitochondrial DNA. Trends Biochem Sci 
10:478-483 

Britten, R.J. (1986) Rates of DNA sequence evolution differ between taxonomic 
groups. Science 165:349-357. 

Brown, W.M .. George Jr., M .. Wilson, A.C.(1979) Rapid evolution of animal 
mitochondrial DNA. Proc. Natl. Acad Sci 76:1967-1971. 

Brown. W.M. Prager E.M. Wang, A .. Wilson, A.C. (1982) Mitochondrial DNA 
sequences of primates: Tempo and Mode of evolution. J. Mol. Evo!. 18:225-239. 

Brown, W.M. (1983) Evolution of animal mitochondrial DNA (1983) In Evolutioll of 
Genes and Proteins. (Eds. M. Nei, R.K. Koehn) Sinauer, Sunderland, Mass. pp 62-88. 

Brown. W. M. (1985) The mitochondrial genome of animals. In Molecular Evolutionary 
Genetics (Ed. R. J. MacIntyre), Plenum, New York. pp. 95-130. 

Brown, G.G. (1986) Structural conservation and variation in the D-Ioop cOIL-lining 
region of vertebrate mitochondrial DNA. J. Mol BioI 192:503-511. 

Brown. Eo, Yuhki. No, Packer, c.. O·Brien. S.J. (1994) Three phylogenetic clusters 
of feline immunodeficiency virus in free-ranging African lions. J. Virol. 68:5953-5968. 

Bruford. M.W .. Wayne. R.K. (1993) Microsatellites and their application to population 
genetic studies. Curr. Op. Genet. Deve!. 3:939-943. 

Bulmer. M .. Wolfe. K.H .. Sharp. P.M. (1991) Synonomous nucleotide substitution 
rates in mammalian genes: Implications for the molecular clock and the relationship 
of mammalian orders. Proc. Nat!. Acad Sci 88:5974-5978. 

Burke. D.T .. Carle. G.F., Olson. M.V. (1987) Cloning of large segments of exogenous 
DNA into yeast by means of artificial chromosome vectors. Science 236:806-811. 

Buroker. N.E .. Brown. J.R., Gilbert, T.A .. O'Hara, P.J .. Beckenbach, A.T. Thomas. 
W.K .. Smith. M.J. (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an 
illegitimate elongation model. Genetics 124: 157-163. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

171 

Cabot, E.L., Doshi, P., Wu, M.-L., Wu, c.-I. (1993) Population genetics of tandem 
repeats in centromeric heterochromatin: Unequal crossing over and chromosomal 
divergence at the Responder locus of Drosophila melanogaster. Genetics 135:477-487. 

Capecchi M.R. (1989) Altering the genome by homologous recombination. Science 
244: 1288-1292. 

Carroll, R. L. (1988) Vertebrate Paleontology and Evolution. Freeman, New York. 

Cavalier-Smith, T. (1985) The Evolution of Genome Size. Wiley, New York. 

Cedergren, RJ., Sankoff, 0, Larue, B, Grosjean H. (1981) The evolving tRNA 
molecule. CRC Crit. Rev. Bioch. 11 :35-104. 

Chandley A.C., Mitchell A.R. (1988) Hypervariable minisatellite regions are sites for 
crossing-over at meiosis in man. Cytogenet Cell Genet 48: 152-155. 

Chang D.O., Clayton D.A. (1984) Precise identification of individual promoters for 
transcription of each strand of human mitochondrial DNA. Cell 36:635-643. 

Charlesworth, Boo Sniegowski, P, Stephan, W. (1994) The evolutionary dynamics of 
repetitive DNA in eukaryotes. Nature 371 :215-220. 

Cheng. Zoo Fockler, C., Barnes. W.M., Higuchi. R. (1994) Effective amplification of 
long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. 
91 :5695-5699. 

Clayton. D.A. (1982) Replication of animal mitochondrial DNA. Cell 28:693-705. 

Clayton. D.A. (1984) Transcription of the mammalian mitochondrial genome. Ann. 
Rev. Biochem. 53:573-594. 

Clayton. D.A. (1991) Replication and transcription of vertebrate mitochondrial DNA. 
Annu. Rev. Cell BioI. 7:453-478. 

Collier, G.E., O'Brien, S.J. (1985) A molecular phylogeny of the Felidae: 
Immunological distance. Evolution 39:473-487. 

Dawid. LB .. Blackler. A.W. (1972) Maternal and cytoplasmic inheritance of 
mitochondrial DNA in Xenopus. Dev. BioI. 29: 152-161. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

172 

Dawkins. R. (1976) The Selfish Gene. Oxford Univ. Press, New York. 

Deininger, P.L.. Batzer, M.A. (1993) Evolution of Retroposons. Evol Biol (Ed. M.K. 
Hecht) Vol. 27. Plenum Press, New York. 

Densmore. L.D .. Wright. 1.W .. Brown. W.M. (1985) Length vanallon and 
heteroplasmy are frequent in mitochondrial DNA from parthenogenic and bisexual 
lizard (Genus Cnemidophorus). Genetics 110:687-707. 

De Salle, R., Freedman, T., Prager, E.M., Wilson, A.C. (1987) Tempo and mode of 
sequence evolution in mitochondrial DNA in Hawaiian Drosophila. J. Mol. Evo!. 
26:157-164. 

Desjardins P.. Morais, R. (1990) Sequence and gene organization of the chicken 
mitochondrial genome: a novel gene order in higher vertebrates. J. Mol. Bioi 212:599-
635. 

Devereux J. Haeberli P, Smithies 0 (1984) A comprehensive set of sequence analysis 
programs for the VAX. Nucleic Acids Res 12:387-395 

Dietrich W .. Katz H .. Lincoln S.E., Shin H.-S .. Friedman J., Dracopoli N.C., Lander 
E.S. (1992) A genetic map of the mouse suitable for typing intraspecific crosses. 
Genetics 131:423-447. 

Doolittle. W.F .. Sapienza. C. (1980) Selfish genes. the phenotype paradigm and 
genome evolution. Nature 284:601-603. 

Dover. G.A. (1982) Molecular drive: a cohesive mode of species evolution. Nature 
299:111-117. 

Dover (1986) Molecular drive: a cohesive mode of species evolution. Nature 299: 111-
117. 

Drouin 1. (1980) Cloning of human mitochondrial DNA in Escherichia coli. J Mol Bioi 
140: 15-34 

Dujon B. Belcour L (1989) Mitochondrial DNA instabilities. In Berg DE. Howe MM 
(eds) Mobile DNA. American Society Microbiology, Washington. DC. pp 861-878 

Ehrlich. H.A .. Gelfand. D .. Sninsky, J.J. (1991) Recent advances in the polymerase 
chain reaction. Science 252: 1643. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

173 

Ellis J. (1982) Promiscuous DNA - chloroplast genes inside plant mitochondria. Nature 
299:678-680 

Eperon I.e., Anderson S., Nierlich D.P. (1980) Distinctive sequence of human 
mitochondrial ribosomal RNA genes. Nature 286:460-467 

Ephrussi, B .. Hottinguer, H., Chimenes. A.M. (1949) Ann. Inst. Pasteur. Paris 
76:351-364. 

Fanning. T.G. (1987) Origin and evolution of a major feline satellite DNA. J. Mol. 
BioI. 197:627-634. 

Fanning, T.G .. Modi, W.S., Wayne, R.K., O'Brien, S.J. (1988) Evolution of 
heterochromatin-associated satellite DNA loci in felids and can ids (Carnivora) 
Cytogenet Cell Genet. 48:214-219. 

Farrelly. F .. Butow. R.A. (1983) Rearranged mitochondrial genes in the yeast nuclear 
genome. Nature 301:296-301. 

Feig. 0.1 .. Loeb, L.A. (1993) Mechanisms of mutation by oxidative DNA damage: 
reduced tidelity of mammalian DNA polymerase beta. Biochemistry 32:4466-4473. 

Felsenstein J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood 
approach. J. Mol Evol 17:368-376. 

Felsenstein. J. (1993) PHYLIP: Phylogenetic Inference Package. version 3.5c. 
University of Washington. Seattle. 

Fenchel, T .. Finlay. B.J. (1991) Cil iates evolve from anaerobic I ifestyle from aerobic 
ancestors. Eur. J. Protist 26:210-215. 

FencheL T .. Bernard. C. (1993) A purple protist. Nature 362:300. 

Fisher. R.P .. Parisi, M.A., Clayton, D.A. (1989) Flexible recognition of rapidly 
evolving promoter sequences by mitochondrial transcription factor 1. Genes and 
Deve!opment 3:2202-2217 

Fitch W. M.. Margol iash E. (1967) Construction of p:lylogenetic trees. Science 
135:279-284 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

174 

Foran, D.R., Hixson, J.E., Brown. W.M. (1988) Comparisons of ape and human 
sequences that regulate mitochondrial DNA transcription and D-Ioop DNA synthesis. 
Nucl. Acids Res. 16:5841-5861. 

Fox, T.D. (1983) Mitochondrial genes in the nucleus. Nature 301:371-372. 

Franke, Y .. Zimmer, M. (1994) Construction of a human MluI Yac library. Genomics 
21 :58-62. 

Fukuda, M., Wakasugi, S., Tsuzuki, T., Nomiyama, H., Shimada, K. (1985) 
Mitochondrial DNA-like sequences in the human nuclear genome. J. Mol. BioI. 
186:257-266. 

Gadeleta, G., Pepe, G., De Candia, G., Quagliariello, c., Sibisa, E., Saccone, C. 
(1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial 
genome: cryptic signals revealed by comparative analysis between vertebrates. J. Mol. 
Evol. 28:497-516. 

Gall, J.G. (1981) Chromosome structure and the C-value paradox. J. Cell BioI. 91:3s-
14s. 

Gantt, J.S., Baldauf, S.L., Calie, P.J., Weeden, N.F., Palmer, J.D. (1991) Transfer 
of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the 
gain of an intron. EMBO J. 10(10):3073-3078. 

Gellissen, G., Bradfield, J.Y., White, B.N., Wyatt. G.R. (1983) Mitochondrial DNA 
sequences in the nuclear genome of the locust. Nature 301:631-634. 

Gellissen. G., Michaelis, G. (1987) Gene transfer: Mitochondria to nucleus. In 
Endocytobiology. (Eds J.J. Lee, J.F. Frederick.) Ann. N. Y. Acad. Sci. 503:391. 

Genetics Computer Group (UWGCG) (1994) Program Manual for Wisconsin Package. 
Version 8. Madison, WI. 

Ghivizzani, S.c., Mackay, S.L.D., Madsen, C.S., Laipis, P.J., Hauswirth, W.W. 
(1993) Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA 
D-loop region. J. Mol. Evol. 37:36-47. 

Gilbert. D.A., O'Brien, J.S., O'Brien S.J. (1988) Chromosomal mapping of lysosomal 
enzyme structural genes in the domestic cat. Genomics 2:329-336 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

175 

Gilham. N.W. (1978) Organelle Heredity. Raven. New York. 

Gillespie. J.H. (1991) The Causes of Molecular Evolution. Oxford University Press. 
New York. p. 76. 

Gojobori. T. Li. WH. Graur. D. (1982) Patterns of nucleotide substitution In 

pseudogenes and functional genes. J. Mol. Evol. 18:360-369. 

Goodman. M. (1981) Decoding the pattern of protein evolution. Prog. Biophys Mol 
Bioi 38: 105-164. 

Graybeal. A. (1994) Evaluating the phylogenetic utility of genes: a search for genes 
informative about deep divergences among vertebrates. Syst Bioi 43(2): 174-193. 

Gray. M. W. (I 989a) Origin and evolution of mitochondrial DNA. Ann. Rev. Cell BioI. 
5:25-50. 

Gray M.W. (1989b) The evolutionary origins of organelles. Trends Genet 5:294-299 

Gyllensten U.B. Wharton. D .. Wilson. A.C. (1985) Maternal inheritance of 
mitchondrial DNA during backcrossing of two species of mice. J. Hered. 76:321-324 

Gyllensten UB. Erlich HA (1988) Generation of single-stranded DNA by the 
polymerase chain reaction and irs application to direct sequencing of the HLA-DQA 
locus. Proc Natl Acad Sci USA 85:7652-7656 

Gyllensten. U .. Wharton. D .. Josefsson. A .. Wilson. A.C. (1991) Paternal inheritance 
of mitochondrial DNA in mice. Nature 352:255 

Hare. J.T .. Taylor. J.H. (1985) One role for DNA methylation in vertebrate cells is 
strand discrimination in mismatch repair. Proc. Natl. Acad. Sci. USA 82:7350-7354. 

Hardison. R.C .. Gelinas. R. (1986) Assignment of orthologous relationships among 
mammalian alpha-globin genes by examining flanking regions reveals a rapid rate of 
evolution. Mol. BioI. Evo!. 3:243-261. 

Harrison. R.G. (1989) Animal Mitochondrial DNA as a genetic marker in population 
and evolutionary biology. Trends Ecol. Evo!. 4:6. 

Hartl F.-U .. Neupert W. (1990) Protein sorting to mitochondria: evolutionary 
conservations of folding and assembly. Science 247:930-939. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

176 

Hasegawa M .. Kishino H., Yano T. (1985) Dating of the human-ape splitting by a 
molecular clock of mitochondrial DNA. J Mol Evol 22:160-174. 

Hasegawa. M., Kishino. H. (1989) Heterogeneity of tempo and mode of mitochondrial 
DNA evolution among mammalian orders. Jpn J. Genet. 64:243-258. 

Hatefi. Y. (1985) The mitochondrial electron transport and oxidative phosphorylation 
system. Ann. Rev. Biochem. 54: 1015-69. 

Hayashi J.I.. Tagashira Y .. Yoshida M.e. (1985) Absence of extensive recombination 
between inter- and intraspecies mitochondrial DNA in mammalian cells. Exp. Cell Res. 
160:387-395. 

Hecht. N.B .. Liem. H., Kleene, K.C.. Distel. R.J .. Ho. S.-M. (1984) Maternal 
inheritance of the mouse mitochondrial genome is not mediated by a loss or gross 
alteration of the paternal mitochondrial DNA or by methylation of the oocytoe 
mitochondrial DNA. Devel. BioI. 102:452-461. 

Hewish. D.R .. Burgoyne. L.A. (1973) Calcium dependent endonuclease activity of 
isolated nuclear preparations - Relationships between its occurrence and occurrence of 
the classes of enzymes. Bioch. Biophys. Res. 52:475-481. 

Hillis. D.M .. Huelsenbeck. J.P. (1992) Signal. noise and reliability in molecular 
evolutionary analyses. J. Hered 83:189-195. 

Hoehe M.R .. Caenazzo L.. Martinez M.M .. Hsieh WT. Modi W.S .. Gershon E.S .. 
Bonner T.1. (1991) Genetic and physical mapping of the human cannabinoid receptor 
gene to chromosome 6qI4-qI5. New BioI. 3:880-885. 

Hoelzel. A.R .. Hancock. J.M. Dover, G.A. (1993) Generation of VNTRs and 
heteroplasmy by sequence turnover in the mitochondrial control region of two elephant 
seal species. J. Mol. EvoI37:190-197. 

Hoelzel. A.R .. (1993) Evolution by DNA turnover in the control region of vertebrate 
mitochondrial DNA. Curr. Op in Genet. Devel. 3:891-895. 

Hoelzel. A.R .. Lopez. J.V .. Dover. G.A .. O'Brien. S.J. (1994) Rapid evolution of a 
heteroplasmic repetitive sequence in the mitochondrial DNA control region of 
carnivores. J. Mol. Evol. 39: 191-199. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

177 

Holland, M.J., Innis, M.A. (1990) In vitro transcription of PCR templates. (Eds. 
M.A.Innis, D.H. Gelfand. J.J Sninsky. T.J. White) PCR Protocols: A Guide to 
Methods and AppLications. Academic Press Inc .. San Diego. pp 169-176. 

Horak, I., Coon, H.G., Dawid. I.B. (1974) Interspecific recombination of 
mitochondrial DNA molecules in hybrid somatic cells. Proc. Natl. Acad. Sci. USA 
71:1828. 

Howell, N. (1989) Evolutionary conservation of protein regions in the protonmotive 
cytochrome b and their possible roles in redox catalysis. J. Mol. Evol. 29: 157-169. 

Huelsenbeck, J.P., Hillis, D.M. (1993) Success of phylogenetic methods in the four­
taxon case. Syst. BioI. 42:247-264. 

Hughes A. L., Nei M. (1988) Pattern of nucleotide substitution at major 
histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167-
170. 

Hurt, E.C., Van Loon. A.P.G.M (1986) How proteins find mitochondria and 
intramitochondrial compartments. Trends in Bioch. Sci. 11 :204-207. 

Hyman, B.C., Beck, J.L.. Weiss. K.C. (1988) Sequence amplification and gene 
rearrangement in parasitic nematode mitochondrial DNA. Genetics 120:707-712. 

Innis M.A .. Gelfand D.H., Srinsky J.J., White T.J. (Eds.) (1990) PCR Protocols: A 
Guide to Methods and Applications. Academic Press. San Diego. CA. 

Jacobs, H.T., Grimes. B. (1986) Complete nucleotide sequence of the nuclear 
pseudogenes for cytochrome subunit I and large mitochondrial rRNA in sea urchin 
StrongLycentrotus purpuratus. J. Mol. BioI. 187:509. 

Janczewski, D.N., Modi, W.S., Stephens. J.e .. O'Brien. S.J. (1995) Molecular 
evolution of mitochonrial 12S rRNA and cytochrome b sequences in the pantherine 
lineage of Felidae. Mol. BioI. Evol. in press. 

Janke. A., Fuchs-Feldmaier, G .. Kelly Thomas. W .. von Haeseler. A .. Paabo. S. 
(1994) The marsupial mitochondrial genome and the evolution of placental mammals. 
Genetics 137:243-256. 

Jeffreys AJ., MacLead A., Tamaki K .. Neil D.L., Moncleton D.G. (1991) 
Minisatellite repeat coding as a digital approach to DNA typing. Nature 354:204-209 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

178 

Johnson. W.J.. Dratch. P.A .. Martenson, J.S., O'Brien, S.l. (in preparation) 
Resolution of recent radiations within three contrasting felid lineages using analysis of 
mtDNA RFLP variation. 

Jukes. T.H. (1987) Transitions. transversions. and molecular evolutionary clock. J. 
Mol. Evol. 26:87-98. 

Kamimura N .. Ishii S .. Linadong M .. Shay J.W. (1989) Three separate mtDNA 
sequences are contiguous in human genomic DNA. 1 Mol Bioi 210:703-707 

Kimura M. (1983) The Neutral Theory of Molecular Evolution. Cambridge University 
Press. Cambridge. England. 

Kocher T.D., Thomas W.K., Meyer A., Edwards S.V., Paabo S., Villablanca F.X .. 
Wilson A.C. (1989) Dynamics of mitochondrial DNA animals: amplification and 
sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196-6200. 

Kondo R .. Satoshi H .. Satta Y .. Takahata N. (1993) Evolution of hominoid 
mitochondrial DNA with special reference to the silent substitution rate over the 
genome. 1 Mol Evol 36:517-531. 

Krieg. P.A. (1991) Synthesis of RNA probes using SP6, TI, and T3 RNA polymerase. 
In Methods in Gene Technology. Vol. 1 (Eds. 1.W. Dale and P.G. Sanders). J.A.1. 
Press. 

Kumar. S .. Tamura, K., Nei. M. (1993) MEGA: Molecular Evolutionary Genetics 
Analysis. version 1.01. The Pennsylvania State University, University Park. PA 16802. 

Kumazawa. Y .. Nishida, M. (1993) Sequence evolution of mitochondrial tRNA genes 
and deep-branch animal phylogenies. J. Mol. Evol. 37:380-398. 

Kurten B. (1968) Pleistocene Mammals of Europe. Aldine Press, Chicago. !!... 

Lam. B.S., Carroll. D. (1983) Tandemly repeated DNA sequences from Xenopus 
laevis. l. Studies on sequence organization and variation in satellite I DNA (741 bp 
repeat). 1. Mol. BioI. 165:567-585. 

Langley. c.. Fitch. W. M (l974) An examination of the constancy of the rate of 
molecular evolution 1. Mol Evol. 3:161-177. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

179 

Larsson. N.G .. Holme. E., Kristianson, B., Oldfors. A., Tulinius. M. (1990) 
Progressive increase of the mutated mitochondrial DNA fraction in Kearns-Sayre 
syndrome. Pediatr. Res. 28:131-136. 

Lee. W-J .. Kocher, T.D. (1995) Complete sequence of a sea lamprey (Perromyzon 
TP.arinus) mitochondrial genome: early establishment of the vertebrate genome 
organization. Genetics 139:873-887. 

Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for 
DNA sequence evolution. Mol Bioi Evol 4:203-221 

Li. Z .. Wise. C.A .. Le PasIier, D., Hawkins. A.L., Griffin. C.A .. Pittler. S.J .. 
Lovett, M .. Jabs. E.W. (1994) A YAC contig of approximately 3 Mb from human 
chromosome 5q31-> q33. Genomics 19:470-477. 

Li W.-H .. Gojobori T .. Nei M. (1981) Pseudogenes as a paradigm of neutral evolution. 
Nature 292:237-239. 

Li, W-H, Wu. C.l., Luo. C.c. (1984) Nonrandom point mutation as reflected in 
nucleotide substitutions and its evolutionary implications. J. Mol. Evol 21:58-71. 

Li, W-H. Luo. c.c.. Wu, C.l. (1985) Evolution of DNA sequences. In Molecular 
Evolutionary Generics. (Ed. R.J. Macintyre) Plenum. New York. pp 1-94. 

Li. W-H. Gouy. M .. Sharp, P.M., O'Huigin, c.. Yang. Y-W (1990) Molecular 
phylogeny of rodentia. lagomorpha, primates. artiodactyla. and carnivora and molecular 
clocks. Proc. Natl. Acad. Sci. 87:6703-6707. 

Li. W-H.. Graur. D. (1991) Fundamentals of Molecular Evolution. Sinauer Assoc .. 
Sunderland MA. 

Li, W-H. (1993) So. what about the molecular clock hypothesis? Curr. Op. Gen. 
Devel. 3:896-901. 

Lopez. J. V. (1988) DNAse I hypersensit:ve si~es,'.:md their correlation tot he differential 
expression of an exogenous thymidine kinase gene. Master of Science Thesis. Florida 
State University. Tallahasee, Florida. 

Lopez. J.V .. Yuhki. N .. Masuda, R .. Modi. W. S .. O'Brien. S.J. (1994) Numl. a 
transposition and tandem amplification of mitochondrial DNA to the nuclear genome 
of the domestic cat. J. Mol. Evol 39: 174-190. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

180 

Lopez, J. Y .. Culver. M.C., Cevario, S. O'Brien. SJ. Complete nucleotide sequences 
of the domestic cat (Felis eatus) mitochondrial genome and a nuclear mtDNA tandem 
repeat: Analysis of heterogeneous evolutionary rates. J. Mol. BioI. in preparation. 

Locker J .. Lewin A .. Rabinowitz M. (1979) The structure and organization of 
mitochondrial DNA from petite yeast. Plasmid 2: 155-181. 

Love. J.M., Knight, A.M., McAleer, M.A., Todd. J.A. (1990) Towards construction 
of a high resolution map of the mouse genome using PCR analyzed microsatellites. 
Nucl. Acids Res. 14:4123-4130. 

Lynch, M., Jarrell, P.E. (1993) A method for calibrating molecular clocks and its 
application to animal mitochondrial DNA. Genetics 135: 1197-1208. 

Lyons. L.A., Raymond. M.M .. O'Brien, SJ. (1994) Comparative genomics: The next 
generation. Animal Biotechnology 5: 103-112. 

Madsen. C.S., Ghivizzani, S.c., Hauswirth. W.W. (1993) Protein binding to a single 
termination-associated sequence in the mitochondrial DNA D-loop region. Mol. Cell. 
BioI. 13:2162-2171. 

Maga, E.A., Richardson. T. (1991) Amplification of a 9.0 kb fragment using PCR. 
Biotechniques 11: 185-186. 

Margul is L. (1970) Origin of Eukaryotie Cells. Yale University Press. New Haven, CT. 

Margulis. L. (1993) Symbiosis ill Cell EvoLution. Freeman and Co .. New York. 

Martin, A.P, Palumbi. S.R. (1993) Body size, metabolic rate. generation time and the 
molecular clock. Proc. Natl. Acad. Sci 90:4087-4091. 

Masuda. R.M .. O'Brien, S.J., Pecon-Slattery. J .. Yuhki, N .. Lopez, J.Y. (1995) 
Partial resolution of the cat family tree with mitochondrial 12S rRNA and cytochrome 
b gene sequences. In preparation. 

Masuda R, Yuhki N. O'Brien SJ (1991) Molecular cloning, chromosomal assignment 
and nucleotide sequences of the feline homeobox HOX3A. Genomics 11: 1007-1013. 

Matthews. H.R .. Pearson. M.D .. Maclean. N. (1980) Cat satellite DNA. Isolation 
using netropisin with CsCI gradients. Biochim. Biophys. Acta 606:228-235. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

181 

Mazin, A.L., Boiko. L.M .. Ogarkova, O.A., Vanhyushin, B.F. (1988) Loss of CpG 
dinucleotides from DNA. VI. Methylation of mitochondrial and chloroplast genes. 
Molekulyarnaya Biologiya 22: 1688-1696. 

McBride, T.J .. Preston, B.D., Loeb, L.A. (1991) Mutagenic spectrum resulting from 
DNA damage by oxygen radicals. Biochemistry 30:207-213. 

Meyer, A. (1994) Shortcomings of the cytochrome B gene as a molecular marker. 
Trends Ecol. Evo\. 9:278-280. 

Mignone, F., Champagne, A.M., Gueride, M., Mounolou, J.e. (1990) Direct repeats 
in the noncoding region of rabbit mitochondrial DNA: involvement in the generation 
of intra- and inter-individual heterogeneity. Eur. J. Bioch 194:561. 

Miklos, G.L.G. (1985) Localized highly repetitive DNA sequences in vertebrate and 
invertebrate genomes. In Molecular Evolutionary Genetics. (Ed. RJ. Macintyre) pp. 
241-313. 

Mindell, D.P .. Honeycutt, R.L. (1990) Ribosomal RNA in vertebrates: Evolution and 
phylogenetic applications. Annu. Rev. Ecol. Syst. 21:541-566. 

Miquel. J. (1992) An update on the mitochondrial-DNA mutation hypothesis of cell­
aging. Mutation Res. 275:209-216. 

Miththapala. S .. Seidensticker. J .. Phillips. L.G., Goodrowe, K.L.. Fernando. S.B.U .. 
Forman. L.. O'Brien. S.J. (1991) Genetic variation in Sri Lankan leopards. Zoo BioI. 
10:139-146. 

Miththapala, S. (1992) Genetic and morphological variation in the leopard (Panthera 
pardus): A geographically widespread species. Ph.D thesis. Univ. of Florida. 249 pp. 

Miyamoto, M.M., Cracraft, L(Eds.) (1991) Phylogenetic inference, DNA sequence 
analysis, and the future of molecular systematics. In Phylogenetic Analysis of DNA 
Sequences. Oxford University Press, New York. 

Miyata, T., Hayashida, H, Kikuno, R., Hasegawa, M., Kobayashi, M. (1982) 
Molecular clock of silent substitutions: At least six-fold preponderance of silent 
substitutions in mitochondrial genes over those in nuclear genes. J. Mol. Evol. 19:28· 
35. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

182 

Modi, W.S .. Fanning, T.G., Wayne, R.K., O'Brien, S.J. (1988) Chromosomal 
localization of satellite DNA sequences among 22 species of felids and canids 
(Carnivora) Cytogenet. Cell Genet. 48:208-213. 

Modi, W.S. (1992) Nucleotide sequence and genomic organization of a tandem satellite 
array from the rock vole Microtus chrotorrhinus (Rodentia). Mammalian Genome 
3:226-232. 

Monnerot, M., J-C., Mounolou, Solignac, M. (1984) Intra-individual length 
hereogeneity of Rana esculenta mitochondrial DNA. BioI. Cell 52:213-218. 

Moritz, c., Dowling, T. E., Brown, W.M. (1987) Evolution of animal mitochondrial 
DNA: relevance for population biology and systematics. Ann. Rev. Ecol. Syst. 18:269-
292. 

Moriyama, E.N., Hartl, D.L. (1993) Codon usage bias and base composition of nuclear 
genes in Drosophila. Genetics 134:847-858. 

Mullis, K.B., Faloona, F. (1987) Specific synthesis of DNA in vitro via a polymerase­
catalyzed chain reaction. Methods Enzymol. 155:335-350. 

Murakawa, G.l., Zaia, l.A., Spallone, P.A., Stephens, D.A., Kaplan, B.E., Wallace, 
R.B., Rossi, J.1. (1988) Laboratory methods: Direct detection of HIV-l RNA from 
AIDS and ARC patient samples. DNA 7:287-295. 

Myers, R.M., Larin, Z., and Maniatis, T. (1985) Detection of single base substitutions 
by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230: 1242-
1246. 

Nass. M.M.K., Nass, S. (1963) Intramitochondrial fibers with DNA characteristics. 1. 
Fixation and electron staining reactions. 1. Cell BioI. 19:593-611. 

Nei M. (1987) Molecular Evolutionary Genetics. Columbia University Press. New York 

Nelson. D.L.. Ledbetter. S.A., Corbo, L.. Victoria, M.F .. Ramirez-Soliz, Webster. 
T.D .. Ledbetter, D.H., Caskey, C.T. (1989) Alu polymerase chain reaction: A method 
for rapid isolation of human-specific sequences from complex DNA sources. Proc. 
Natl. Acad. Sci. 86:6686-6690. 

Newfeld. S.1 .. Tachida, H., Yedvobnick. B. (1994) Drive-selection equilibrium: 
Homopolymer evolution in the Drosophila gene mastermind. J. Mol. Evol. 38:637-641. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

183 

Novacek, M.J. (1992) Mammalian phylogeny: shaking the tree. Nature 356:121-125. 

Nowak R.M. (1991) Walker's Mammals of the World. 5th ed. The Johns Hopkins 
University Press Baltimore, MD. 

Nugent J.M., Palmer J.D. (1991) RNA-mediated transfer of the gene COXII from the 
mitochondrion to the nucleus during flowering plant evolution. Cell 66:473-481. 

O'Brien S.J.. Nash W.G. (1982) Genetic mapping in mammals: chromosome map of 
domestic cat. Science 216:257-265. 

O'Brien, S.J. (1986) i\-iolecular genetics in the domestic cat and its relatives. Trends 
in Genet. 2: 137-143. 

O'Brien S.1., Collier G.E., Benveniste R.E., Nash W.G., Newman A.K., Simonson 
J.M., Eichelberger M.A., Seal U.S., Janssen D., Bush M., Wildt D.E. (1987) Setting 
the molecular clock in Fel idae: the great cats, Panthera. In Tif!,ers ~f the World. (Eds. 
Tiison R.L.. Seal U.S.) Noyes Publications, Park Ridge, NJ, pp. 10-27. 

O'Brien S.1., Roelke M.E., Yuhki N., Richards K.W., Johnson W.E., Franklin W.L., 
Anderson A.E., Bass O.L. Jr, Belden R.C., Martenson J.S. (1990) Genetic 
introgression within the Florida panther Felis conc%r coryi. Nat! Geo Res 6:485-494. 

O'Brien, S.J. (1994) A role for molecular genetics in biological conservation. Proc. 
Nat!. Acad. Sci. 91 :5748-5755. 

O'Brien, S,J. (1994) Genetic and phylogenetic analyses of endangered species. Annu. 
Rev. Genet. 28:467-489. 

Ohta, T., Kimura, M. (1971) On the constancy of the evolutionary rate of cistrons. J. 
Mol. Evo!. 1: 18-25. 

Ohta, T. (1992) The nearly neutral theory of molecular evolution. Ann. Rev. Eco!. 
Syst. 23:263-286. 

Okimoto, R.o Macfarlane, J.L., Clary, D.O., Wolstenholme, D.R. (1992) The 
mitochondrial genomes of two nematodes, Caenorhabditis e/egans and Ascaris suum. 
Genetics 130:471-498. 

Orgel. L.E., Crick, F.H.C. (1980) Selfish DNA: The ultimate parasite. Nature 
284:604-607. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

184 

Pagel, M., Johnstone, R.A. (1992) Variation across species in the size of the nuclear 
genome supports the junk-DNA explanation fo the C-value paradox. Proc. R. Soc. 
London B 249: 119-124. 

Palumbi, S. R. (1989) Rates of molecular evolution and the fraction of nucleotide 
positions free to vary. J. MoL Evol. 29: 180-187. 

Pathak, S., Wurster-Hill, D.H. (1977) Distribution of constitutive heterochromatin in 
carnivores. Cytogenet. Cell. Genet. 18:245-254. 

Pecon Slattery, J., Johnson, W.E., Goldman, D., O'Brien, S.J. (1994) Phylogenetic 
reconstruction of South American felids defined by protein electrophoresis. J. Mol. 
Evol. 39:296-305. 

Pepe, G., Holtrop M., Gadaleta G., Kroon, A.M., Cantatore P., Gallerani R .. de 
Benedetto c.. Quagliariello C., Sbisa'. E .. Saccone C. (1983) Non-random patterns of 
nucleotide substitutions and codon strategy in the mammalian mitochondrial genes 
coding for identified and unidentified reading frames. Biochem 1m 6:553-563. 

PollaCk, Y., Kasir, J., Shemer, R., Shulamit, M .. Szyf, M. (1984) ~w1ethylation pattern 
of mouse mitochondrial DNA. Nucl. Acids Res. 12:4811-4824. 

Quigley F .. Martin W.F., Ceriff R. (1988) Intron conservation across the prokaryotic­
eukaryotic boundary: structure of the nuclear gene for chloroplast glyceraldehyde 3-
phosphate dehydrogenase from maize. Proc Natl Acad Sci USA 85:2672-2676. 

Radic. M.Z .. Lundgren, K., Hamkalo, B.A. (1987) Curvature of mouse satellite DNA 
and condensation of heterochromatin. Cell 50: 1101-1108. 

Rand. D.M. (1993) Endotherms. ectotherms and mitochondrial genome-size variation. 
J. Mol. Evol. 37:281-295. 

Rand. D.M. (1994) Thermal habit. metabolic rate and the evolution of mitochondrial 
DNA. Trends Ecol. Evol. 9(4):125-131. 

Richter. c.. Park, J.-W., Ames, B.N. (1988) Normal oxidative damage to 
mitochondrial and nuclear DNA is extensive. Proc. Nat!. Acad. Sci. USA 85:6465-
6467. 

Riley. J.. Butler. R .. Ogilvie. D., Finniear. R .. Jenner. D .. Powell, S .. Anand. R .. 
Smith. J.e.. Markham, A.F. (1990) A novel, rapid method for the isolation of terminal 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

185 

sequences from yeast artifical chromosome (Y AC) clones. Nuc!. Acids Res. 
18(10):2887-2890. 

Roberts, R.G., Coffey, A.J., Martin Bobrow, M., Bentley, D.R. (1992) Determination 
of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. 
Genomics 13:942-950. 

Roe, B.A., Ma, D.P., Wilson, R.K .. Wong, J.F.H. (1985) The complete nucleotide 
sequence of the Xenopus laevis mitochondrial genome. J.Bio!. Chern. 260:9759-9774. 

Rose. A.M .. Joyce, P.B.M .. Hopper, A.K., Martin. N.C. (1992) Separate information 
required for nuclear and subnuclear localization: Additional complexity in localizing an 
enzyme shared by mitochondria and nuclei. Mol. Cell. Bioi 12:5652-5658. 

Ruvulo. M .. Zehr, S., Dornum. M V. Pan. D .. Chang, B .. Lin. J. (1993) 
Mitochondrial COlI sequences and modern human origins. Mol. Bio!. Evo!. 10: 1115-
1135. 

Saccone c.. Pesole G., Sbisa E. (1991) The main regulatory region of mammalian 
mitochondrial DNA: Structure-function model and evolutionary pattern. J Mol Evol 
33:83-91. 

Saitou N.. Nei M. (1987) The neighbor joining method: a new method for 
reconstructing phylogenetic trees. Mol Bioi Evol 4:406-425 

Sambrook. J .• Fritsch. E.F .. Maniatis. T. (1989) Molecular Cloning: A Laboratory 
Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor. New York. 

Sanger, F .. Nicklen, S .. Coulsen. A.R. (1977) DNA sequencing with chain-terminating 
inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467. 

Sealy, L., Hartley. R .. Donelson. J .. Chalkley, R .. Hutchison. N .. Hamkalo. B. (1981) 
Characterization of a highly repetitive sequence family in rat. J. Mol. BioI. 145:291-
318. 

Schimke. R.T. (1980) Gene amplification and drug resistance. Sci. Amer. 243:60-69. 

Schinkel A.H .. Tabak H.F. (1989) Mitochondrial RNA polymerase: dual role in 
transcription and replication. Trends Genet 5: 149-154. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

186 

Schlegel, M. (1994) Molecular phylogeny of eukaryotes. Trends in Ecol. Evol. 9:330-
335. 

Schon E.A., Rizzuto R., Moraes C.T., Nakase H., Zeriani M., Dimauro S (1989) A 
direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 
24:346-349 

Serikawa T., Kuramoto T., Hilbert P., Mori M., Yamada J., Dubay C.J .. Lindpainter 
K., Ganten D., Guenet J.L., Lathrop G.M., Beckmann J.S. (1992) Rat gene mapping 
using PCR-analyzed microsatellites. Genetics 131:701-702 

Slade. R. W .. Moritz, c., Heideman. A. (1994) Multiple nuclear-gene phylogenies: 
Application to pinnipeds and comparison with a mitochondrial DNA gene phylogeny. 
Mol. BioI. Evol. 11: 341-356. 

Smith. D.C.. Douglas. A. (1989) The Biology of Symbiosis. E.A. Arnold. London. 

Smith, M.F .. Thomas, W.K., Patton, J.L. (1991) Mitochondrial DNA-like sequence 
in the nuclear genome of an akodintine rodent. Mol. BioI. Evol. 9:204-215. 

Southern. E.M. (1975) Detection of specific sequences among DNA fragments 
separated by gel electrophoresis. J. Mol. BioI. 98:503-517. 

Stephan, W. (1989) Tandem-repetitive noncoding DNA: Forms and forces. Mol. BioI. 
Evol. 198-212. 

Stewart. D.T .. Baker. A.J. (1994) Evolution of mtDNA D-loop sequences and their use 
in phylogenetic studies of shrews in the subgenus Orisorex 
(Sorex:Soricidae:insectivora). Mol. Phylo. Evol. 3(1):38-46. 

Stotlet, E.S .. KoegerJ, D.O., Sarkar, G .. Sommer, S.S. (1988) Genomic amplification 
with transcript sequencing. Science 239:491-494. 

Stohl. L.L., Clayton, D.A. (1992) Saccharomyces cerevisiae contains an RNase MRP 
that cleaves at a conserved mitochondrial RNA sequence implicated in replication 
priming. Mol. Cell BioI. 12(6):2561-2569. 

Swofford, D.L. (1993) Phylogenetic anlysis using parsimony (PAUP). version 3.1.1. 
Smithsonian Institution. Washington D.C. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

187 

Tautz. D., Trick. M .. Dover. G.A. (1986) Cryptic simplicity in DNA is a major source 
of genetic variation. Nature 322:652-656. 

Ticher. A .. Graur. D. (1989) Nucleic acid composition. codon usage. and the rate of 
synonymous substitution in protein coding genes. J Mol Evol 28:286-298. 

Tsuzuki. T .. Nomiyama. H .• Setoyaja. c., Maeda, S, Shimada, K. (1983) Presence of 
mitochondrial-DNA-like sequences in the human nuclear DNA. Gene 25:223-229. 

Tzagoloff, A .. Myers. A.M. (1986) Genetics of mitochondrial biogenesis. Ann. Rev. 
Biochem. 55:249-285. 

Van den Boogaart P .. Samalio J .• Agsteribbe E. (1982) Similar genes for a 
mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora 
crassa. Nature 298: 187-189 

Van der Vlugt. H.H.J .. Lenstra. J.A. (1994) SINE elements in Carnivores. Submitted. 

Vawter. L.. Brown. W.M. (1986) Nuclear and mitochondrial DNA comparisons reveal 
extreme rate variation in their molecular clock. Science 234: 194-196. 

Wainright. P.O .. Hinkle, G., Sogin, M.L., Stickel, S.K. (1993) Monophyletic origins 
of the metazoa: an evolutionary link with fungi. Science 260:340-342. 

Wahls W.P .. Wallace L.J., Moore P.D. (1990) Hypervariable minisatellite DNA is a 
hotspot for homologous recombination in human cells. Cell 60:95-103. 

Wakasugi. S .. Nomiyama, H., Fukuda. M .. Tsuzuki, T .. Shimada K. (1985) Insertion 
of a long Kpn I family member within a mitochondrial-DNA-like sequence present in 
the human nuclear genome. Gene 36:2~ 1-288. 

Wallace. D.C. (1982) Structure and evolution of organelle genomes. Microbiol. Rev. 
46:208-240. 

Wallace D.C., Lott M.T .. Torroni A .. Shoffner J.M. (1991) Report of the committee 
on human mitochondrial DNA. Cytogenet Cell Genet 58: 1103-1123. 

Wallace. D.C. (1992) Diseases of the mitochondrial DNA. Annu. Rev. Biochem 
61:1175-1212. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

188 

Wallace. D.C .. Lou. M.T .• Torroni. A .. Brown. M.D. (1993) Report of the committee 
on human mitochondrial DNA. Genome Priority Reports 1:727-757. 

Warburton. P.E .• Waye. J.S .• Willard. H.F. (1993) Nonrandom localization of 
recombination events in human alpha satellite repeat unit variants: Implications for 
higher-order structural characteristics within centromeric heterchromatin. Mol. Cell. 
Bioi 13:6520-6529. 

Wayne. R.K .. Benveniste. R.E .. Janczewski. D.N .. O·Brien. S.J. (1989) Molecular 
and biochemical evolution of the Carnivora. In Carnivore Behavior, Ecology and 
Evolution. (Gittleman. J.L.. Ed.) Cornell University Press, Ithaca. NY. pp. 465-494. 

Wayne. R.K, Valkenburgh. B.V., O'Brien, S.J. (1991) Molecular distance and 
divergence time in carnivores and primates. Mol. Bio!. Evo!. 8:297-319. 

Weber J.L. (1990) Human DNA polymorph isms based on length variations in simple­
sequence tandem repeats. Genome Analysis 1: 159-181 

Weiner. A.M .. Deininger. R.L.. Efstratisdis. A. (1986) Nonviral retrposons: Genes. 
pseudogenes and transposablew elements generated by reverse flow of genetic 
information. Annu. Rev. Biochem. 55:633-61. 

Wilkinson. G.S .• Chapman. A.M. (1991) Length and sequence variation in evening bat 
D-loop mtDNA. Genetics 128:607-617. 

Willard. H. F. (1990) Centromeres of mammalian chromosomes. Trends in Genetics 
6( 12):410-416. 

Wilson. A.Coo Cann. R.L.. Carr. S.M .• George, M .. Gyllensten. U.B .. Helm­
Bychowski. K.M .. Higuchi. R.G .. Palumbi. S.R .. Prager, E.M .. Sage, R.D .. 
Stoneking. M. (1985) Mitochondrial DNA and two perspectives on evolutionary 
genetics. BioI. J. Linnean Soc. 26:375-400. 

Wilson. E.B. (1959) The Cell in Development and Heredity. Macmillan. New York. 

Woese. C.R. (1987) Bacterial evolution. Micro Rev 51:221-271 

Wolfe. K.H., Li, W.-H .• Sharp. P.M. (1987) Rates of nucleotide substitution vary 
greatly among plant mitochondrial. chloroplast, and nuclear DNAs. Proc. Nat!. Acad. 
Sci. USA 84:9054-9058. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

189 

Wolfe, K.H., Sharp, P.M., Li, W.-H. (1989) Mutation rates differ among regions of 
the mammalian genome. Nature 337:283-285. 

Wolstenholme, D. R. (1992) Genetic novelties in mitochondrial genomes of multicelluar 
animals. Curr. Op. Gen. & Devei. 2:918-925. 

Wu, C. (1980) The 5' ends of Drosophila heat-shock genes in chromatin are sensitive 
to DNAse I. Nature 286:854-860. 

Wu. C-I.. Li, W.-H. (1985) Evidence for higher rates of nucleotide substitution in 
rodents than in man. Proc. Natl. Acad. Sci. USA 1741-1745. 

Wu. C.-I., True. J.R., Johnson, N. (1989) Fitness reduction associated with the 
deletion of a satellite DNA array. Nature 341:248-251. 

Wu, C.-I, Hammer, M.F. (1991) Molecular evolution of ultraselfish genes of meiotic 
drive systems. In Evolution at the Molecular Level (Eds. R.K. Selander. A.G. Clark. 
T.S. Whittam). Sinauer. Sunderland. Mass. 

Wurster-Hill, D.H .. Centerwall, W.R. (1982) The interrelationships of chromosome 
patterns in canids. mustelids. hyena and felids. Cytogenet Cell Genet 34: 178-192 

Yamamoto, M. (1979) Cytological studies of heterochromatin function In D. 
melanogaster males: autosomal meiotic pairing. Chromosoma 72:293-328. 

Yang, D., Oyaizu. Y., Oyaizu, H .. Olsen. G.J .. Woese, C.R. (1985) Mitochondrial 
origins. Proc Natl Acad Sci USA 82:4443-4447. 

Yuhki, N .. O'Brien. S.J. (1990) DNA recombination and natural selection pressure 
sustain genetic sequence diversity of the feline MHC class I genes. J. Exp. Med. 
172:621-630. 

Yuhki. N., O'Brien, SJ. (1994) Exchanges of short polymorphic DNA segments 
predating speciation in feline major histocompatibilty complex class I genes. J. Mol. 
EvoL 39:22-33. 

Zouros, E .. Ball, A.O .. Saavedra. c.. Freeman, K.R. (1994) An unusual type of 
mitochondrial DNA inheritance in the blue mussel Mytilus. Proc. NatL Acad. Sci. USA 
91:7463-7467. 

ZuckerkandL E. (1992) Revisiting junk DNA. J. Mol. Evo!. 34:259-271. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

190 

Zuker. M .. Steigler. P. (1981) Optimal computer folding of large RNA sequences using 
thermodynamics and auxiliary information. Nucl. Acids Res. 9: 133-148. 

Zullo, S., Sieu. L.e.. Slightom, J.L., Hadler, H.I., Eisenstadt, J. M. (1991) 
Mitochondrial D-Ioop sequences are integrated in the rat nuclear genome. J. Mol. Bioi 
221: 1223-1235. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Appendices 

191 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

(Linear) (Six-BaSe) HAPPLOT of: Numtl.Rea ck: 2939, to: 7946 February 7, 1995 11:31. 

;I:·'}II 
1':.\\1 

H :>11 \" I 
'·1,11 

11.1010 ~ooo 1'11'11 ,IlOI' 

Dr~~~: II . I 
Dnll 

Drdll 
P:", I , 1\ I 
f .11' I II 
1,"'1 I , 

1:,l.llOSI I 

r.OtlO '1{l(l(1 ".100 

I .11 I , [eil I . , I I I 
f.coS71 

t ~ olll n'lI 
1,·,,1:1 ., 
uon . 
,011 I I II 
H~el r 

Hole I I I 
H1nell I II I 

.111101111 --t 1'1 I I 
Hp~1 I II' 
filII I I 

~:~: I " 
Hsll II 

HspAlI 
1111111 II 

,;,·,,1 -=========~.....:..----:----.:.-----=========+==t= ',dt'l --
'"p··\1 \' 

';Ii,'1 

N911~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
IIspl I I . I 
I'ael 

PIllI081 
I'f 1HI 
r.el . 

pshAI . I 
I',; I'~ I I 

t· ~. r 11.\(" t 

I 't .\ It· 
ft"· III,', 1\ 
·\1 'l',' ;,1 
TTT'AM 
CAC nnn'GTG 
GAenn nn'nnGTe 
GMCcii 
t' 'rl :C t; 
: 'Ct:(",· I » I (",:,:)',' I' 

"0 2 GACnn n'nnGTC -0 8 e Ie I 11'11' 111,11 n 
I TCCGCC ::J 
2 CTGAAGnnnnnnnnnnn. O. 
j 1\:'(11)' I x' 
1 t:' '\'\ I I " 
1 GAT'ATC > I ,',:\;rl' " ,-.. 
9 ;"GG'CCw n 1 r_GrGC'y 0 10 Grr rAC g, 4 ,\', ,:1" r I 
6 GTT'MC ::J 
1 ,\' ,',:),,: ·1 c:: 
7 rCCrACnnnnnnllllllnn. 2-
1 TGG'CCA '-" 
8 CA~nn'nnrTG 
4 e. 'ckG 
1 )" ,\All I: 
.! r' ".\It; (; 
t "'\ '1,\ I': 
1 ,"'TC,: (" 
2 (.' ,'1 .\,: " 
I A TGCA'T 
4 r-CATG't 
2 TTA AT' All 
4 TCGTAG 
1 crAn nnn'nTGG 
1 GTTTTAMC 
I GACnn'nnGTC 
t I': ',:',,"( " 

-0 
I-J 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

(Linear) (Six-Base) HAP PLOT of: NUmt1,Rea ck: 2939. to: 7946 February 7, 1995 11:31, 
1( 1)0 lOOO 10(1(1 1000 ~ooo hOOO '001' 

I'."d ,nll( 
\'",,1 -----~f---, 

RleAI ::::::=;::::'~~::~::::::::~::~====::::::==============~ Sacl 
,'l,1cll I 

::,11'1 
Scal 
::1"1 
S.al 

5MBI ::1','1 I ' S~I· . 
Stul I 
:01:1 . 
SIIAI I 

Ta'll I I I I I I 
\"1'1 t-I ,-+-t 
\1..,1 
Xc.1 . 
X.nl . , 

I I 
[ntymL'. that <10 not cut: 

htll Aqel Alvl4l ABel B9 11 B9 111 Bf'I'l Bo1M1 801"'1 800lill BstX I [co47 II I 
EccNI rIel r.pl HgIEII ~pnl Norl Hotl Nrul NepV r,,11 Pst I Pvul 
Pvull Rsrll S.II SexAI sfll Sgfl SgrAI Sphl Srf I See8J87I Sunl Tthllll 

Xhol 

Entyr,cs cxclJdcd: Hlr,Cute: I Y.oxCuts: 10 

Af'Ol Bspl2S6J Hln41 Tthllill 

: .. \. t',: I I 
i . t',\ j(: .\ 

CeCACAnn""nn""" " 
G AGCT' C -
CC Gr'GG 
,:C1Cl 1('11' nUll 

AGT'ACT 
,. , I r .:,\ ,: 
CCC'GGG 
TAC'GTA 
.\ . l'T ,W 1 
MT'ATT 
AGG'CCT 

(, t' 'r ... ",,(: c 

> 
"0 
v 
!! 
0. 
x' 

I ATTT' MiAT ..-. 
S GACCG""n""""n"" n (') 
• ,\I'T.\. ·\1 0 

> 

1 . (' I .\t: ,.. ::I 
CCAnnnn_n' "n""TG(: :::. 
GMnn'nnTTC ::I 

c: 
(l/ 

e 

...0 
VJ 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

(Linear) (Six-Ilaoe) MAP PLOT of: Cat.Mt cit: 2211, to: 17009 February 7, 1995 11:34. 
_",II 1'1'" jill" 'ld,III' 

Aalll --------------------------",': ------.~--- -1-----
. 11- -------- -- - - ._- ---1·----

tll·j 

Alw211 -+1------~------4_------------4_--------------_+----------------+_---------------­
-." II - \ - ---------_.- ----- -----------.----
AlwNI ------------------4-------

Apal I 
AP,181 , , lilt-

·,1 ----------- \--- -- .. \ -------------1- ---------------------~-
, I' --------- ------I----~--------- ----\- --. -\--.-- - -- -- ... -------.--... -------------------j-------

Oae) I I 
h.tI'lI' , 

1'.1111 - _ .. \--_.-
H, I ----, .. --.-- ------. - -'- _ ... 1 .... -.-- -- ·I----~------------I-----I_-

lice 8 JI I I , , I 
Regl ------------------------------~---------------------------------------------------------
,.,' I· ------1· - '1-' I -I .- -----.-- ----·-I---j------------------
B<)11 I 
089) , 

""I, \ ',' ,I' : _ II .. - --, - ., -- I· ~~! __ _=_~.-..:.:_~-_~~_=_= _ _:~::.._=_.~=_'_--=--==---'==="= 
0~'~81 ----.-.- - -. ,-- . -. ----- -
1: .. &/11 I 
~~~i; --I -I ---- - \- --1,·1 

Osbl -t 

05
9

1 
- II I II 

". ,I I I I I I Bsl~1 ----- ~ 1--- 1·- ' 115.1' ·\----1-----.. \----------

1':.1" --
Bsp21I --- ------ ,-t 

'~mi -,. . .. ~:-~~=,-' ••..•..•• :~~' .. _~~,~-~1 __ ~~~~=~~~:::~1=;=.=;==: 
h: :.lill - f 

Bstll071 --4_--------------------~~==~~~~~====~~==~~====~====~==~~~~::======= 
. -- - - - ~-- ---------.-~ --.-~~.----'-------.,.----.--- ---,---1 \-

G AeGT'C 
'-;;:"I,'illlll'II1',1 , , , 
I; wGCw'l' , .. 
CAG nnn'CTG 
G GGCC'(' 
GCA_nnnnn'TGC 

".11 I 
,"\'1,\,. I 

ACnnnnGTllyC 
,', . ,", \1" r 
I 1:',1" , 

.1 ,',\.,,·.,.\rnn 1111111 

CTTGIIGnnnnnnnnnnn. >­
CGllnnnnnnTGCnnnnn."O 
l"I .. \Tl' ,\ "0 
GeCn_nnn 'nCG!' ~ 

~~~i~~ ,:,' ~ 
":'''ll1''"l'I' X 
I ,;,: fl'TI'n' 11111111 

5 GIITnn'nnATC 
I 1:1 '1'1: .-(' 
, W'f','I:t: w 

10 IICnnnnnCTCC 
7 CAIICIIC 
4 GTCCIIGnnnnnnnnnnn. 
! r' l't't:"r I 

1 CG ry'CG 
(, cAiiTe Cn' 

1'1·11" r~" 11111111 

GIICnnrlllnnTGGnnnnn. 
, I' f ',',: I ~ '\ 

~". I I • ,i, r I : r 
1\1 I 'It:!' HIII+11 . 1111 I III 

GIIG'CGG 
GCAATG nu' 
, ',",',,1. 
,,"'"f.I', I 

GTII'T/,e 

OJ 

\0 
~ 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

(Linear) (Six-Base) HAP PLOT of: Cat.Ht ck: 2211, 1 to: 17009 February 7, 1995 11:35. 

10,,1111 
as t.X I 
11:;1\1 

1\ :" I ~ tl I 
1'1.11 

(lra III 
Drill 

Drdll 
(1';,11 

~OOtl III 1I 0 hll~) \) :11)(111 l"clllO 12011 n 11000 1,,1101l 

II ~ 

.' 
--it ,,' -,-'---+-I -t-',---,-,,------+-----

t,l" 1 l~~~~~§~~~~~~~~~~~~~§~~~~~~~~~~~§~~~~~~~~:~ '~ 
t:.l1l110SI -+\ I " I 1,111 

Ecil 

EC~~~m I , 
1"",'11).) I I .1 

I\'IIFI I 
EcoRY , 

, , 

"1111---1 ., " 
Hacll . 

HqlEII 
IIll1dlll --I I , 

IIpa I' I, . " , , , 
HNd , , 
Hscl , I 

H8~W ' " ", . __ ~. +1 ___ -:-__ 

iiI) II I ,I. I ';1'1>1 II 

s,h'I, --.:,.-4-\ ____ ..:.... __ -:-_-:-. 

';qp.\1 v ======+===:!:=+==-__ -============= ';1,1'1 
Nrul 

Nsil ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
\"rV 

., 
P,lel , I , I 1'1111081 

I'IIHI 
Pael 
Pall II 

I"'\"III-t t-
1'" I' I n ,d 

,;' ,: 111,\\' " 
celln nnnn'n'fGG 
I ',:,\ j)' .. 
Ct" r 11'\ ,",' 
,\I 't'I; '\ I 
rllc nnn'GTG 
GIICnn nn'nnGTC 
Gl\I\ccii 
C 'C, ;,: \: 
1" l:t;lT ,: 
GACnn 'I' nnCTe 

I' 0)' r [I'll' 1I1111 > 
S TCCGCC '0 
1 AGC'GeT '0 
5 CTGlIlIGnnllnnnnnnnn" a 
I IC":IIt' c:: 0.. 
2 ,;'MTT r -, 
) GAT'ATC ~ 
I ,";l:rr ,: c:c S r_GCGC'y 
~ ~~~~~~n~nGGT n 
6 GTT'AAC 0 
8 TCCrACnnllnnnnnnnn".=! 
9 TGG'CCA ::' 
9 Cllynn' nnrTG C 
S C.C'CkG n 
I ''''\~11 r: 0-
\ \",''\It: ,: 

",\' '1,\ [I: 
,:'('('1:,: I' 
t:'," ,It; " 
TCG'CGII 
II TCCA'l 
II'),,: 1\'\ 
TTA IIT'TIIII 
TCGTIIG 

I CCAn nnn'nTGG 
2 GTTT'AAAC 
S CAC'GTG 
1 I I ~ • I : 'III' t' I'. 

1 '\'\' ,',: 1 I' 

-~ 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

(Linear) (Six-Base) HAPPLOT of: Cat.Ht ck: 2211, to: 17009 February 7, 1995 11:35. 
2000 1000 1·000 30(10 10000 12000 11000 1 \>000 

vt'~H . r 
r,',ll I . I 

RieAI , , I: . I 
Sacl , 

S~ell 

"'1'1 ( . II' Seal n It I.. 
~:\' \ t\ I' I . 

Sail I .1 
SnaDI 

Sphl -
stul I I I I I II 
::11111 I 
SWill I' 

IIIIIIII-t-
\\1,11 I I . 
Xc.1 . I 

\lInl ======til================================~ II 
Entymeo thot do not cut: 

AscI B9 111 Bpml B8f')1 EcoNI reel Fapl Kpnl Hlul Norl Noll PohAI 
hul Rsrll Soil sfll Sgfl SqrAI Srfl Soe63671 

Entymes excluded; MlnCuts: I MuCuto: 10 

Accl AfllIl ApOI Bonll BooAI BoeRI eepl2B61 BorGI Drol Eoel Hoel Hlnll 
Hlr.ell Nepl Slcl Sopl Styl T.qll T.qll Tthlllll Vopl 

1 C 1GClI'G 
1 CAG'eTG 
S I' ... \ It; '\ 
9 crCACA"""nn"n"" " .. 
4 G AGCT'C 
2 CC GC'GG 
1 crTn Trll' 111111 

10 AGT'ACT 
\ .\ ·r .... ':': I 
1 CCC'GGG 
2 TAC'GTA 
7 .\·"T,\C I 

G CATG'I' 
AGG'CCT 
(" (; I ,\t' t: 
ATTT' AIIAT 
1"'\('11' n HI: I I' 
r ','1,\\; .\ 
('( ,\nn"n n' I1nnI11(;(; 
(' . I (" I: ,\ ~ 

GllAn"'nnTTC 

» 
o 
'0 

'" i5. 
>: 

w 
---n 
~. 
:J 
C 

'" 0. 

\C) 
01 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

197 

Appendix C. Total Sizes of Various Vertebrate Mt Genomes 

Species 
Common Std. 
Name Binomial Size (bp) Oev Reference 

Domestic cat Fells catus 17009 Lopez et al. in prep 

COW 80S taurus 16338 Anderson et al. 1982 

Mouse Mus musculus 16295 Bibb et ai, 1981 

Norway rat Rattus 16298 Gadeleta ~t ai, 1989 
norvegicus 

Human Homo sapiens 16569 Anderson et ai, 1981 

Harbor seal Phoca vitulina 16826 Arnason and Johnsson, 1992 

Grey seal Halichoerus 16797 Arnason et ai, 1993 
grypus 

Fin whale Baleaenoptera 16398 Amason et ai, 1991 
physa/us 

Blue whale Baleaenoptera 16402 Arnason and Gullberg, 1993 
musculus 

Chicken Gallus gallus 16775 Desjardins and Morais, 1990 

Carp Cypnnus carpio 16575 Chang et ai, 1994 

Sea lamprey Petromyzon 16201 Lee and Kocher, 1995 
marinus 

African toad Xenopus laevis 17700 Roe et ai, 1985 

Domestic rabbit" Oryctolagus 17300 Brown, 1983 
cuniculus 

Avg. = 16677 +430 

- Data was also available from GenBank release 86.0 (12.94) 
" - Inferred from techniques other than direct DNA sequencing. 
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Appendix D. Pairwise compaiisons of codon usage for all structural genes in the 
mitochondrial genomes of four mammalian orders. After assembling all protein-coding 
reading frames imo one comiguous file, codon usage in each separate species (domestic 
cat, human. cow, mouse, and harbor seal) was determined with the UWGCG program 
CODON FREQUENCY. Values for each of the 64 possible codons were entered into 
the STATVIEW or STATGRAPH analysis program and plotted. A primary observation 
from this analysis is that codon usage among these mammals is very similar. The lowest 
correlations are consistently observed with the human sequence, representing the primate 
lineage. 
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