
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2014

A Cognitive Apprenticeship Approach for Teaching
Abstract and Complex Skills in an Online Learning
Environment
Reinaldo Fernandez
Nova Southeastern University, reinaldo@nova.edu

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons, and the Education Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Reinaldo Fernandez. 2014. A Cognitive Apprenticeship Approach for Teaching Abstract and Complex Skills in an Online Learning
Environment. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and
Information Sciences. (2)
https://nsuworks.nova.edu/gscis_etd/2.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A Cognitive Apprenticeship Approach for Teaching Abstract and Complex

Skills in an Online Learning Environment

by

Reinaldo D. Fernandez

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computing Technology in Education

Graduate School of Computer and Information Sciences

Nova Southeastern University

July 19, 2014

We hereby certify that this dissertation, submitted by Reinaldo Fernandez, conforms to

acceptable standards and is fully adequate in scope and quality to fulfill the dissertation

requirements for the degree of Doctor of Philosophy.

Graduate School of Computer and Information Sciences

Nova Southeastern University

2014

___ ________________

Martha M. Snyder , Ph.D. Date

Chairperson of Dissertation Committee

___ ________________

Kellie W. Price , Ph.D D ate

Di ssertation Committee Member

___ ________________

Gertrude Abramson , Ed.D. Date

Dissertation Committee Member

Approved:

___ __ ______________

Eric S. Ackerman , Ph.D . Date

Dean, Graduate School of Computer and Information Sciences

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A Cognitive Apprenticeship Approach for Teaching Abstract and Complex

Skills in an Online Learning Environment
by

Reinaldo Fernandez

July 2014

Undergraduate courses such as mathematics, science, and computer programming require

high levels of decision making, concentration, and cognitive demand. Researchers in the

field of instructional design are interested in effective instructional strategies that can aid

practitioners in teaching such abstract and complex skills.

One example of an instructional strategy that has proven effective in teaching these skills

is cognitive apprenticeship (CA). While CA has been applied to courses such as

mathematics and computer programming in face-to-face and blended learning

environments, there is little evidence of the advantages of applying CA in a fully online

computer programming course. Specifically, the introductory programming course, CS1,

is the first contact that undergraduate computer science students have with their chosen

major. Historically, drop-out rates for CS1 have been high and thus strategies for

effective teaching of this course have served as an important topic in the research

literature.

The goal was to design and validate internally an online CS1 course that incorporates CA

strategies. A two-phase design and development research method was used to guide the

construction and internal validation of a fully online CS1 course. Phase one resulted in

the design and development of the course guide. An expert-review process using the

Delphi technique was implemented in phase two to validate the design with regard to its

effectiveness, efficiency, and appeal. Three rounds of review by the panel resulted in

consensus.

Results from the expert-review confirmed the application of CA as an effective, efficient,

and appealing instructional strategy to use when designing an online CS1 course. Future

research should focus on external validation of the design by implementing the course to

evaluate its effectiveness, efficiency, and appeal among stakeholders. In addition, it is

hoped that the course guide can be used to help practitioners design and implement a

fully online CS1 course that uses CA strategies.

Acknowledgments

I would like to express my deepest appreciation to my committee chair Professor Martha

Snyder, who has been an indefatigable support throughout the entire dissertation process.

I am sure that without her guidance and leadership, this effort would not have been

possible.

I would also like to thank my committee members, Professor Trudy Abramson and

Professor Kellie Price, whose guidance and ready disposition to help led me to the

successful completion of this work.

A great word of thanks goes to the Delphi panel members --who by design must remain

anonymous-- that so graciously participated in this study. Their dedication to optimizing

the course design over several months of going back and forth with revisions is a true

testament to their stamina and desire for excellence.

Last but not least, I would also like to express my most sincere thanks to my best friend

and lifelong companion, my wife Raquel. Without her support when I was down it would

not have been possible to finish this dissertation.

v

Table of Contents

Abstract ii

List of Tables v

List of Figures vi

Chapters

1. Introduction 1

Background 1

Problem Statement and Goal 3

Research Questions 7

Relevance and Significance 8

Barriers and Issues 9

Definitions and Acronyms 12

Summary 14

2. Review of the Literature 15

Teaching Abstract and Complex Skills 15

The Computer Science 1 Course 19

Examples of CS1 Solutions 21

Category 1: Front-end Filtering 21

Category 2: Improved Teaching and Learning Aids 24

Category 3: Live Instruction 30

Category 4: Cognitive Apprenticeship 33

Application of CA to CS1 36

CA as an Instructional Strategy 38

Constructivism 38

Zone of Proximal Development 39

Scaffolding 39

Situated Cognition 40

Cognitive Load Theory 40

Problem-Based Learning 41

Summary 41

3. Methodology 43

Overview 43

Phase One: Course Construction 45

Phase Two: Course Validation 46

Procedures 48

Initial Course Design 48

Delphi Validation 50

4. Results 52

Round 1 52

Round 2 57

vi

Round 3 59

Summary 62

5. Conclusions, Implications, Recommendations, and Summary 63

Conclusions 63

Implications 66

Recommendations 69

Summary 70

Appendices

Appendix A - E-mail to Panel of Experts 74

Appendix B - Computer Science 1 Course Guide with CA Strategies 76

Appendix C - Brief Description of Cognitive Apprenticeship 94

Appendix D - E-mail to Panel of Experts 95

Appendix E - Document of Revisions 97

Appendix F - Computer Science 1 Course Guide with CA Strategies 99

Appendix G - E-mail to Panel of Experts 121

Appendix H - Document of Revisions 123

Appendix I - Computer Science 1 Course Guide with CA Strategies 125

Appendix J - Final E-mail to Panel of Experts 152

Appendix K - Nova Southeastern University Intitutional Review Board Approval 153

References 154

vii

List of Tables

Tables

1. Correspondence of Research Questions with Round 1 Questions 53

2. Correspondence of Research Questions with Round 2 Questions 58

viii

List of Figures

Figures

1. Data collection and analysis process 51

1

Chapter One

Introduction

Background

Computer programming is an abstract and complex skill which requires persistent

practice in order to learn it well. Learning to program a computer is a famously difficult task,

with a very prolific research literature dedicated to studying it (Valentine, 2004). Like similar

subjects including math and science, computer programming can be difficult because of the

abstract and highly complex skills that are involved.

 In 1978, the curriculum committee of the Association for Computing Machinery (ACM)

published recommendations for undergraduate computer science programs (Austing, Barnes,

Bonnette, Engel, & Stokes, 1979). This curriculum design has been updated through the years

and in the 2001 revision (ACM, 2001), the committee identified one course, CS111, also widely

known in the literature as simply “CS1,” as the first course that all computer science majors were

required to take. After all these years, there is little agreement regarding the exact content to be

covered in the CS1 course, although it typically covers basic programming skills and basic data

structures. According to the 2001 curriculum design, CS1 covers the following specific items (in

the imperative-first, traditional topic-based approach): (1) fundamental programming constructs,

(2) algorithms and problem-solving, (3) fundamental data structures, (4) fundamental computing

algorithms, (5) basic computability, (6) assembly-level machine organization, (7) overview of

programming languages, (8) declarations and types, (9) abstraction mechanisms, (10) object-

oriented programming, (11) fundamental techniques in graphics, (12) history of computing, (13)

2

software design, (14) software tools and environments, (15) software requirements and

specifications, and (16) software validation.

For many students, CS1 is difficult and often students give up and abandon computer

science for other disciplines. Historically, drop-out rates for CS1 have been high and thus,

strategies for effective teaching of this course have served as an important topic in the research

literature for many years (Valentine, 2004). In fact, Kumar (2013) notes that the ACM special

interest group in computer science education, or SIGCSE, is often nicknamed among

practitioners as “SIGCS1” due to the prolific output of researchers studying that important first

course. Based on a world-wide survey, Bennedsen and Caspersen (2007) determined that CS1

has an average failure rate of 33%. Compared to the 26.8% college failure rate overall, the CS1

failure rate is 6.2 percentage points, or 23%, higher. Given the number of students enrolled in

computer science (two million at that time), a one percentage point improvement would equate

to 20,000 additional students successfully finishing their studies. The results of this survey

underscore the strong negative impact of the CS1 problem. When CS1 is taken online, the failure

rate is even higher, sometimes reaching as high as 50% (Vilner, Zur, & Sagi, 2012). The problem

with CS1 is primarily the result of the cognitive complexity that many students face while

learning the difficult skill of computer programming, as analyzed by Robins, Rountree, and

Rountree (2003).

One effective strategy that has shown promise in face-to-face and blended learning

environments for teaching computer science is cognitive apprenticeship (CA) (Mow, Wing, &

Yates, 2006; Vihavainen, Paksula & Luukkainen, 2011; Knobelsdorf, Kreitz, and Bohne, 2014).

CA is an instructional strategy comprised of six instructional methods: modeling, coaching,

scaffolding, articulation, reflection, and exploration (Collins, Brown, & Newman, 1989). By

3

modeling, the expert shows the student the thinking process needed to develop the solution to a

problem. Coaching refers to the student working on problems while the expert offers guidance in

applying the correct approach to the solution. Scaffolding refers to the gradual removal of the

expert’s guidance so that the student can develop more and more of the problems independently.

Articulation refers to the requirement that students explain why a specific approach to a problem

works. Reflection entails comparing and criticizing the student’s work with other students or the

instructor, with the intent of developing a producer-critic internal dialogue. Exploration refers to

trying out new approaches to resolution of the problems, with the intent of developing

independent thought (Kuo, Hwang, Chen, & Chen, 2012). The strategy melds apprenticeship

concepts and traditional schooling aimed at teaching and learning of cognitive skills. The idea is

to “make the target processes [or thinking] visible” (Collins, et al., 1991), or to clearly present to

students the thinking process that an expert in the subject area develops when resolving problems

in the chosen domain. The first three instructional methods (modeling, coaching, and

scaffolding) were part of the traditional apprenticeship model (Collins, Brown, & Holum, 1991).

The three additional elements to the conceptual framework: articulation, reflection, and

exploration, are aimed at externalizing thinking processes that are usually internal, not explicitly

explained. Once this thinking is made visible, it can be more easily reproduced and in fact, the

thinking process itself is learned.

Problem Statement and Goal

 The acquisition of programming skills is difficult because of its cognitive complexity

(Robins, Rountree, & Rountree, 2003). When these skills are taught in an online classroom, the

4

difficulty of the learning task is compounded due to the difficulty inherent in offering the

immediate, hands-on guidance and scaffolding that is often needed to teach these skills.

 Cognitive apprenticeship (CA) (Collins, et al., 1989) is an instructional strategy that has

proven successful in teaching courses in abstract and complex topics such as mathematics and

science. While CA has been applied to these types of courses in face-to-face and blended

learning environments, there is little indication in the literature on how to apply CA instructional

methods in fully online CS1 courses. Ramdass (2012), for example, reviewed the literature and

discussed the application of CA in online science courses, reviewing several approaches that

have been used for that. One of these CA-based approaches is using science-based computer

games as a learner-centric learning model, and they have helped develop students’ interest in

science-related careers, as detailed by Beier, Miller, and Wang (2012) and also by Foster (2008).

Ramdass also presented another such approach (Mayer, Mautone, & Prothero, 2002) that used

gaming-style simulation of the terrain in a given area and had students solve geology problems

through virtual surveying and analysis of the virtual terrain’s features. A third approach

presented by Ramdass (Tsang, Naughton, Leong, Hill, Kelly, & Leahy, 2008) offered medical

training to students through virtual reality simulations of patient interactions, evaluated by a

panel of experts. Only when a level of training was mastered were students allowed to step up to

the next level of training.

In particular, scaffolding is the feature that appears more difficult to adapt to a fully

online course. Three basic approaches to scaffolding have been found in the literature: a face-to-

face approach, a question and peer collaboration approach, and an automated tutor approach.

First, Vihavainen, Paksula, Luukkainen, and Kurhila (2011) implemented a face-to-face

scaffolding approach, which required the support of several instructors and a group of mid-level

5

and advanced students of computer science. The ratio of guide to student was 1:10. The exercises

were developed in a lab environment with both students and guides in attendance. There were a

total of 20 hours per week of such sessions throughout the complete 14-week course. The

exercises were evaluated on the spot by the guides as exercises were finished by students.

Exercises were returned by the guide and re-worked by the student until the exercise had been

developed with a good level of quality. Second, Ge and Land (2004) presented a scaffolding

approach applied to complex, ill-structured problem learning in various learning environments,

including online. This approach consisted of question prompts and peer collaboration to discuss

the questions. The instructor, who played the role of subject matter expert, guided the discussion.

The style and substance of the scaffolding questions suggested in this study are aligned with the

IDEAL problem-solving learning strategy proposed by Bransford and Stein (1993). Incidentally,

this IDEAL approach seems particularly well suited to an online CS1 course, where this

technique could be implemented through a discussion forum where the questions are posted for

discussion and the programming exercises are analyzed in depth. Third, in a massive open

online course (MOOC)-style CS1 course developed by Vihavainen, Luukkainen, and Kurhila,

(2012) a scaffolding approach was implemented based on an automated tutoring software. The

automated tutor contained a set of exercises with increasing difficulty levels that were

automatically graded by the tutor software and which offered tips and suggestions about how to

solve difficult problems when the automated tutor noticed that a student struggled with an

exercise. The program automatically advanced students into more complex exercises, while

gradually reducing the guidance so that proper scaffolding was implemented.

All three of these basic approaches to implement scaffolding have resulted in

encouraging results, although varied. In the first approach, face-to-face scaffolding (Vihavainen,

6

et al., 2011), the results indicated that there was an improvement in student performance from

51.1% to 70.7% for the first part of the course, and from 52.7% to 82% for the second part of the

course. The second scaffolding approach was implemented by Demetriadis, Papadopoulos,

Stamelos, and Fischer (2008) in a computer software project management course and the

researchers found statistically significant improvements in class performance. In the study

describing the third approach, fully online scaffolding (Vihavainen, et al., 2012), the researchers

reported positive anecdotal survey feedback from students, pointing to both the effectiveness and

toughness of the course as designed. While CA has been applied to courses such as mathematics

(Collins, et al., 1989), science, technology, and computer programming in face-to-face and

blended learning environments, there is little evidence of the advantages of applying CA in a

fully online computer programming course.

The goal was to design and validate internally an online CS1 course guide that

incorporates CA strategies. When describing instructional design model validation, Richey and

Klein (2007) defined internal validation as the “empirical verification of the components and

processes included in a design and development model” (p. 158). In the case of internal

validation of an online CS1 course design, the aim was to validate the application of CA

strategies to teach various facts, concepts, principles, rules and procedures in a fully online

course. When considering the validation of instructional design theories, models, and methods, a

major concern is preferability. Reigeluth and Frick (1999) define preferability as “the extent to

which a method is better than other known methods for attaining the desired outcome” (p. 634).

That is, what instructional methods are most preferable and in which situations? Organized into

three dimensions (i.e., effectiveness, efficiency, and appeal), the authors explain how these three

criteria can be used to generate design knowledge. However, they warn that these criteria are

7

sensitive to the context of the instruction so the needs and wants of the stakeholders should be

considered. There may be some instances where effectiveness is most important while other

instances value appeal as the most important criteria. In the context of a course, Doering and

Veletsianos (2008) define effectiveness as the ability to comply with the stated learning goals

established for it. Efficiency is achieved when effectiveness is accomplished using the least

amount of resources possible. Appeal refers to the willingness of students to become engaged

and immersed in the learning experience and enjoy the learning process. These three criteria can

be used to evaluate whether specific instructional methods work within a specific context.

Therefore, these criteria are incorporated into the validation of the CS1 course design.

Research Questions

 The following research questions guided this investigation:

RQ1. What is the evidence that specific elements of CA are

helpful to students in an online CS1 and similar online courses

that require abstract and complex thinking?

RQ2. How must the traditional course be revised to

incorporate the selected CA elements for effective online

delivery?

RQ3. What are the reactions of experienced instructors of

CS1 to the proposed CA-supported online course in terms of

effectiveness, efficiency, and appeal?

8

RQ4: What are the modifications needed to improve the

proposed CA-supported CS1 online course in terms of

perceived effectiveness, efficiency, and appeal?

To answer the first research question, a thorough review of the literature was conducted.

The review focused on studies pertaining to the design and development of courses that required

abstract and complex thinking and the instructional theories and methods, including CA methods

that were used to support these designs in both face-to-face and fully online courses. The second

research question was answered by using a systematic instructional design process to guide the

development of the CA-supported CS1 course (Appendix A). This process included the selection

of appropriate CA methods that support the acquisition of the knowledge and skills required for

the online CS1 course. The third research question was answered through the solicitation and

collection of input from experienced instructors who teach CS1 online. Special attention was

given to the elements of effectiveness, efficiency, and appeal of the instructional design. Finally,

research question four was answered by analyzing the data and using it to make modifications to

the proposed CS1 course design.

Relevance and Significance

 The difficulties that students have with the first encounter with a computer programming

course such as in the CS1 course have been investigated in detail (e.g., Herrmann, Popyack,

Char, & Zoski, 2004; Hughes & Ramanee-Peiris, 2006). Different approaches have been

implemented to improve such courses with varying degrees of success. Most of the studies

focused on face-to-face or blended learning environments, but very little attention has been given

9

to the online CS1 course. Given the increase in the delivery of fully online courses in higher

education, including courses such as mathematics, science, and computer science, it becomes

increasingly relevant and useful to analyze instructional strategies that will improve performance

and retention in such courses. As such, focusing on this particular mode of delivery offers

practitioners who teach CS1 courses in a fully online environment, guidelines for implementing

CA strategies. More broadly, however, while this investigation focused solely on computer

science and programming skills in particular, the design could be applied to other fully online

courses where the development of abstract and complex skills are required.

Barriers and Issues

 The difficulties many students encounter when learning computer programming for the

first time have been studied in the academic community for many years. A multitude of studies

have been developed over several decades attempting one solution or another (Pears, Seidman,

Malmi, Mannila, Adams, Bennedsen, Devlin, & Paterson, 2007), and CA has merely been one of

the many alternate approaches attempted, often with good results (Mow, Wing, & Yates, 2006;

Hassinen, & Mayra, 2006). Nearly all of these studies, however, have addressed solutions to this

problem in the face-to-face or blended classroom, but few studies have been developed analyzing

solutions to this problem in a fully online classroom. Designing a CS1 course for a fully online

delivery is inherently difficult and as such requires careful thought in the instructional design of

the course activities in that they must be effective in achieving the stated learning objectives,

efficient in the use of instructor and student time, and appealing to all stakeholders involved (i.e.,

students, faculty, and administrators). In addition to this inherent difficulty, there are other issues

with respect to the context that were used to guide the design of the CS1 course. The researcher

10

currently teaches an online CS1 course at a for-profit educational institution that uses the

eCollege learning management system (Pearson eCollege, 2013). Even though the scope of this

study did not include the implementation of the CA-modified course, the design was based on

the affordances and constraints that exist at the institution. Following is a brief description of the

context.

Each course is designed by the centralized instructional design department of the

institution and consists of (per week of instruction): (1) written lecture, (2) live lecture

(videoconferencing), (3) two discussion forums, (4) one quiz, and (5) one programming problem.

In addition, a final exam and a textbook are included. Instructors do not have full academic

freedom as defined by the AAUP (2006; paragraph 2 of the section on Academic Freedom) and

are instead contractually required to follow the pre-established syllabus. As such, instructors

cannot change the assessment components of the course (quizzes, final exam, programming

problems, number of discussion forums, and the points assigned to each of these items). On the

other hand, instructors are able to change the discussion questions (but not the points assessed).

Instructors are also able and encouraged to add individualized content, such as additional written

lectures; additional discussion questions (provided that the overall number of points assigned to

discussions is not changed); videoconferencing sessions with students, individual or in groups,

(although participation in these sessions cannot be required – they must be optional for students);

additional individual forums for one-on-one discussions between instructor and each student;

modifications to the description of the programming problems, but without modifying the

required program itself, which must remain as centrally developed by the institution; and text-

only “chat” sessions with students. Also, instructors can offer grading feedback for the weekly

programming problems in any way desired, provided it is based on a grading rubric (which is not

11

centrally developed by the institution but by each professor). Such rubric-based grading feedback

requires that the instructor not only jots down the points earned in each assessment item in the

rubric but also adds written comments that point out opportunities for improvement in the

student’s work and the correct way to solve or implement each specific issue, if needed.

 The course design complied with these requirements and the instructor was contractually

required not to deviate from them except as indicated. Due to this situation, weaving the

components of CA into this course, particularly the scaffolding component, was particularly

difficult. The other components of CA, namely modeling, coaching, articulation, reflection, and

exploration were easier to incorporate given the academic freedom constraints of the target

institution. There were, however, other complications. As noted, the target institution did not

allow changes to the standard course syllabus, particularly with respect to the assessments

(points assigned to each of the course’s components). This meant that any additional activity or

assignment is optional. That is, students are not required to complete it. The author’s experience

in this target institution indicates that without an assessment incentive, few students take

advantage of any added feature, no matter how convenient to their learning it may appear to be.

This issue complicated the instructional design for some of the components of CA, namely

articulation and reflection.

How generalized are the academic freedom restrictions of the target institution? As part

of an analysis of for-profit universities such as the target institution, Tierney (2011) explained

that faculty life is significantly different in such institutions when compared with traditional

universities. Of note is the fact that in such traditional institutions the instructor prepares the

syllabus according to what is perceived as important by the individual instructor, whereas in the

for-profit universities, the syllabus is centrally developed and modifications are, in general, not

12

allowed. Morey (2004) also explained this marked difference between the traditional university

and the for-profit university, where instructional delivery is independent of instructional design.

Definitions and Acronyms

ACM – Association for Computing Machinery.

Appeal (in instructional design) – Refers to the willingness of students to become

engaged and immersed in the learning experience and enjoy the learning process (Doering

&Veletsianos, 2008).

Articulation (cognitive apprenticeship) – Refers to the requirement that students explain

why a specific approach to a problem works (Collins, Brown, & Newman, 1989).

Blended classroom – Classroom merging the traditional, face-to-face classroom with an

online classroom, typically implemented through a limited number of face-to-face meetings

scheduled throughout the course’s duration plus more frequent, often daily, online interactions

through a learning management system (Rosenberg, 2003).

CA – cognitive apprenticeship (Collins, et al., 1989).

Coaching (cognitive apprenticeship) – Refers to the student working on problems while

the expert offers guidance in applying the correct approach to the solution (Collins, Brown, &

Newman, 1989).

CS1 – Computer Science “1” course, or first course in computer science programs,

covering computer programming and basic data structures as main topics (Bowles, 1978).

Effectiveness (in instructional design) – Refers to the ability of an instructional design to

comply with the stated learning goals established for it (Doering &Veletsianos, 2008).

13

Efficiency (in instructional design) – Is achieved when effectiveness is accomplished

using the least amount of resources possible (Doering & Veletsianos, 2008).

Exploration (cognitive apprenticeship) – Trying out new approaches to resolution of the

problems, with the intent of developing independent thought (Kuo, Hwang, Chen, & Chen,

2012).

Face-to-face classroom – Traditional, lecture-based classroom, where the instructor

imparts lectures to students seated at chairs or desks (Toff, 1955).

Modeling (cognitive apprenticeship) – The expert shows the student the thinking process

needed to develop the solution to a problem (Collins, Brown, & Newman, 1989).

Online classroom – Computer-mediated classroom implemented through a Learning

Management System such as eCollege (Pearson eCollege, 2013).

Reflection (cognitive apprenticeship) – Self-analysis of the student’s problem-solving

approach, comparing the student’s approach to the expert’s approach (Collins, Brown, &

Newman, 1989.)

Scaffolding (cognitive apprenticeship) – Gradual removal of the expert’s guidance so

that the student can develop more and more of the problem solutions independently (Collins,

Brown, & Newman, 1989).

14

Summary

 Due to its abstract and complex nature, the first computer programming course is a major

stumbling block in the computer science studies of many students. With varying degrees of

success, instructional strategies have been implemented in an attempt to help students learn the

material in an effective, efficient, and appealing way. One such strategy which shows great

promise is CA.

 Given the rapid increase in the delivery of online learning in higher education, it has

become increasingly relevant to identify instructional strategies that can effectively facilitate the

acquisition of abstract and complex skills. By constructing a fully online CS1 course guided by

CA and validating the design, steps are being taken toward the development of effective,

efficient, and appealing strategies for redesigning online courses that require abstract and

complex skills.

The following chapter includes a review of the literature related to teaching abstract and

complex skills including an overview of the CS1 course in particular. Examples of CS1 solutions

are surveyed and organized into four categories; front-end filtering, improved teaching and

learning aids, live instruction, and CA. Next, research related to CA and its application to CS1 is

discussed including specific principles associated with CA as an instructional strategy including

constructivism, zone of proximal development, scaffolding, situated cognition, cognitive load

theory, and problem-based learning. The design and development research approach (Richey &

Klein, 2007) is outlined in Chapter 3. Two overarching phases – development and validation –

are described along with the detailed procedures associated with each phase. Chapter 4 will

present the Results obtained in the study and Chapter 5 will round up the study with conclusions,

implications, and recommendations.

15

Chapter Two

Review of the Literature

This review of the literature highlights existing research pertaining to the investigation.

This research includes: teaching abstract and complex skills, the first computer science course

(CS1), examples of CS1 solutions, cognitive apprenticeship (CA) as an instructional strategy,

and the affordances of CA as an instructional strategy in the design of a fully online CS1 course.

Teaching Abstract and Complex Skills

Computer programming is a complex skill. The intrinsic cognitive load placed on an

individual when learning how to program is high. As a result, researchers in the field of

instructional design are interested in how computer programming tasks can be broken down in a

way that lessens cognitive load and promotes learning. In an extensive description and review of

cognitive load theory, Von Merrienboer and Sweller (2005) explained some of the instructional

methods developed in consideration of the theory. The essence of the theory has a biological

underpinning: human memory is divided into long-term memory and short-term memory. All

learning is acquired through short-term memory and then classified in a permanent way into

long-term memory in a second phase, at most 20 seconds or so later, and is stored as relational

schemas that can be recalled when needed as a group. Working memory can hold a maximum of

seven elements but it can operate on only two to four at the same time. This heuristic works for

new data received from the outside but for internally-sourced data (i.e., schemas recalled from

long-term memory), there is no known limit to the number of elements that can be handled

simultaneously. As a consequence, when designing instruction, an effort should be made to

16

reduce the number of simultaneous knowledge bits presented to the learner, and as such the

creation of the necessary long-term memory schemas will be enhanced.

Garcia, Sánchez, and Acuña (2013) analyzed complex, multimedia learning activities

(within the topic of plate tectonics) and sought to determine if learners do better with broad

support systems or if they do as well with less intense support systems. When facing such

complex learning activities, self-regulation of the learning process is necessary (that is, planning,

monitoring, and regulating both cognition and motivation). The authors used an experimental

approach. Eighty-nine undergraduate students were randomly assigned to four groups with: (1)

minimal support (planning support), (2) intermediate support, with two subgroups, (2.a) planning

support and corrective feedback on questions and (2.b) planning support and explanatory

feedback, and (3) broad support, with planning support, corrective feedback on questions, and

explanatory feedback. Students were tested before and after the learning event, with an

independent expert grading the tests. A detailed statistical analysis indicated that minimal to

intermediate levels of support led to significantly less effective learning than a broad level of

support. One consequence of the results was that learners with low prior knowledge of a topic

found difficulties when self-regulating their learning process, which in turn indicated that strong

instructor’s support was needed. The authors also noted that in order for learners to acquire the

needed self-regulation knowledge, so they can be independent of support in the future,

scaffolding should be applied to the level of instructional support.

Specifically, CS1 presents difficulties to students due to the very high degree of

complexity and abstraction that computer programming presents to novices, as mentioned by

Rich, Perry, and Guzdial (2004). Of particular interest, Robins, Rountree, and Rountree (2003)

stated that computer programming is a difficult, complex endeavor which parallels other

17

complex cognitive skills such as chess playing and mathematics. These researchers explained

that learning to program entails five difficult topics, which represent various types of content

(i.e., concepts, principles, rules, and procedures) that must be acquired: (1) orientation (i.e., what

a program can do and what it is used for), (2) the notional machine (i.e., a mental representation

of the computer as an executor of programs), (3) notation (i.e., the particular syntax of a

computer language), (4) structures (i.e., algorithmic models for solving problems), and (5)

pragmatics (i.e., the skills of analysis of a problem, design of a computerized, solution,

debugging, and testing). The fact that these five topics and their respective content types must be

juggled at the same time when attempting to successfully write a computer program, leads to a

very high cognitive load.

In a subsequent study, however, Robins (2010) studied this specific topic of the difficulty

of learning computer programming in great detail and explained that learning computer

programming has an additional difficulty: the sequential nature of the learning topics and how

they accumulate in time. That is, what students learn today will be used tomorrow in different,

more complex ways, so failing to fully understand one specific topic will mean that future topics

will be less understood. This compounded lack of knowledge and skill accumulates over the

duration of the course and it is this characteristic of computer programming learning that results

in what Robins called the “learning edge momentum” and which offered as result a bimodal

distribution of grades (either very good or very bad grades, with few intermediate grades). The

traditional but simplistic explanation for this bimodal distribution is that there are two types of

people: programmers and non-programmers, which means that programming ability is somehow

innate. In an extensive review of the literature, Robins found that there is no clear personal

characteristic that can predict success in a first-time encounter with computer programming, with

18

the exception of general IQ – the higher the IQ the more probable the success in a first-time

computer programming course. On the other hand, however, this does not explain the bimodal

grade distribution, since the IQ distribution in the general population roughly follows a bell

curve.

Continuing the discussion of Robins (2010), this bimodal distribution of grades appears

to have no explanation, even though it has been solidly observed across multiple countries,

computer languages, and instructors. Mathematically, the bimodal distribution of grades can be

represented through a model where a course’s learning is divided into “chunks,” and the grade

for each such chunk depends on the grade earned in the previous chunk. That is, if the grade in

chunk “n” is below a certain value, then the threshold for earning a passing grade chunk “n +1”

is raised; and the contrary, if chunk “n” passed with a good grade, then chunk “n + 1” has a

lower threshold value. Such a model results in the observed anti-normal distribution of grades

and which Robins called the momentum effect. This momentum effect can be understood by

considering two ideas: (1) computer programming is composed of well-defined and closely-

connected elements and (2) we learn by adding new knowledge to the schemas already stored in

our long-term memory. That is, we learn at the boundaries of that which we already know, or at

the zone of proximal development. Based on these ideas, then, the “learning edge momentum”

when applied to CS1 means that successful learning of one topic will facilitate learning future

topics and the contrary, that unsuccessful learning of a topic will result in less-successful

learning of future topics. This idea makes learning self-reinforcing, negatively or positively, and

thus the term “momentum.” The observed bimodal distribution of grades occurs as a direct result

of the topic of computer programming. Are these bimodal grade distributions unique to CS1?

19

Robins pointed out that no, courses in other complex topics such as statistics, languages, music,

and science also show such grade distributions in varying degrees.

The Computer Science 1 Course

 The first contact that undergraduate computer science students have with their chosen

major is the computer science 1 (CS1) course (Bowles, 1978), which is designed to introduce the

student to the essentials of the profession. The failure rates in CS1 are significantly higher than

the average for other courses and such failures often lead to students’ abandonment of computer

science as a career at a time when the job market needs for computer scientists is very high

(Barker, McDowell, & Kalahar, 2009). Any effort to reduce the failure rate in CS1 could lead to

better prepared and more satisfied students that may be more committed to remain in computer

science, graduate, and find employment in the computer science field.

Many students find the CS1 course challenging and some find it so difficult that they end up

choosing a different program of study and abandon computer science altogether. In fact, the

attrition rate for the CS1 course is exceptionally high when compared to other introductory

college-level courses (Robins, 2010).

There are numerous studies dealing with this problem, such as Herrmann, Popyack, Char,

and Zoski (2004), where the researchers reported on a CS1 course at Drexel University with a

“DFW rate” (students that earn a grade of “D” or “F” or who withdraw from the course with a

“W”) of up to 50%. As another example, Hughes and Ramanee-Peiris (2006) complained about

the difficulties students face with this initial course. Many similar studies are found throughout

the literature, such as Wang, Dong, Li, Zhang, and He, (2012), Ambrosio, Moreira, Almeida,

Franco, and Macedo (2011), Vilner, Zue, and Sagi (2012), and Stone and Clark (2011).

20

In the annual SIGCSE technical symposium (the ACM’s Special Interest Group on

Computer Science Education), the number of articles dealing with the difficulties (and

opportunities for improvement) in CS1 had been increasing at least up until a 2004 meta-analysis

by Valentine (2004). An informal count by the author of the number of papers dealing with CS1

since then shows that the number seems to be holding steady or increasing slightly from the 2004

levels.

 To compound the problem even further, these high failure rates in CS1 lead to student

frustration and low continuing enrollment in computer science, which in turn result in low

graduation rates at a time when job openings are high. For instance, Turner, Albert, Turner, and

Latour (2007) stated that student retention is a serious problem for computer science departments

and argued that students leave the program due to both a frustration with programming and

disillusionment with computer science as a career. The dropping enrollment rates of computer

science students (a drop of more than 70% over the 2005-2006 period) coupled with an increase

in open job positions have led many researchers to investigate the reasons for such a worrisome

situation (Wortman & Rheingans, 2007). Barnes, Richter, Powell, Chaffin, and Godwin (2007)

also explained that the enrollment and graduation rates in computer science are declining, even

though the demand for computing jobs is rising, with the computer science attrition rates

reported in the 30% to 40% range. In times of declining enrollment in computer science, every

effort must be made to retain as many students as possible. The survival of computer science

departments is at stake.

 The problem with CS1 is primarily the result of the cognitive complexity that many

students face while learning the difficult skill of computer programming, as analyzed by Robins,

21

Rountree, and Rountree (2003). When this situation is compounded by a fully online delivery of

CS1, the problem of retention and diminished performance intensifies.

Examples of CS1 Solutions

 Various alternatives have been proposed to address the difficulties inherent in courses

requiring the development of abstract and complex skills. While not exhaustive, the following

examples reflect the recent research literature particularly from the IEEE and ACM databases.

There are four broad categories of proposed solutions for increasing student success in CS1.

The first focuses on altering the qualifications of the incoming student (also known as front-end

filtering). Those lacking the requisite skill or ability may either be directed to a preparatory

course (known as CS0 or CS-Zero course) or, in more extreme cases, advised to enter a different

course or discipline altogether. The second category of solution has to do with individual

activities the students can do on their own time, such as automated tutoring, using a database of

pre-recorded micro-lectures, or writing “practice” programs. The third category involves live

instruction. Live in this context refers to the real-time presence of an instructor, whether

physically present as in a classroom or present online in real time through video conferencing

technologies. A fourth category involves using CA. A description of these four categories

follows.

Category 1: Front-end Filtering

 Improved Advising. One strategy to improve the DFW rate of CS1 is to avoid enrolling

students who have a higher probability of failure. If such a set of parameters could be identified,

then academic advisors could attempt to steer students likely to fail away from CS1. Although

CS1 is the first course in computer science, and is of interest mainly to CS majors, there are

22

many other types of students that take the course as an elective and these are precisely the

students that are more at risk of not finishing CS1 successfully. Rountree, Rountree, Robins, and

Hannah (2004) developed a decision tree analysis to help determine the combination of

parameters that best predicts success or failure in CS1. The results were surprising. Failure was

predicted by the following four combinations of parameters: (1) (not looking for an A) and

(second or third year) and (background not science), (2) (Humanities background) and (not

looking for either an A or B), (3) (Third year) and (no Mathematics background), and (4)

(background not science) and (not in first year) and (under 25 years of age) and (no Mathematics

background).

Success, on the other hand, was predicted by the following two combinations of parameters:

(1) (looking for an A) and (not expecting the course to be “hard”), and (2) (looking for an A) and

(age is 16 to 18). The parameter “students who are looking for an A” appeared in both success

rules. As to failure, however, some common parameters included: non-science, non-mathematics

background, and students in upper-level years. It appears that if academic advisors try to

dissuade upper-classmen with a non-scientific or non-mathematical background from taking CS1

as an elective, the DFW rate of the course should decline.

CS0 Course. For over sixteen years, the computer science teaching community has

realized that adding a pre-CS1 course—commonly referred to as “CS0” in the literature—is a

valid strategy for improving student performance in CS1. The CS0 course does not cover a

specific programming language, but instead focuses on the all-important algorithmic approach to

problem-solving. Allan and Kolesar (1997) implemented such a course as a prerequisite for CS1,

and results were significant. Students who had taken CS0 as a prerequisite for CS1 earned nearly

twice as many “A” grades as those who did not take CS0. The researchers explained that up until

23

then, the typical way in which students were introduced to computer science was through

computer programming but they noted that given the variability in students interested in such a

course –some aimed at computer science as a career, while others were aimed at different careers

such as business. Before applying the CS0 course, the success rate (C- or better in final grade)

was relatively low compared with average results (only 52% completion rate in one specific

semester). The background of the students also influenced the success rate. While only 22% of

students without any previous experience in computers finished the course successfully, 50% of

those with some computer exposure, even spreadsheet use and word processing, succeeded. By

college, the success rates are also different: 30% for Business majors; 51% for Engineering

majors; 22% for Science majors; and only 10% for other majors. As a reply to these problems,

Allan and Kolesar (1997) designed what they called a “CS0” course – a prerequisite of CS1. The

CS0 course was based on face-to-face lectures but using a Socratic approach. They accompanied

these lectures with practice sessions in small groups, where the focus was on problem-solving

techniques, even based on challenges apparently not directly related to computer programming,

such as rearranging a given set of toothpicks in a certain number of moves. The results showed

an increase in grade point average from 2.8 to 3.2 (a 14% positive change).

Dierbach, Taylor, Zhou, and Zimand (2005) proposed having students take an assessment

test and based on the results, have them either go directly into CS1 or go first into CS0. Before

the study was developed, the CS1 course in Dierbach et al.’s (2005) institution simply had as

prerequisite a computer programming course and basic mathematical expertise. However, this

did not warrant that students were uniformly well prepared for CS1. By implementing the

assessment test, Dierbach et al. were able to appropriately steer students to either CS0 or CS1,

and after five consecutive years of applying the assessment, the results showed that the

24

assessment that was designed did correctly distinguish programming reasoning ability based on

the strong correlation between assessment grade and CS1 course grade. Second, the CS0 course

improved the grade point average of students in CS1: 2.00 for students with no background; 2.59

for a previous course in computer programming (30% better); and 2.84 (42% better) for those

having taken CS0 before.

Category 2: Improved Teaching and Learning Aids

Database of Learning Objects. Recording brief micro-lectures where the instructor

explains basic programming topics appears to be an effective way to improve the performance of

a CS1 course. In fact, Bennedsen and Caspersen (2005) proposed such a strategy and reported

positive results. These micro-lectures or process recordings were recorded using software such as

Camtasia (2013). The recording process requires the instructor to sit at the computer and record

the spoken explanation at the same time that the topic is being presented on screen, often using

the live interactive development environment of the programming language being learned. A

modeling technique is used, so that the programming design process is revealed to students.

What the researchers proposed was to have small, bite-sized micro-lectures where a single topic

is explained, so that students could easily play them back as often as necessary to understand the

ideas and techniques used. These micro-lectures formed a database of learning objects that was

accessible to students at any time. Bennedsen and Caspersen prepared a full set of these short

videos, together with a video recording of the standard classroom lectures as well. Students

chose to watch the short videos overwhelmingly over the recorded lectures: 91% of views for the

short videos and only 9% for the lectures. The researchers concluded from these data that

students preferred the short videos and in fact, 58% of students replied in a survey that they had a

25

high or very high degree of satisfaction with the course (but no data from previous iterations of

the course without the short videos were included).

Vincenti, Braman, and Hilberg (2012) presented their design of reusable learning objects

used in a CS1 course to help comply with the different learning styles of students. This pilot

study only covered one major topic in CS1, repetitive computations, and did not go beyond that

since the intent was to analyze how beneficial the type of learning object would be and thus pave

the way for further developments in the future toward implementing the learning objects in

additional topics within CS1. The learning objects were divided into content modules, each

covering one particular aspect of repetitive computations, and, in turn, each of these modules had

five distinct learning units, aimed at a different learning style and offering different venues for

reviewing the topic: (1) text-based explanation, (2) video lecture, (3) demonstration with

animation, (4) interactive, hands-on demonstration, and (5) assessment. The pilot study only

contained the interactive, hands-on demonstration and these demonstrations were presented to

students as part of the standard lectures offered and then were released to students so they could

practice with them on their own at home. After the practices, students were given a questionnaire

and asked to take it with their impressions of the interactive demonstrations. Overall, results

were positive and on a scale of 1 to 10 (low - high), students found using the learning objects as

satisfying (6.7), stimulating (6.2), and easy (6.7). As to effectiveness, on a scale of 1 to 5

(strongly agree – strongly disagree), students found the learning objects generally somewhat

effective in all measures (2.7), except when comparison with the textbook (3.4). Finally, as to

usability, also on a scale of 1 to 5 (strongly agree – strongly disagree), the result was not very

encouraging with a rating of 3.3, which indicates that the particular learning object design

needed additional work.

26

In a similar case study, Costelloe, Sherry, and Magee (2009) determined what topics were

the weakest for CS1 students in three higher-education institutions: arrays, repetitions, and

selection, plus additional object-oriented topics in one of the three institutions. Based on the

commonalities, the researchers opted to focus their attention on arrays and designed a

comprehensive set of interactive exercises on the subtopics of array initialization, manipulation,

and searching. These learning objects incorporated the scaffolding concept and provided various

levels of visualization, animations, and automated feedback. Costelloe et al. (2009) evaluated

this case study through an analysis of observer notes, student surveys, and the results of pre- and

posttests, for both experimental and control groups. The t-test statistical analysis of the results

indicated no statistical significance between the experimental and control groups. Some

additional results were obtained from the observations of students using the learning objects,

with many of the participants engaging well with the objects and issuing positive opinions about

the experience.

Automated Tutors. Using automated tutors in CS1 courses has been reported as beneficial

in the literature by Moritz, Wei, Parvez, and Blank (2005). The authors developed an automated

intelligent tutoring system and implemented it with an experimental group and a control group,

with random selection of participants, and a pretest/posttest of programming ability. The

intelligent tutoring system used automated guidance based on each student’s previous

performance and offered feedback that depended on the type of exercise and the level of

difficulty. The statistical analysis of the results indicated an improvement in the posttest for

students exposed to the automated tutor: 72.5% with the automated tutor versus 62.3% without.

Soh (2006) implemented the Intelligent Learning Materials Delivery Agent (ILMDA)

intelligent tutor in a CS1 course, which resulted in a positive experience. ILDMA used the

27

student’s profile and performance to determine what topics, exercises, and assessments to present

next. With the objective of determining the effectiveness and efficiency of the tutoring system,

the researcher compared two groups of students: (1) using the Heuristic-ILMDA, exercises were

presented based on encoded instructional strategies and (2) using the Learning-ILMDA plus the

encoded instructional strategies, the system used machine learning algorithms to further help

students in solving the more difficult exercises. The students in the Learning-ILMDA group

reached the desired exercise difficulty level after reviewing an average of 1.7 examples and 6.7

problems; while the Heuristic-ILMDA group did it in an average of 2.4 examples and 11.1

problems. From these results, Soh concluded that the Learning-ILMDA tutoring system was

more efficient for students. No control group was analyzed to compare the results.

Yoo, Yoo, Deo, Dong, and Pettey (2012), developed the AlgoTutor automated tutor for

algorithm development, which they tested with three CS1 classes. The control group consisted of

two classes which did not use AlgoTutor and one experimental group, which used the tutor.

There was a significant improvement (9.5%) in algorithm-design knowledge for the experimental

group (measured by successfully designing a set of algorithms). However, test results were not

significantly different.

Student Teams. Since most software development is done by teams of developers, it is

natural to teach programming through student teams, and several research studies proposed such

an approach. For example, Gonzalez (2006) added active learning and cooperative learning

techniques to a CS1 course and obtained a strong drop in DFW rates for CS2—that is, for the

course following CS1. For CS1 itself, however, the addition of such techniques did not

significantly improve the DFW rate, which is certainly unexpected and could merit additional

research. The researcher noted that such an approach has been intensely studied in several

28

educational areas, particularly in science, technology, and math (STEM), so applying

collaborative learning to CS1 seemed like a good idea, given the similarities between computer

science and the other STEM disciplines. The face-to-face course had two 1.5-hour class sessions

per week, each divided into three ordered sections: (1) group discussion of previous work, (2) a

30-minute lecture for the new material, and (3) a collaborative programming activity, putting the

new concepts in practice. The study was developed over two full years and six different classes

each, with an experimental group using the “active learning” component, and a control group.

The grades earned in CS2 by the two CS1 groups differed in a small but significant percentage,

24.3%. As a non-definitive, anecdotal added experience, a small portion of students entering into

CS2 were given an “entrance” test and in this case the students in the experimental group scored

higher than the students in the control group, earning an average grade of 80% versus only

58.6% (a difference of 21.4 percentage points).

Williams, Wiebe, Yang, Ferzli, and Miller (2002) analyzed a collaborative learning

experience called paired programming. Teams of two students were assigned to collaborate fully

on their learning. The team was required to share one computer while designing and

implementing the computer programs. Paired programming is an important tenet of “extreme

programming” (Beck, 2000), which is a popular way to manage and organize software

development projects. The experimental study was developed with two complete classes of CS1,

both taught by the same instructor: the experimental group had collaborative programming labs

and the control group had the standard, non-collaborative, solo programming labs. The student

pairs were selected randomly by a computer program and the lab grades earned by each pair in

the experimental group were heavily affected by the degree of collaboration achieved (measured

by a peer evaluation). The results were encouraging. In the control group, the performance

29

(grades of “C” or above) was 45% but in the experimental group, the rate was 68%, an

improvement of 23 percentage points. In both the midterms and final exam, there was also a

marked difference with 63% in the control group and 73% in the experimental group. Finally, in

the programming projects that were part of the assessment in the course, the control group earned

74% and the experimental group earned 85%, which represents an 11 percent increase.

Engaging Lab Exercises. A good way to engage students in CS1 is to include

programming assignments that are attractive and that deal with subjects of interest to modern

students. In the typical CS1 programming class, these examples tend to be “toy” programs that

help demonstrate one or two programming concepts but that seldom perform any useful work.

For example, Stevenson and Wagner (2006) determined that proper programming exercises

should follow certain guidelines: be real-world based, allow realistic solutions to the problem, be

interesting and challenging, and be focused on topics being discussed in class at that time. Some

examples offered by the researchers include a Web crawler program, a spam evaluator, and an

advanced string parser. Stevenson and Wagner did not report on the implementation of the

guidelines for these exercises.

A different approach is to use a highly visual programming language such as Alice

(Carnegie-Mellon, 2012; Cooper, Dann, & Pausch, 2000), instead of a traditional computer

language, as analyzed by Garlick and Cankaya (2010). The researchers compared an

experimental group using Alice in the first two weeks of the CS1 course (with 82 students) and a

control group using pseudocode over the same period (with 72 students). The purpose was to

determine if students liked the Alice version of the course better than the pseudocode version and

how the performance compared between the two versions. The performance was somewhat

discouraging, since the end-of-period exam grades for the Alice group were lower, although not

30

in a statistically significant way. In a survey offered to participants, the experimental group’s

mean responses were actually lower than the control group, which led the researchers to

conclude that Alice needed to be analyzed further.

In a similar study, Price (2013) examined a CS1 course where Raptor (Carlisle, Wilson,

Humphries, & Hadfield, 2004) was used for some topics (selection and repetition) and Alice

(Cooper, Dann, & Pausch, 2000) for some other topics (objects and classes). Raptor is a

programming environment that executes flowcharts directly, making for a highly visual

programming environment aimed at general computational problems. Alice is also highly visual,

although its objective is to implement graphical “scenarios” with animated images. The

researchers developed a posttest, non-equivalent group, quasi-experimental design with the

treatment group using both Raptor and Alice as programming tools, while the control group used

standard, text-based programming languages. The results were encouraging: retention in the

course was improved from 72% (control group) to 84% (treatment group), a positive difference

of 12 percentage points. Performance, as measured by the final grade earned in the course, also

had improvements: 68% to 72%, a positive but not significant difference of four percentage

points.

Category 3: Live Instruction

Modeling. The process of programming—the translation of the algorithm into finished

code—is a particularly difficult skill and most novice programmers struggle with it. To teach that

process, researchers have proposed that the instructor should develop practical presentations of

how to make that difficult transition from design to code. In the conclusion of an exhaustive

review of research studies on teaching and learning programming, Robins, Rountree, and

Rountree (2003) recommended explicitly teaching students the design strategies and methods to

31

design programs that experts programmers utilize, given that the salient characteristic of an

expert versus a novice programmer is understanding algorithms and problem-solving strategies,

and not computer language coding proficiency. Robins et al. (2003) reviewed computer

programming, industry trends, characteristics of novice programmers, and instructional design

considerations related to computer programming. In a comparison of expert and novice

programmers, the researchers noted that experts tend to think about computing problem in terms

of algorithms, patterns, and computational methods, while novice programmers tend to do the

same based on less important details such as the actual computer code and its syntax. The

essential difference, then, between experts and novices is the poor capacity for modeling that the

novices have. This specific point indicates that an important component of an introduction to

programming course should be an attempt to have students construct such mental models, thus

the suggestion (Robins et al.) of having “live” lectures showing novices how an expert develops

the program from problem analysis to the final code, clearly explaining what strategies are

implemented.

Fjuk, Berge, Bennedsen, and Caspersen (2004) discussed the pedagogical foundation of

such meetings, where online interactions between the instructor and students lead to learning

based on the master-apprentice model. They concluded that this model holds great promise for

the future, especially where the modeling sessions can be in real time. The case study was

developed over an object-oriented CS1 hybrid course and the results were based on the

researchers’ observations during the course and interviews with a group of students, the

instructor, and the teaching assistant. The researchers noted the importance of modeling the

problem-solving strategies used by experts, in a master-apprentice relationship, so that novices

can more effectively learn computer programming. With respect to the implementation of the

32

apprenticeship instructional strategy, the researchers introduced the concept of weekly

assignments that have no bearing on the final grade of the course and that are how the modeling

sessions between master and apprentice are implemented. These sessions were not developed

one-on-one with each student but with the entire class and delivered via videoconferencing. Prior

to this meeting, the students were required to contact the instructor with specific requests about

the assignment. The intent was for students to work on the assignment before the modeling

session so that the session would be more fruitful. These sessions were accompanied with brief

videos posted in the classroom website where a single topic is explained and modeled.

 When taking a CS1 course online, one of the techniques for improving its performance is

through live, synchronous lectures via online conferencing systems such as Adobe Connect

(Adobe, 2012). In a quasi-experimental study, Restrepo and Trefftz (2005) added synchronous

lectures partially delivered through online conferencing software but with the added twist of

simulated “telepresence” in the form of avatars in a virtual-reality graphical classroom. While the

study was based on computer graphics and physics courses and not CS1, the concept is

nevertheless intriguing due to the results reported. The treatment group received instruction

using the synchronous lectures with the telepresence feature, while the control group received the

instruction without it, in the traditional face-to-face teaching style. The results were obtained by

grading the work produced by the two groups based on a scale of 1 through 4 (1 – naive; 2 –

novice; 3 – apprentice; 4 – master). For the computer graphics course, the results favored the

treatment group but the results were not statistically significant through a Mann-Whitney test,

probably because of the small sample size of four students. For the physics course, however, the

sample size was larger with ten students and results also favored the treatment group and were in

addition statistically significant with a Student t-test of 0.047. These results led to the conclusion

33

that class lectures delivered through videoconferencing could effectively replace the traditional

face-to-face lectures. No additional tests were done with and without the telepresence feature;

therefore, that feature’s effect on the results was not determined.

Category 4: Cognitive Apprenticeship

Several studies have been developed analyzing the implementation of a cognitive

apprenticeship (CA) instructional strategy in a CS1 course. Mow, Wing, and Yates (2006), for

example, showed that students significantly improve their learning with a CA-based approach,

although this particular study was developed in a hybrid class format with the added component

of collaborative learning, which is not a specific part of CA. The study was developed with a

quasi-experimental design, with non-equivalent groups and only a posttest, plus an evaluative

questionnaire to measure student satisfaction. The performance results indicated a significant

improvement over the control group (without CA) by the treatment group, with 9 vs. 13.5 points,

+50% (lower-performing students) and 15.5 vs. 17 points, +9.7% (best-performing students).

The results of the questionnaire indicated similar results for both the control and treatment

groups, with 34.1 out of a maximum of 44 score (the midpoint of the scale was 27.5), which

indicates a good level of appeal for the course.

The implementation of these more heavily guided programming exercises is supported by

results obtained by Hassinen and Mayra (2006), who found that extensive and intense practice is

one good way to learn computer programming. This conclusion was reached after examining a

CS1 course and also an advanced networks course taught over several semesters. Students were

offered a small number of grade points for completing exercises, and the number of points

earned increased based on the number of practice exercises that they completed correctly. Given

34

this grade incentive, the researchers determined that there is a strong positive correlation between

the number of exercises completed by students and the final grade earned in the course.

Vihavainen, Paksula, Luukkainen, and Kurhila (2011) developed an extended CA model,

which they named Extreme Apprenticeship (XA), and applied it to a face-to-face CS1 course,

with significant improvements in performance. XA is based on CA plus an added and strong

emphasis on developing guided programming exercises. As Vihavainen et al (2011) noted, a

minimally-guided instructional strategy does not work well for complex cognitive learning such

as computer programming (Kirschner & Sweller, 2006) and for this reason, they decided to

expand CA in this way. Vihavainen et al. (2011) compared the final grades of students in non-

XA courses offered to students over an eight-year period, with the final grades earned by

students in one year of XA-modified courses. For the first part of the CS1 course (with basic

topics) the long-term average for the non-XA courses was 51.1% and with XA the average

increased to 70.7%, which is a positive difference of 19.1 percentage points. For the second part

of the CS1 course (with more advanced topics) the results were also positive with the non-XA

long-term average of 52.7% and XA average of 82%. In addition to these performance results,

retention rates went from a 43.7% rate to 70.1%, an improvement of 26 percentage points. The

XA concept adds to CA an accelerated feedback loop between master and apprentice, making

feedback nearly immediate. In addition, the standard strategy is complemented by having

numerous exercises as the basis for the modeling and scaffolding support and making the

exercises an essential part of the assessment of the performance. The course was implemented

with two-hour lectures per week and an online “textbook” that closely followed the exercises

(instead of the other way around), so that the textbook itself served as part of the initial needed

scaffolding to do the exercises successfully. The lectures were aimed mainly at modeling, so

35

that students could observe and interact with an expert while the solution to a given problem was

being analyzed and implemented. In addition to the lectures and textbook, the main elements of

the course were the exercises. First, basic skills were presented in a step-by-step fashion so that

students could build knowledge. These exercises became more complex throughout the course.

The exercises were developed in a physical computer lab environment, with instructors and

teaching assistants present to provide support and feedback. One interesting feature of the

exercises was a public checklist where each successful completion of an exercise was marked

(without any grades – the assessments were private between instructor and each student). As

such, students could compare their own progress with that of their classmates. The other

components of the assessment were several biweekly exams and a final exam.

One year later, Vihavainen, Luukkainen and Kurhila (2012) applied their extreme XA

model to a CS1 course taught as a massive open online course (MOOC) and had positive results.

The authors used an automated tool called Test My Code to provide the scaffolding required by

CA, so that it could also scale up to several hundreds of students simultaneously. The Test My

Code tool was not described in detail but its most salient feature was a domain-specific language

that allowed instructors to embed scaffolding comments and actions within the exercises, so that

students could work on the exercises at their leisure and obtain useful feedback instantaneously.

Even so, however, the course was supported by a staff of 20, including the instructors and a

group of advanced, late-year, computer science students who acted as advisors for the students

taking the course. The authors built all the course’s materials, exams, and other features around

the 173 exercises that comprise the course and many of the exercises build upon one another in

order to form bigger, more complex programs. The automated exercise feedback appears to be a

good option to implement the necessary scaffolding for students in a CA-style course. The study

36

was developed with the first offering of the MOOC and of the original 417 enrollees, only 70

(17%) finished the course. Large attrition is expected in MOOCs due to their nature (Thrun,

2012), so this dropout number is not surprising. In addition to the automated feedback provided

by the Test My Code tool, the course also had an asynchronous forum for student-to-student

support, which was also used frequently, particularly at night and on Sundays (due dates were set

for Sunday evenings).

Application of CA to CS1

 When offered in the face-to-face or blended learning classroom, a CS1 course taught

using CA methods have offered good results, both in performance and retention (Vihavainen,

Paksula, Luukkainen, & Kurhila, 2011). CA is derived from the classical style of learning in

which many hand crafts are learned: a “master” in the craft teaches the “apprentice” how the

craft is developed through modeling, starting from simple items and progressing towards more

complex items, while all the time providing support and scaffolding to the apprentice. This

scaffolding provided by the master is then gradually removed as the apprentice gains experience.

 CA can be implemented in various ways but some of the essential elements are as follows

(Collins, Brown, & Newman, 1989):

Modeling. The instructor offers periodic modeling sessions where the instructor demonstrates the

thought processes developed while attempting to solve programming problems. The objective is

not to demonstrate features of the computer language used but instead, to show students how the

instructor would approach the solution to the problem.

37

Coaching. The instructor offers specific guidance to the student while working on exercises so

that the correct approach is applied to the solution of the problems, with the objective of

correcting performance deviations as soon as possible.

Scaffolding. Based on gradually more difficult exercises, the instructor leads the student toward

ever more complex challenges, until the student reaches the needed learning objectives. As these

exercises progress forward, the instructor’s support is gradually removed, until at the end of the

course practically no support is needed.

Articulation. Students must explain to the instructor why a specific approach to a problem works,

so that the thinking process leading to the solution can be analyzed and solidified in the student’s

mind.

Reflection. After each main learning experience, a “reflection” paper is prepared where the

students summarize what they have learned during the previous period and how it can be used in

practice.

Exploration. Students are encouraged to try out new approaches to resolution of the problems,

with the intent of developing independent thought.

 Given that a significant number of students have difficulties when facing the CS1 course,

and given the good results that CA has offered to CS1 courses when taught face-to-face or in

hybrid classrooms, it appears reasonable to determine how well a CA approach will apply to a

purely online CS1 course. This topic is interesting not only to the researcher, who has taught this

course online for over ten years and continually seeks to improve retention and performance in it,

but also for the computer science teaching community at large. The marked growth of online

course offerings and the expected increase in computer science job offerings over the coming

38

years means that a CS1 course should continue to grow in popularity in the future, making the

results of this study relevant as a novel approach to resolving the difficulties with CS1.

CA as an Instructional Strategy

Constructivism

The CA instructional strategy falls within the scope of social constructivism. Phillips and

Soltis (2004) presented Jean Piaget and his seminal work on learning, which is currently known

as “psychological constructivism.” In psychological constructivism, humans are born with a few

basic abilities, and through experience build ever more complex cognitive structures that serve to

explain the environment, predict its behavior, and thus restore cognitive equilibrium. Children

go through four stages in the development of these cognitive structures: (1) sensorimotor stage,

from age zero to two, where the physical coordination of senses and movement are established.

(2) Preoperational stage, from age two to seven, where the mind constructs networks of cognitive

structures, relating them one to the other, although limited to concrete, physical concepts, not

abstract. (3) Concrete operations stage, from age seven to 11, where the child takes the important

step of beginning to think in abstract terms. And (4) formal operations, from age 11 to 14 or 15,

where the full ability to solve abstract problems is attained, with cognitive structures approaching

those of adults.

As a trained biologist, Piaget sought to explain learning in a biological manner, and he

compared the human mind to a system that naturally seeks equilibrium. When a new event or

concept is encountered, the mind temporarily loses its normal cognitive equilibrium and learning

occurs by the strong need to restore that equilibrium. Thus, new or adapted cognitive structures

are built that include such new events or concepts. It is precisely this concept of equilibrium that

39

casts the strongest shadows on Piaget’s work, and which derives in other associated

constructivist theories, such as social constructivism and “radical” constructivism.

Zone of Proximal Development

CA also incorporates Vygotsky’s concept of zones of proximal development (Wass,

Harland, & Mercer, 2011). Zone of proximal development refers to the social context of learning

by describing the distance between the intensity of task difficulty that the student is capable of

resolving at present as compared to the potential intensity of task difficulty that the student could

learn to resolve as a result of the instructor’s assistance. As such, the instructor and student work

together within that zone of proximal development until the student can successfully go beyond

that zone and define a wider, more complex zone of proximal development. This process of ever-

widening zones of proximal development is repeated until the student fully masters the complete

topic.

Scaffolding

 An essential component of CA is scaffolding (Collins, Brown, & Newman, 1989). The

process of providing instructor’s assistance in just the level needed so that the student can

successfully learn to expand the zone of proximal development to a higher level is called

scaffolding. Pea (2004) explained that scaffolding is present in our learning from the very

earliest stages of our lives when our mothers played peekaboo and many other such infant games

with us. Scaffolding provides us with the needed assistance in performing a given task which we

alone would be challenged to accomplish and this assistance must be of a fading or gradually

diminishing nature, so that the learner eventually learns to accomplish the task independently of

the instructor. This assistance can be of two types: channeling and modeling. Channeling refers

40

to the process of actively constraining the learner toward the specific actions that will lead

toward a successful solution of the task, whereas modeling is the act of presenting the learner

with a completely reasoned solution to a similar task, with emphasis on the thought process that

leads to its solution.

Situated Cognition

Brown, Collins, and Duguid (1989) proposed that the context of learning is an important,

not ancillary, consideration within the overall learning process. This notion is referred to as

situated cognition. Learning is, in fact, a process of enculturation, where a given knowledge

domain’s culture –and not just its topics—are learned and acquired by students when they learn

the authentic activities relevant to that domain. Authentic in this sense means those activities

that are actually done by practitioners in the given knowledge domain when facing a problem.

Situated cognition is an important characteristic of CA in the sense that the master-apprentice

mentoring seeks to imbue the apprentice with the problem-solving approach used by the master

when confronting a new problem.

Cognitive Load Theory

Learning complex topics such as computer programming requires intensive cognitive

work. Cognitive load theory seeks to improve such learning by reducing unnecessary

information in working memory. Von Merrienboer and Sweller (2005) described cognitive load

theory by explaining that the human mind can only retain in working memory a handful of new

elements before committing the new learning to long-term memory, and that it is only when such

new facts are stored in long-term memory, associated with already-existing mental schemas, that

learning occurs. Thus, the theory indicates that instructional design should reduce the

41

simultaneous elements presented at the same time to learners, so that the limited capacity of our

short-term memory can process them and thus result in learning when stored in long-term

memory.

Problem-Based Learning

 Problem-based learning was developed at McMaster University in 1969 (Neville, 2008)

and even though originally developed for medical training, it has been implemented as a learning

strategy in many fields, including computer science education (Barg, Fekete, Greening,

Hollands, Kay, & Kingston, 2000). The strategy is aimed at solving large, complex problems, not

just simple, one-topic exercises and it is often structured around activities such as planning how

the learning will take place, problem-definition brainstorming, in-depth explanation of the

possible approaches to solve the problem, reflection on the outcomes of the learning, and peer

interaction in the exploration and implementation of the solution to the problem. Greening

(1998) identified scaffolding as an appropriate technique to improve the results of problem-based

learning and Ge and Land (2004) argued that scaffolding –one of the basic tenets of CA—is

helpful in resolving problems, particularly ill-defined problems. As such, the analysis of

problem-based learning strategies offers important insights into scaffolding methodologies.

Summary

This review of the literature highlighted important topics and existing research pertaining

to the proposed investigation of applying CA to the teaching of abstract and complex skills. The

review had four main threads: (1) an analysis of the teaching of abstract and complex skills; (2) a

review of the first computer science course, or CS1, including a brief review of solutions that

have been tried to “solve” the CS1 problem; (3) a description of CA as an instructional strategy,

42

and the affordances of CA as an instructional strategy in the design of a fully online CS1 course;

and (4) a review of the learning theories that support CA, including constructivism, zone of

proximal development, scaffolding, situated cognition, cognitive load theory, and problem-based

learning. The next chapter describes the design and development research methodology that

guided the construction of the CS1 course and its subsequent internal validation.

43

Chapter Three

Methodology

Overview

 The goal was to design and validate an online CS1 course that incorporates CA strategies.

A design and development research approach (Richey & Klein, 2007) was used to guide the

construction and internal validation of a fully online CS1 course. Richey and Klein defined

design and development research as a way to “create knowledge grounded in data systematically

derived from practice” (p. 1). The authors described the process of instructional design model

construction and validation and explained the importance of using a systematic process to

validate products as opposed to anecdotal evidence such as testimonials. In design and

development research, theories are tested and ideas are generated to “establish new procedures,

techniques, and tools based upon a methodical analysis of specific cases” (Richey & Klein, 2007,

p. 1). For example, Tracey and Richey (2007) constructed and validated internally an

instructional design model that incorporates the cognitive theory of multiple intelligences

(Gardner, 1983) as an overlay. The authors used a systematic process to develop the model and

then validated the model using the Delphi technique where a panel of experienced instructional

designers analyzed and offered feedback on the proposed instructional design. Once the

suggested revisions were analyzed and incorporated into the design after Delphi rounds one and

two, by round 3 the model was agreed upon by the panel of experts. The validated instructional

model resulting from the Delphi process was then validated externally in a subsequent study

(Tracey, 2007), although external validation was beyond the scope of this study.

44

Richey (2005) described the difference between internal and external validation of

instructional design models and proposed to support the design process by executing both

internal and external validation of any new or modified model. The goal of internal validation is

to check the integrity of the model, while external validation is used to evaluate the effects of

using the model. Some of the questions that internal validation seeks to answer are the

following: (1) Does the model have any steps missing / are all steps necessary? (2) Are the steps

ordered in the appropriate sequence? (3) How does the model contribute to learning? (4) How

well can the model be used in various learning situations and environments? (5) Can the steps in

the model be implemented by both novice and expert instructors? (6) Are the implementation

costs of the model reasonable? On the other hand, external validation seeks to answer some of

the following questions: (1) How well does the model comply with the learning needs and

requirements? (2) How interested, motivated, and engaged were learners while using the model’s

instructional steps? (3) How efficient and appealing is the learning? Richey suggested that expert

review is a commonly used method for internal validation of an instructional design model and

mentioned that the Delphi technique is a common method.

 This expert-review process for model construction and validation was selected to

construct and validate the online CS1 course. Following is a brief description of the process

followed: First, an extensive review of the literature was conducted to identify instances where

CA has been used to support the development of abstract and cognitive skills. Second, Morrison,

Ross, Kalman, and Kemp’s (2011) guidelines for the development of instructional objectives and

related instructional strategies were used to guide the design of the CS1 course. Existing research

literature pertaining to the application of CA in CS1 courses along with instructional design

theory guided the selection and integration of CA strategies that were most appropriate for each

45

learning objective. Third, once the course was designed, it was validated using a Delphi

technique (Dalkey & Helmer, 1963). The course guide was distributed to a group of seven

instructors who teach (or have taught in the last three years) CS1 in an online or blended learning

environment. Panel members were recruited by soliciting appropriate university alumni mailing

lists (with permission). Panel members were provided with instructions to review the guide and

offer suggestions for improvement. Fourth, data collected from the Delphi panel members was

analyzed and used to modify the CA-supported course design.

Research Methods

 There were two research phases: course construction and course validation. Following is

a description of each phase followed by the specific procedures implemented.

Phase One: Course Construction

 As part of the study’s proposal, a preliminary course guide (Appendix B) was developed

using Morrison, et al.’s (2011) guidelines for the development of instructional objectives and

instructional strategies. They advised that prescriptions are needed for different types of content

such as facts, concepts, principles, rules, and procedures. These prescriptions describe methods

of instruction that are most appropriate for teaching the content in an efficient and effective

manner. Morrison et al. suggested that in addition to the prescriptions for various types of

content, the designer’s experience also plays an important role in design of instruction. A guiding

question that the authors offered is, “How do I present the content needed to achieve this

objective?” The preliminary course guide provided detailed information to guide an instructor in

the implementation of CS1 that incorporates CA strategies where appropriate. Instructional

strategies included the learning objective, the content type or types (i.e., fact, concept, principle,

rule, and procedure) and the expected performance level (i.e., recall or apply), the initial

46

presentation (i.e., how the information is presented to the learner), the generative strategy (i.e.,

activities that help the learner to process the information that was presented), and the assessment

(i.e., how the learner will be assessed to determine whether he or she has mastered the objective)

(Morrison, et al.). These elements were used to design and develop the preliminary course guide.

Phase Two: Course Validation

 The second phase following course construction was internal validation of the course

guide. Richey and Klein (2007) identified three different ways to conduct an internal validation

including expert review, usability documentation, and component investigation. Expert review

was selected as the validation method. Course validation was carried out using the Delphi

technique, which concluded with consensus of the panel in round 3. The Delphi technique was

conceived in the 1950s as part of a study developed for the US Department of Defense by the

Rand Corporation (Dalkey & Helmer, 1963). The objective is to attain a reliable consensus of

opinion from a panel of subject matter experts. The technique consists of iterative questioning of

the panel of experts with regard to the subject at hand, with periodic feedback to the group

regarding: (1) experts’ requests for additional data that is deemed relevant to the evaluation and

(2) additional or modified design elements suggested by one or more experts that could be

relevant in reaching an opinion. This iterative process is developed in “rounds,” where the

opinions from a first round of questioning is analyzed, the requests for additional data and design

suggestions are communicated back to the panel of experts for consideration, which results in a

second round of questioning, and so on. This careful control of feedback to the panel of experts

results in better, more pristine opinions, without the possible influence of strong personalities

and without confrontations within the panel. As Dalkey and Helmer explain, the iterative round-

to-round corrections replace each individual panel member’s opinion by the consensual opinion

47

of all the experts. Mitroff and Turoff (1975) classifies the Delphi method within Lockean inquiry

systems and explain that the validity of the result can be measured by how well consensus is

reached among the panel of experts. This means that Delphi-derived decisions may not

necessarily be the absolute “best” but be instead a compromise decision.

 Even so, Dalkey and Helmer (1963) explained that it is unrealistic to expect complete

consensus among the panel of experts, even after several rounds of analysis. To help reach better

consensus, suitable corrections to the experts’ replies for each round are made, taking into

account the following parameters: (1) adjustments to basic assumptions, so as to reach a

consensus; (2) perceived sensitivity of the panel members with respect to such changes in basic

assumptions; and (3) perceived accuracy of the panel members in reaching an exact opinion.

 Linstone and Turoff (1975) noted that one problem with the Delphi technique is that the

researchers formulating the questions may influence the results by inserting a conscious or

unconscious bias into the content and wording of the questions presented to the panel of experts.

Even question wordiness may also have an important effect on the results, with either too few or

too many words resulting in lower consensus. Word count of 20 – 25 words was determined to

produce the best consensus in topics familiar to the panel; but for topics unfamiliar to the panel,

longer word count increased consensus. Another important consideration is the effect on the

panel of experts of round-to-round feedback and the opinion of the other members (Linstone &

Turoff). Experiments using false feedback offered as a result that: (1) panel members are

sensitive to the opinions of the other members and (2) there is a desire to achieve a consensus of

opinion. Both results point toward the critical importance of round-to-round feedback on the

consensus.

48

 The Delphi technique has been applied to instructional design investigations as well.

York and Ertmer (2011), for example, applied the Delphi technique to identify heuristics

applicable to instructional design, with a panel of 31 experts. Of the 59 original heuristics

(identified in a previous study by York), only 14 attained consensus by the panel after the three

rounds and they were found to be relatively well-related to the International Board of Standards

for Training, Performance and Instruction’s instructional design competencies (IBSTPI, 2012).

In another study, Neuman (1995) analyzed the use of document databases as references for high

school students, with a 25-member panel of experts and a four-round Delphi method, which

resulted in clear guidelines for the design of such databases and also for the design of the

instruction that will use those databases, aimed at this particular group of students.

Procedures

Following are the specific procedures that were followed in the two phases: (1) initial

course design and (2) internal validation of that course design through the Delphi technique.

Initial Course Design

The initial course design incorporated all elements of CA in a format suitable to an online

asynchronous classroom as implemented through a learning management system such as

eCollege (Pearson, 2014). Following is a description of the CA elements that were included in

the CS1 course design:

1. Modeling. The instructor offers periodic modeling sessions where the instructor

demonstrates the thought processes developed while attempting to solve programming

problems. The objective is not to demonstrate features of the computer language used but

instead, to show students how the instructor would approach the solution to the problem.

49

eCollege Implementation. Instructor-led videoconference session.

2. Coaching. The instructor offers specific guidance to the student while working on

exercises so that the correct approach is applied to the solution of the problems, with the

objective of correcting performance deviations as soon as possible.

eCollege Implementation. Individual asynchronous exercise sessions.

3. Scaffolding. Based on gradually more difficult exercises, the instructor leads the student

toward ever more complex challenges, until the student reaches the needed learning

objectives. As these exercises progress forward, the instructor’s support is gradually

removed, until at the end of the course practically no support is needed.

eCollege Implementation. Individual asynchronous exercise sessions.

4. Articulation. Students must explain to the instructor why a specific approach to a problem

works, so that the thinking process leading to the solution can be analyzed and solidified

in the student’s mind.

eCollege Implementation. Individual Forum “Reflection” essay.

5. Reflection. After each main learning experience, a “reflection” exercise is developed

where the student summarizes what they have learned during the previous period and

how it can be used in practice.

6. eCollege Implementation. Individual Forum “Reflection” essay.

7. Exploration. Students are encouraged to try out new approaches to resolution of the

problems, with the intent of developing independent thought.

eCollege Implementation. Discussion forum participation and individual forum exercise

discussion.

50

Delphi Validation

Prior to soliciting panel members for participation, permission was sought and obtained

from Nova Southeastern University’s Institutional Review Board (IRB) (Appendix K). Once the

permission was obtained, an inquiry was sent to 169 Nova Southeastern University alumni with

Masters or PhD degrees in computing-related areas, to determine: (1) if they teach or recently

taught a CS1 course in the online or hybrid modality; and (2) if they would be interested in

participating in the Delphi panel. The response from the inquiry was from 45 alumni (26.6%)

and of those 17 (37.7% of replies; 10% of total) replied that yes, they would be interested in

participating in the panel. After a detailed analysis of the affirmative replies, eight panel

members were chosen, with six of the eight having had the required experience teaching CS1 and

two additional panel members that had not taught CS1 but who did teach online computing-

related courses, such as introductory computer courses (the so-called “CS0” course) for one and

the other teaching more advanced courses, such as networking. The academic credentials of all

eight panel members included a PhD degree.

Of the eight panel members chosen, one declined participation in round 3 due to ill

health. Although the opinions of this panel member were included in the analysis for rounds one

and two, it was not possible to include the panel member’s opinion in the last round. Once the

panel of experts was selected and confirmed as willing to participate in the study, an email

(Appendix A) was sent to panel participants that included an overview of the study, instructions

for round 1, the preliminary course guide (Appendix B), and a summary document of CA

strategies (Appendix C). The experts were requested to reply within two weeks. The results were

categorized as follows: (1) effectiveness, (2) efficiency, (3) appeal, and (4) CA. The categorized

replies were used to modify the course guide and prepare the questions for the second round.

51

These questions were similar to the ones in the first round, except for some minor editing to

make them clearer and the addition of a Likert scale to better gauge the level of agreement with

each question. A fourth round was not needed since the panel reached consensus on the third

round by replying in the affirmative that the course design: (1) appropriately incorporates the CA

strategies; and (2) is sufficient for the delivery of the course in an online environment. Figure 1 is

an illustration of the data collection and analysis process for phase two.

Figure 1. Phase two data collection and analysis process

52

Chapter Four

Results

The goal was to design and validate internally an online CS1 course that incorporates CA

strategies. Chapter 3 presented the two-phase design and development research approach that

was used to guide the construction and internal validation of a fully online CS1 course. Phase

one resulted in the design and development of the course guide. An expert-review process

(Richey & Klein, 2007) using the Delphi technique (Dalkey & Helmer, 1963) was implemented

in phase two to validate the design with regard to its effectiveness, efficiency, and appeal

(Reigeluth & Frick, 1999). Three iterations of the course guide were developed resulting in

consensus by the panel and a final iteration of the guide in round 3. The following chapter

presents results from phase two with a round-by-round analysis of the Delphi process and the

results obtained following the panel’s consensus.

Delphi Panel Round 1

In round 1, a set of documents was sent by email to each of the eight panel members. The

packet included: (1) an explanatory email containing the instructions and questions (Appendix

A); (2) the preliminary course guide (Appendix B); and (3) a brief description of CA including

references so that panel members could find more information about CA, if desired (Appendix

C). Panel members responded to the following questions. No specific format for replying was

requested. Round 1 questions reflected the research questions as shown in Table 1.

1. Effectiveness: If you were to implement this course as designed, do you think it

would be effective in helping students gain the knowledge and skills needed to

achieve the stated learning outcomes? Yes/No. If no, please explain.

2. Efficiency: If you were to implement this course as designed, do you think you

could deliver it in an efficient manner? Yes/No. If no, please explain.

53

3. Appeal: If you were to implement this course as designed, do you think it would

be appealing to students? Yes/No. If no, please explain.

4. Cognitive apprenticeship: Do you think the cognitive apprenticeship strategies as

described within the course guide are appropriate? That is, do the strategies

support the type of content that is being taught? Yes/No. If no, please explain.

5. Additional thoughts: In addition to your comments above, what specific

comments, questions, and/or recommendations do you have for improving the

effectiveness, efficiency, and appeal of this course design? What suggestions do

you have for improving the clarity of the course guide in general? Please refer to

sections and or page numbers where appropriate.

Table 1. Correspondence of Research Questions with Round 1 Questions

Research Question Round 1 Survey Question

RQ1. What is the evidence that specific

elements of CA are helpful to students in an

online CS1 and similar online courses that

require abstract and complex thinking?

N/A (The answer to this question resulted in a

review of the literature that guided the design

and development of the preliminary course

guide in phase 1.)

RQ2. How must the traditional course be

revised to incorporate the selected CA

elements for effective online delivery?

Question 4.

RQ3. What are the reactions of experienced

instructors of CS1 to the proposed CA-

supported online course in terms of

effectiveness, efficiency, and appeal?

Questions 1, 2, and 3.

RQ4: What are the modifications needed to

improve the proposed CA-supported CS1

online course in terms of perceived

effectiveness, efficiency, and appeal?

Questions 1, 2, 3, and 5.

Once the comments from all of the panel members were received, the data were

organized into the following categories: (1) efficiency concerns; (2) course design concerns; and

(3) need for clarifications. The efficiency concerns were centered on the relatively large number

of academic activities that the instructor must develop. For example, one panel member

commented:

54

Depending on the number of students, personalizing exercises for each student may take

a significant amount of time…and giving quick feedback by video could be a challenge

for some instructors. If they find themselves “re-recording” the feedback, it would easily

take 30 minutes or more to give feedback. While these types of interactions are admirable

and very helpful to students, they may not be as feasible for larger courses. The

instructor may need to limit detailed personal feedback.

Another panel member was concerned about the amount of time that the students would

have to spend on the course as designed and wrote:

The overall flow of the 8-week course requires students to read chapters, write essays,

participate in discussion boards, watch videos, and develop programs. I realize that an 8-

week course requires information to flow more quickly than other courses, but it seems to

be quite an undertaking for the average student.

To address these concerns, and after careful consideration of all CA-related elements of

the course design, the weekly quizzes were removed. Removal of the quizzes reduces the amount

of time spent on the course for instructors and students while at the same time places more

emphasis in the hands-on elements of the design, such as programming problems and exercises.

The suggested points for each activity were also redistributed to reflect this modification.

The second category of concerns referred to course design issues. One panel member

noted:

I understand the reasoning for the reflective essay. This would ensure that the online

students are completing their own work instead of finding solutions elsewhere. Another

way that this could be approached is have the student write a project plan (pseudocode)

and algorithm before coding the problem. Listing the methods that they plan on using to

55

solve the problem. Another way that they could explore and/or reflect would be to give

the student another student’s solution and determine what their algorithm was and what

methods they used to program the solution. If you didn’t want to share the solutions of

other students then you could give them a solution that you have come up with and ask

them the same questions. The exchanging of programs will also show the student that

there may be more than one way to solve a problem and maybe contrast which program

might work better and not just work. This could also be used as a discussion forum that

might be more interesting than rehashing the concepts from the lesson.

After reviewing these suggestions and analyzing the essence of the articulation

component of CA, which the reflection essay aimed to implement, the reflection essay was

incorporated into a weekly “Learning Reflection / Solution Analysis Essay” where students

analyze the standard solution to the previous week’s programming problem (posted by the

instructor together with the previous week’s feedback) explaining how the lab exercise was

approached and what specific coding techniques were used by the instructor and why. The

students also compare their own coding techniques used in their program with that standard

solution and explain the differences.

The third category of issues detected by the panel referred to the need for clarifications in

the course design. The clarifications suggested (and implemented in the modified course design

for Round 2) included:

1. Expand the reference to the course from “CS1” to “Introduction to

Programming / CS1”.

56

2. Clarify that the five-minute feedback videos are accompanied by a written

rubric where the major points of the program are analyzed and graded. The

rubric is done first, and then the video.

3. Add grading rubrics for the programming problems.

4. Clarify that this course is typically preceded by a so-called “CS0” course,

where the elements of problem-solving with a computer program are

introduced.

5. Clarify that the complete library of short instructional videos is available from

day one until the last day of class.

6. Clarify that the programming software (Microsoft Visual Studio Express

Edition) is a free download from the Microsoft website, and that it allows full

use of the Interactive Development Environment and all basic programming

features needed for the course. The textbook is also available online through

CourseSmart at a reduced cost when compared with the printed version. The

textbook also has a “student companion website” where additional videos and

slide shows are included, free of charge.

7. Clarify that the individual discussion forums are separate from the classroom

discussion forums.

8. Clarify that the last week's programming problem incorporates material from

all previous weeks, including the Week 7's materials and as such it can be

considered a final project, even if limited in scope. Such an approach, together

with the comprehensive final exam, allows making an overall assessment of

the student's learning.

57

Delphi Panel Round 2

For the second round, a packet of documents was emailed (Appendix D) to the panel of

experts, consisting of a document of revisions noting all the changes made to the round-one

course guide (Appendix D), and two versions of the new course guide: (1) original, round-one

course design guide, with all changes and additions marked-up and highlighted in yellow, for

easy identification; and (2) the complete round-two course guide, with all changes and additions

incorporated in normal text (Appendix F).

The questions for the panel members were slightly modified to remind the panel

members how the terms effectiveness, efficiency, and appeal were operationally defined and a

Likert scale was added to better gauge the degree of acceptance of each question, ranging from 1

to 5 (1-strongly disagree; 2-disagree; 3-undecided; 4-agree; 5-strongly agree). The

correspondence between the research questions and the round 2 questions is shown in Table 2.

Following are the Round 2 questions:

1. Effectiveness: The course design is effective (i.e., the learning activities align

with the stated goals and objectives of the course): 1-strongly disagree; 2-

disagree; 3-undecided; 4-agree; 5-strongly agree. Comments/Suggestions for

Improvement: ______.

2. Efficiency: The course design is efficient (i.e., the goals and objectives of the

course are achieved using the least amount of resources possible): 1-strongly

disagree; 2-disagree; 3-undecided; 4-agree; 5-strongly agree.

Comments/Suggestions for Improvement: ________.

3. Appeal: The course design is appealing (i.e., the learning activities are designed to

engage students in the learning experience): 1-strongly disagree; 2-disagree; 3-

undecided; 4-agree; 5-strongly agree. Comments/Suggestions for Improvement:

____________.

58

4. Cognitive apprenticeship: The cognitive apprenticeship strategies as described

within the course guide are appropriate (i.e., the strategies support the type of

content that is being taught): 1-strongly disagree; 2-disagree; 3-undecided; 4-

agree; 5-strongly agree. Comments/Suggestions for Improvement: _________.

5. Additional thoughts: In addition to your comments above, what specific

comments, questions, and/or recommendations do you have for improving the

effectiveness, efficiency, and appeal of this modified course design? What

suggestions do you have for improving the clarity of the course guide in general?

Please refer to sections and or page numbers where appropriate.

Table 2. Correspondence of Research Questions with Round 2 Questions

Research Question Round 2 Survey Question

RQ1. What is the evidence that specific

elements of CA are helpful to students in an

online CS1 and similar online courses that

require abstract and complex thinking?

N/A (The answer to this question resulted in a

review of the literature that guided the design

and development the preliminary course

guide in phase 1.)

RQ2. How must the traditional course be

revised to incorporate the selected CA

elements for effective online delivery?

Questions 4 and 5.

RQ3. What are the reactions of experienced

instructors of CS1 to the proposed CA-

supported online course in terms of

effectiveness, efficiency, and appeal?

Question 1, 2, and 3.

RQ4: What are the modifications needed to

improve the proposed CA-supported CS1

online course in terms of perceived

effectiveness, efficiency, and appeal?

Questions 1, 2, 3, 4 and 5.

The panel offered positive replies of “agree” or “strongly agree” for effectiveness

(question one) and appeal (question three). For question four (cognitive apprenticeship), six of

the seven panel members also replied with “agree” or “strongly agree,” except for one panel

member, who did confirm that the course design properly addresses CA requirements but replied

as “undecided” since “I am not sure it would happen for me if I attempted to teach this course

online.” Upon further investigation of this reply, the concern had to do with the panel member’s

59

ability to implement all the CA-related features instead of with the CA implementation itself -- in

other words, with efficiency, not with CA itself.

With regard to question two (pertaining to efficiency) there were some concerns from one

panel member about the ability of instructors to handle the academic load imposed by the various

CA features. Specifically, this panel member noted:

Overall I think the course will work well, but am still hesitant that the instructor will not

be able [to] “keep up” with timely feedback for students. I think your dropping the

quizzes is helpful in reducing the number of assignments that students need to complete

and that the instructor needs to grade.

The final category of issues detected by the panel refers to the need for clarifications and

minor modifications in the course design. The clarifications and modifications suggested (and

implemented) included the following: (1) monitor student progress and quickly identify “at -risk”

students, so that some remedial action can be implemented; (2) add a follow-up to the previous

week’s programming problem feedback, interacting with the student to clarify / help with doubts

or issues; (3) reduce grading weight for class discussion and also suggest lesser participation than

normal for other classes (set in the institution’s policy); (4) expand rubrics so they show the level

of work that will earn 100% / 70% / 30% / 0% of the grade for each rubric item; (5) clarify that

the important topic of testing and debugging is included.

Delphi Panel Round 3

For the third round, an email (Appendix G) was sent to the panel of experts with

attachments including a document of revisions noting all the changes made to the round-two

course guide (Appendix H), and two versions of the new course guide: (1) original, round-two

course design guide, with all changes and additions marked-up and highlighted in yellow, for

60

easy identification; and (2) the complete round-three course guide, with all changes and additions

incorporated in normal text (Appendix I). It was not possible to obtain feedback from one of the

eight panel members within the allotted time due to ill health and this panel member was

dropped from the panel. Therefore, the third round only had seven of the eight original panel

members.

Given the positive results from round 2, consensus was sought during round 3 by

modifying the questions posed to the panel. As such, two questions required a yes / no answer

and were aimed at determining if: (1) the cognitive apprenticeship strategies as described within

the updated course guide supported the course content; and (2) the proposed guide was sufficient

for the delivery of the course in an online environment. Round 3 questions included the

following:

1. Do you agree that the cognitive apprenticeship strategies as described within the

course guide are appropriate (i.e., the strategies support the type of content that is

being taught)?

2. Do you agree that the proposed guide is sufficient for the delivery of the course in an

online environment?

3. If you disagree with 1 and/or 2, please explain what additional revisions to the course

guide are necessary in order to meet these two objectives.

4. Please provide any additional comments or questions you might have.

The panel members were in unanimous agreement on questions one and two, that is: (1)

The cognitive apprenticeship strategies as described within the course guide are appropriate (i.e.,

the strategies support the type of content that is being taught) and (2) The proposed guide is

sufficient for the delivery of the course in an online environment. Question three did not receive

any replies (given the unanimous agreement) but in question four there were additional

comments that merited consideration. One comment referred to “at-risk” students. The panel

61

member asked: “What is your criteria for determining whether or not a student is ‘at risk’?

Grades? If so, is there a timeline for making this determination?” The round 3 course guide

contained the following remark in the section “Suggested Class Policies”:

“At-risk” students should be identified early in the class and offered help. The nature of

the topics in this course, which build upon one another, imply that failure in one topic

will cause problems for the student in the next topic, so early detection and help are

recommended. The instructor should keep close tabs on how well students are doing in

the course, particularly with the programming problems, and take action as soon as poor

performance is detected.

Another comment referred to the possible issue resulting from large class sizes and the

increased academic load that implementing the course design requires. The panel member

suggested:

The asynchronous feedback discussion for programming assignments will be helpful to

students. It will be important for instructors to give good feedback. This could also be a

challenge for some instructors, especially if there are a large number of students in the

course. The best test will be to run the course several times to see how students perform

and how well instructors can implement the cognitive apprenticeship strategies.

Course implementation is discussed in Chapter 5 in recommendations for future research.

Once all panel members’ replies were analyzed and it was determined that there was unanimous

agreement on questions 2 and 3, a final email message was sent to the panel confirming this

result and thanking them for their participation in the study (Appendix J).

62

Summary

 A course guide for the online delivery of a CS1 course using CA strategies was

developed. A Delphi panel of eight instructors of online or blended CS1 (or similar) courses was

used to conduct an internal validation of the course guide and answer research questions two

through four. Three iterations of the course guide were developed resulting in a final iteration in

round 3. Recommendations from the panel members during each round were incorporated into

subsequent iterations of the guide. The validated CS1 guide serves as a starting point for external

validation. The external validation process is discussed in more detail in Chapter 5.

Given that a significant number of students have difficulties when facing the CS1 course,

and given the good results that CA has offered to CS1 courses when taught face-to-face or in a

blended classroom, it is reasonable to determine how well a CA approach will apply to a fully

online CS1 course. Validating the instructional design of an online CS1 course that incorporates

CA strategies helps the computer science teaching community at large. The marked growth of

online course offerings and the expected increase in computer science job offerings over the

coming years means that online CS1 courses should continue to grow in popularity in the future,

making the results of this study relevant as a novel approach to resolving the difficulties with

learning abstract and complex skills, such as those presented in CS1, when taught online. The

following chapter presents conclusions, implications, and recommendations for future research.

63

Chapter Five

Conclusions, Implications, Recommendations, and Summary

 Phase one resulted in the design and development of a CS1 course guide that incorporates

CA strategies. This guide was designed for implementation of CS1 in a fully online learning

environment. An expert-review process (Richey & Klein, 2007) using the Delphi technique

(Dalkey & Helmer, 1963) was implemented in phase two to validate the design with regard to its

effectiveness, efficiency, and appeal. Three iterations of the course guide were developed

resulting in consensus by the panel and a final iteration of the guide in round 3. Results

confirmed the application of CA as an effective, efficient, and appealing instructional strategy to

use when designing an online CS1 course. In the following chapter, conclusions are drawn based

on the research questions posed. Implications of the conclusions within the field of computing

technology in education are presented and recommendations for future research are offered.

Conclusions

Research Question 1

A literature review of relevant research pertaining to this investigation was conducted to

answer research question 1, What is the evidence that specific elements of CA are helpful to

students in an online CS1 and similar online courses that require abstract and complex thinking?

As part of phase 1, four main research areas were reviewed including: 1) an analysis of teaching

of abstract and complex skills; 2) a review of the first computer science course (CS1), including

a review of solutions that have been tried to solve the CS1 problem; 3) a description of CA as an

instructional strategy and the affordances of CA as an instructional strategy in the design of a

64

fully online CS1 course; and 4) a review of the learning theories that support CA, including

constructivism, zone of proximal development, scaffolding, situated cognition, cognitive load

theory, and problem-based learning. The evidence revealed that CA, when applied to courses

requiring abstract and complex thinking such as CS1, produces positive results particularly in

student engagement and retention. From the earliest days, CA has been applied to the learning of

complex topics such as mathematics (Collins, et al., 1989). For example, Bouta and Paraskeva

(2013) applied CA to the teaching of mathematics in a graphical 3D environment and obtained

good results in student engagement. Keijonen, Kurhila, and Vihavainen (2013) implemented a

derivative of CA, which they call “extreme apprenticeship” in CS1 courses over three years and

the results shown an improvement in retention of 25.6% (an average of the three years prior to

the implementation compared to the most recent three years of the same course with CA).

Research Question 2

A preliminary course guide was developed using Morrison, et al.’s (2011) guidelines for

the development of instructional objectives and instructional strategies to answer research

question 2, How must the traditional course be revised to incorporate the selected CA elements

for effective online delivery? Also as part of phase 1, the researcher used the review of the

literature pertaining to effective implementation of CA in courses similar to CS1, along with

Morrison et al.’s guidelines for the development of instructional objectives and related

instructional strategies to guide the design of the CS1 course. Each instructional strategy

included the learning objective, the content type or types (i.e., fact, concept, principle, rule, and

procedure), the expected performance level (i.e., recall or apply), the initial presentation (i.e.,

how the information is presented to the learner), the generative strategy (i.e., activities that help

the learner to process the information that was presented), and the assessment (i.e., how the

65

learner will be assessed to determine whether he or she has mastered the objective) (Morrison, et

al.). CA strategies that were appropriate to the objective and content type(s) were selected to

support the presentation and practice of the content.

Research Questions 3 and 4

Research question 3, What are the reactions of experienced instructors of CS1 to the

proposed CA-supported online course in terms of effectiveness, efficiency, and appeal? and

research question 4, What are the modifications needed to improve the proposed CA-supported

CS1 online course in terms of perceived effectiveness, efficiency, and appeal?, were answered in

phase 2. The panel reviewed the preliminary course design (Appendix B) and revealed some

improvements that could be made with the criterion of efficiency (i.e., achieving the proposed

goals of the course with the least amount of resources possible). They commented that some of

the instructional strategies placed too much work on the on the instructor including: (1) leading

the individual discussion forums with each student with many exercises to be evaluated and

discussed; (2) preparing video feedback to each student on the programming assignment for each

week; (3) evaluating the weekly reflection essays; (4) holding the interactive modeling sessions;

(5) preparing the library of short, one-topic videos; (6) performing the “other” usual academic

activities in an online course, such as writing lectures, leading and grading public discussion

forums, grading quizzes and exams, and grading programming problems. In the resulting course

design (Appendix I), the weekly quizzes have been removed and the individual discussion

forums were combined with a reflection essay. These changes maintained the CA philosophy

intact but improved efficiency in the consensual opinion of the Delphi panel.

In addition to course modifications that were made to improve efficiency, research

questions 3 and 4 also gave rise to recommendations made by the panel that related to appeal

66

(i.e., learning activities designed to engage students in the learning experience). One of these

design changes involved the reflection essay. Some panel members opined that in a computer

programming course an essay would seem somewhat out of place and the course would thus lose

some appeal. To address this concern, the reflection essay was modified to an analysis that the

student must make of the previous week’s standard programming problem solution and a

comparison with the student’s own solution. This modification improves appeal while at the

same time conserves the CA-related reflection on the work done and how it was approached.

Another modification incorporated into the final course design involved adding detailed

programming problem rubrics, which are shared with students beforehand and point out what

specific assessment items will be evaluated by the instructor.

Suggestions to modify the course design pertained to the criteria of efficiency and appeal.

There were no specific recommendations for improving effectiveness. Panel members agreed

that the proposed course design aligned with the stated goals and objectives of the course. In

summary, the changes incorporated into the final course design included the following:

1. Elimination of weekly quizzes (efficiency).

2. Merge of the individual discussion forums with the reflection essay (efficiency).

3. Modification of the reflection essay to be a computer programming problem

discussion / reflection (appeal).

4. Addition of detailed rubrics (appeal).

Implications

The CS1 course is the undergraduate student’s first encounter with computer

programming. The course is notoriously difficult and results in high drop-out rates. Caspersen

67

(2007) reported a world-wide average drop-out rate of 33% for all types of delivery modalities

(face-to-face, hybrid, and online). When CS1 is taught online, the drop-out rate is even higher,

closer to 50% (Vilner, Zur, & Sagi, 2012). To compound the problem, Barnes, Richter, Powell,

Chaffin, and Godwin (2007) explained that the enrollment and graduation rates in computer

science are declining even though the demand for computing jobs is rising. This trend equates to

a scarcity of new computer science graduates precisely at a time when they are most needed by

the job market.

Together with this problem, online course enrollments are at an all-time high, with 33.5%

of current students taking at least one online course (Allen & Seaman, 2014). Therefore, it

becomes important to determine ways to improve the outcomes of a CS1 course when taught

online. Given the success of CA in teaching complex and abstract topics such as computer

programming in a traditional face-to-face setting and even in some blended learning

environments, it is useful for practicing instructors of CS1 to have a CS1 course guide that

incorporates the CA strategies. This course guide (Appendix J) could also be used as a valid

basis for designing CS1 courses.

Stepping beyond the bounds of this study, which dealt with applying CA to teaching

abstract and complex skills in an online learning environment, the application of CA as described

here could have important implications in online learning in general. Higher education has been

powerfully impacted by massive open online courses (MOOCs) in recent years (Dasarathy,

Sullivan, Schmidt, Fisher, & Porter, 2014) and it appears that not only these online courses will

continue to grow in popularity and appeal but also that the MOOC technologies and philosophy

will affect many, if not all, areas of higher education in the near future. Where does that leave

the large number of universities teaching traditional online courses? The proliferation of the

68

low-price or even free high-quality online higher education that MOOCs promise to provide does

not necessarily mean that non-MOOC, “traditional” online education disappears but it will

evolve. While MOOCs could serve well large swaths of highly-motivated students (Dasarathy et

al, 2014), there are still large contingents of online students that could be better served with a

higher degree of contact between faculty and student. Online courses designed with CA learning

strategies, in computer science or any other discipline, require such higher contact between

faculty and students, particularly with the specific implementation of CA features that the course

design (Appendix J) incorporates. As such, the CA-inspired online course could best serve this

important group of students, even in the age of MOOCs.

69

Recommendations

The internal validation process that resulted from the expert-review and Delphi technique

offers intriguing insights into course design and proved to be a very good way to discover

alternative and more efficient ways to implement various elements of CA, such as scaffolding

and reflection. Use of the Delphi technique in similar studies that aim to validate instructional

designs in online environments and other emerging delivery systems could serve as a useful

strategy.

Most of the panel members’ suggestions for change were related to attaining a more

efficient course design. Based on this finding, efficiency is an aspect of instructional design that

has high importance for the panel members. Gannon, Ley, Crawford, and Warner (2009), for

example, note that “concern about faculty workload” is an important inhibitor to participating in

distance education. In addition, Reid (2014) notes that instructors are not properly incentivized

for the adoption of new technologies, compounding the situation further, and then goes on to

conclude that the new and necessary business orientation that higher education has necessarily

taken in recent years only serves to place an enhanced emphasis in improved efficiency of the

teaching process.

In view of such concerns about efficiency, the important scaffolding component of CA

could be implemented in a different way through commercially available automated exercise

software such as CodeLab (Yuliya, Zingaro & Petersen, 2014) and Pex4Fun (Tillmann, de

Halleux, Xie, Gulwani, & Bishop, 2013). Test My Code (Vihavainen, Vikberg, Luukkainen, &

Partel, 2013) is a similar automated exercise software but it is open source. Such an

implementation could make an important contribution not only to efficiency but also to appeal,

since students would thus be able to obtain acceptable feedback on their programming exercises

70

in just a few seconds. In fact, Tillman et al. (2014) report that using such an automated tool

(Pex4Fun in this case) resulted in a significant reduction of faculty hours in grading

programming problems and, at the same time, resulted in increased anecdotal appeal from

students, who like the immediate evaluative response of the tool.

An important next step in this line of research would be to externally validate the course

design; that is, to evaluate the effects of actually using the course design in an online CS1

classroom. As noted by Richey (2005) some of the objectives of that external validation would

be to determine: (1) how well the course design “fit” the learning needs of a particular student

population; (2) how much appeal the course design has for these students; and (3) how efficient

the implementation will be. Morrison et al. (2011) stated the common misconception that what

instructional designers develop is “worthwhile and successful” (p. 354). However, in order to

truly confirm this value, a summative evaluation is recommended. Issues pertaining to

measurement of learning outcomes; cost related to development and implementation, as well as,

continuing costs; and attitudes or reactions to the course can be objectively examined through a

summative evaluation.

Summary

In 1978, the curriculum committee of the Association for Computing Machinery (ACM)

published recommendations for undergraduate computer science programs (Austing, et al.,

1979). Computer Science 1 (CS1) is the first undergraduate course that computer science majors

are required to take. Similar to subjects like math and science, computer programming can be a

difficult subject because of the abstract and complex skills that are involved. This cognitive

complexity can be compounded when CS1 is taught in an online classroom because of the need

71

to provide hands-on guidance and scaffolding. Cognitive apprenticeship (CA) (Collins, et al.,

1989) is a constructivist instructional strategy that has proven successful in teaching courses in

abstract and complex topics including mathematics, science, and computer programming in

traditional face-to-face and blended learning environments. However, limited studies are

available that report the application of CA in a fully online computer programming course.

The goal was to design and validate internally an online CS1 course guide that

incorporates CS1 strategies. Internal validation is the “empirical verification of the components

and processes included in a design and development model” (p. 158). Here, internal validation

refers to the validation of the application of CA strategies to teach the facts, concepts, principles,

rules, and procedures that comprise a CS1 course delivered fully online. When considering the

validation of instructional design theories, models, and methods it is important to consider the

criterion of effectiveness efficiency, and appeal. Reigeluth and Frick (1999) warn that these

criteria are sensitive to the context of the instruction so the needs and wants of the stakeholders

should be considered. Therefore, using a design and development research method (Richey &

Klein, 2007) the following research questions guided this investigation:

RQ1. What is the evidence that specific elements of CA are helpful to students in an

online CS1 and similar online courses that require abstract and complex thinking?

RQ2. How must the traditional course be revised to incorporate the selected CA elements

for effective online delivery?

RQ3. What are the reactions of experienced instructors of CS1 to the proposed CA-

supported online course in terms of effectiveness, efficiency, and appeal?

RQ4: What are the modifications needed to improve the proposed CA-supported CS1

online course in terms of perceived effectiveness, efficiency, and appeal?

72

Phase 1 focused on the preliminary design and development of a course guide. The

researcher applied his own personal experience teaching CS1 online along with evidence from

the research literature of successful CA strategies to develop the first draft of the guide. Using

Morrison et al.’s (2011) guidelines on the development of instructional strategies, objectives and

detailed instructional strategies were developed. This guide provided detailed information to

guide an instructor in the implementation of CS1 that incorporates CA strategies where

appropriate.

In phase 2, following the course construction, the expert-review technique (Richey &

Klein, 2007) was selected to validate the course guide. Specifically, a Delphi technique (Dalkey

& Helmer, 1963) was implemented. The technique consists of iterative questioning of a panel of

experts with periodic feedback from the panel. Seven panel members participated. These panel

members were selected out of a group 17 who responded to a solicitation for participation. These

seven panel members were selected based on their experience teaching CS1 or a similar course

in an online or blended learning environment. In round 1, a package of information including the

course guide, details about CA, and a set of specific questions relating to the research questions

were sent to the panel for their review and input. Input from the first round was analyzed and the

course guide was modified accordingly. There were two subsequent rounds with a similar

review, analysis, and revision cycle with consensus being reached by the panel in the third round.

Results from this design and development effort include a course guide for teaching CS1

using CA strategies that can be used by instructors who teach CS1 in a fully online learning

environment. This guide has been reviewed and validated by a panel of experts for its

effectiveness (i.e., the course guide aligns with the stated goals and objectives of the course),

efficiency (i.e., the course guide achieves the proposed goals of the course with the least amount

73

of resources possible), and appeal (i.e., learning activities are designed to engage students in the

learning experience). A logical next step following internal validation is external validation.

External validation aims to “confirm the model not by verifying its components, but by

documenting the impact of the model’s use” (p. 12). As a suggestion for future research, it is

recommended that this course guide be taken and implemented to evaluate its effectiveness,

efficiency, and appeal among learners, instructors, and CS programs. As a suggestion for

practitioners, it is hoped that the course guide can be used to help practitioners implement a fully

online CS1 course that uses CA strategies to achieve the learning outcomes of a CS1 course

while at the same time engage students in the development of abstract and complex skills that are

inherent in computer programming courses.

74

Appendix A

Round 1 -- E-mail to Panel of Experts

Dear Dr. Xxx:

Thank you again for agreeing to participate in my dissertation research study, A Cognitive

Apprenticeship Approach for Teaching Abstract and Complex Skills in an Online Learning

Environment. The purpose is to construct and validate an online CS1 course that incorporates

cognitive apprenticeship (CA) strategies that aid in teaching abstract and complex skills, such as

those found in CS1 courses. Given your expertise in teaching this course or similar, your role is

to help me improve a CS1 course guide that I developed that incorporates the use of CA

strategies in a fully online learning environment. You will participate in a series of three rounds

of reviews. The first round will likely take the most amount of time (approximately 1-3 hours)

with subsequent rounds taking less time (approx. 20-60 minutes).

Following are instructions for Round 1. These instructions along with the questionnaire, course

guide, and summary of CA strategies will be sent to each participant via email.

Attached are two documents: 1) the CS1 course guide and 2) a brief description of the CA

method. The course guide includes a set of learning outcomes and related instructional strategies

that are intended to be used to deliver an 8-week fully online CS1 course. In particular, CA

strategies have been incorporated where deemed appropriate to support the course content.

Please review the attached brief description of CA and course guide and then respond to the

following Round 1 questionnaire.

Round 1 Questionnaire: CS1 Course Guide Review

Instructions: When evaluating the design of instruction, it is important to consider three criteria:

effectiveness (i.e., how well do the instructional strategies align with the stated goals and

objectives of the course?); efficiency (i.e., to what extent is effectiveness accomplished using the

least amount of resources possible?); and appeal (i.e., how willing are students to become

engaged in the learning experience?).

I would like your input on these three criteria as well as the use of CA strategies to support the

instruction. After you review the course guide, please complete the following questionnaire.

Please be honest and as specific as possible in your comments and recommendations as your

input will help me make improvements to the course design.

1. Effectiveness: If you were to implement this course as designed, do you think it would be

effective in helping students gain the knowledge and skills needed to achieve the stated

learning outcomes? Yes/No. If no, please explain.

75

2. Efficiency: If you were to implement this course as designed, do you think you could

deliver it in an efficient manner? Yes/No. If no, please explain.

3. Appeal: If you were to implement this course as designed, do you think it would be

appealing to students? Yes/No. If no, please explain.

4. Cognitive apprenticeship: Do you think the cognitive apprenticeship strategies as

described within the course guide are appropriate? That is, do the strategies support the

type of content that is being taught? Yes/No. If no, please explain.

5. Additional thoughts: In addition to your comments above, what specific comments,

questions, and/or recommendations do you have for improving the effectiveness,

efficiency, and appeal of this course design? What suggestions do you have for

improving the clarity of the course guide in general? Please refer to sections and or page

numbers where appropriate.

So that the study can be developed in a reasonable amount of time, I would very much appreciate

your reply within a week of receiving this note. If you need more time, I would also very much

appreciate a brief note from you, so I can adjust the timing for the next round of consultations.

Thanks!

Best regards,

76

Appendix B

Round 1 -- Computer Science 1 Course Guide with CA Strategies

Course Title: Computer Science 1 (CS1)

Delivery Method: Online

Target Audience: The target audience is the adult, online student, with no previous computer

programming experience. The CS1 course is typically the first professional course taken in any

of the computer-related programs, such as Computer Science, Information Systems, and Game

Design.

Length of Course: The course is designed for an eight-week term, with the last week dedicated

exclusively to the final exam. No new material is covered in the eighth week. The course is

designed to be challenging and fast-paced, with at least one new topic presented in each of the

seven weeks of the course.

Technology/Tools: The course is delivered using several technologies including the following:

1. Learning Management System (LMS): eCollege (Pearson eCollege, 2013) is used

to house course content such as written lectures, programming problems, quizzes,

and the final exam. Online discussions and grading are also contained within the

LMS.

2. Videoconferencing System: Adobe Connect (Adobe, 2013). Adobe Connect is

used for the modeling sessions held every week, where the instructor explains

how to develop a program that is conceptually similar to the programming

problem that needs to be completed by students that week.

3. Short Instructional Videos: Jing (TechSmith, 2013). The instructor has used Jing

to prepare a set of about 60 short instructional videos, posted in eCollege, that

explain each individual subtopic in detail, including coding samples in Visual

Studio.

4. Short Feedback Videos: Jing (TechSmith, 2013). The instructor offers individual

feedback for the weekly programming problems, where the student’s work is

briefly analyzed and commented on. The video is accompanied with a rubric-

based written feedback as well.

Course Description: CS1 is an introduction to the fundamentals of imperative computer

programming using one of the programming languages included within Microsoft Visual Studio

2012. Even though one particular language is used throughout the course (Visual Basic, C++, or

C#), the student will be able to apply the skills learned to any programming language. The

approach used is hands-on with various computer programming assignments to reinforce the

application of fundamental concepts. In order to focus on the foundational topics of computer

77

programming, object-oriented topics are purposely not covered. This course design is

specifically oriented towards the use of Visual Basic as host language.

Required Textbook: Zak, D. (2014). Programming with Microsoft Visual Basic 2012, (6th Ed.).

Boston, MA: Cengage Learning. ISBN-13: 978-1-285-07792-5, ISBN-10: 1-285-07792-X. This

textbook’s author has prepared a collection of short instructional videos closely tied to the

“lessons” covered in each chapter. The use of this set of instructional videos is included with the

purchase of the textbook. This course design is specifically oriented towards one of the versions

of CS1 (using Visual Basic as host language.)

Learning Objectives (LOs)

At the end of this course, the learner will:

1. Use Integrated Development Environment (IDE) (i.e., Visual Studio) to:

1.1. Create, save, compile, and run a program.

1.2. Design and create a graphical user interface form.

1.3. Debug a program.

2. Code and test a program that uses variables, arithmetic expressions, and built-in methods.

3. Code and test a program that uses one or more decisions.

4. Code and test a program that requires iteration.

5. Code and test a program that uses modular design and implements one or more modules that

obtains data passed to it through its parameter list.

6. Code and test a program that implements arrays.

7. Code and test a program requiring sequential file input / output.

78

Course Summary

The week’s topics, learning objectives, readings, activities, and assessments in the course

can be summarized as follows (points for each assessment indicated, totaling 1000 points):

Week, LOs,

and Topics

Readings/Class Preparation Activities/Assignments

(points)

Week 1

LOs 1.1 and

1.2

Introduction to

Programming

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe Connect)

1. Programming problem (35)

2. Graded discussion topics (20)

3. Quiz (30)

4. Graded exercises

(scaffolding) (15)

5. Graded learning reflection

(10)

Week 2

LOs 2

Data Types,

Variables and

Expressions

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe Connect)

1. Programming problem (35)

2. Graded discussion topics (20)

3. Quiz (30)

4. Graded exercises

(scaffolding) (15)

5. Graded learning reflection

(10)

Week 3

LOs 3 and 1.3

Decisions and

Debugging

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe Connect)

1. Programming problem (35)

2. Graded discussion topics (20)

3. Quiz (30)

4. Graded exercises

(scaffolding) (15)

5. Graded learning reflection

(10)

Week 4

LO 4

Iteration

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe Connect)

1. Programming problem (35)

2. Graded discussion topics (20)

3. Quiz (30)

4. Graded exercises

(scaffolding) (15)

5. Graded learning reflection

(10)

Week 5

LO 5

Modularization

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe Connect)

1. Programming problem (35)

2. Graded discussion topics (20)

3. Quiz (30)

4. Graded exercises

(scaffolding) (15)

79

Week, LOs,

and Topics

Readings/Class Preparation Activities/Assignments

(points)

5. Graded learning reflection

(10)

Week 6

LO 6

Arrays

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe Connect)

1. Programming problem (35)

2. Graded discussion topics (20)

3. Quiz (30)

4. Graded exercises

(scaffolding) (15)

5. Graded learning reflection

(10)

Week 7

LOs 7

Sequential

Files

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe Connect)

1. Programming problem (35)

2. Graded discussion topics (20)

3. Quiz (30)

4. Graded exercises

(scaffolding) (15)

5. Graded learning reflection

(10)

Week 8 1. Final Exam (230)

80

Instructional Strategies

A. Learning Objective 1.1: Students will use an Integrated Development Environment

(IDE) to create, save, compile, and run a program.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will read Chapter 1 (“An Introduction to Visual Basic”) and

Chapter 2 (“Designing Applications”). They will also review the written lecture, “Problem

Solving with Computers.” Focus is on using the basic functions of the IDE such as create a basic

form, create and edit the code, compile and save a program, test the finished program, and

prepare a program for submission.

Students will watch a series of short videos that demonstrate how to create a basic form, create

and edit the code, compile and save a program, test the finished program, and prepare a program

for submission using Visual Studio.

Generative Strategy/Strategies

Discussion Forum Participation: Students will participate in asynchronous discussion forums

that are guided by the instructor. The topic of discussion reinforces the information presented in

the readings, written lecture, and videos. Emphasis will be placed on the use of Visual Studio.

CA Strategy - Modeling: Using a program named “Disappearing Logo,” the instructor facilitates

a videoconference session to demonstrate how to create a basic form, create and edit the code,

compile and save a program, test the finished program, and prepare a program for submission.

The program incorporates a simple graphical interface design with an image and a couple of

buttons.

Assessments

Individual Lab Exercise: “Hello World” program. Students will analyze, design, and implement

a simple salutation-type program to demonstrate proper use of procedures for creating a basic

form, creating and editing the code, compiling and saving a program, testing the finished

program, and preparing a program for submission. Students are also provided a step-by-step

guide for reference.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection Essay (CA Strategy – Articulation). Students are required to submit a short

essay at the end of the week that explains how the individual programming exercise was

approached and what specific coding techniques were used and why.

Quiz: Learners complete a quiz that requires recall of concepts related to the create, save,

compile, and run procedure. Examples include (Zak, 2014):

81

1. Visual Studio is a tool that is generically known as a(n) ____. Answer: IDE, or Integrated

Development Environment.

2. What is the name of the IDE window that displays a tree structure of all files and projects

in a program? Answer: Solution Explorer window.

3. In Visual Studio, a(n) ____ consists of files and projects. Answer: Solution.

4. Visual Studio uses a pattern to create projects and solutions. This pattern is called a(n)

____. Answer: Template.

Final Exam. Questions that assess the student’s ability to create, save, compile, and run a

program are included in the final exam given at the end of the semester. Examples include (Zak,

2014):

1. What is the name of the container in our IDE that contains all files and projects for a

complete application? Answer: Solution.

2. True or False: Each object in VB has certain parameters that specify its behavior and

appearance. Answer: True.

3. True or False: It is feasible to sort the contents of the Properties window in either

alphabetic of numeric order. Answer: False.

4. The window used to create in Visual Studio the graphical user interface for your program

is called ___________. Answer: Windows Form Designer.

B. Learning Objective 1.2: Students will use an Integrated Development Environment

(IDE) to design and create a graphical user interface form and perform basic input and

output.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 2 (“Designing Applications”). They will also

review the written lecture, “Problem Solving with Computers.” Focus is on the concepts of

creating a form, naming object in a form, adding action buttons, displaying text in a label, and

clearing text in an object.

Students will watch a series of short videos that demonstrate these topics.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

the use of Visual Studio to design and create a graphical user interface form and perform basic

input and output. The instructor challenges the student in open class discussion through

alternative or novel coding techniques.

CA Strategy - Modeling: Using the “Disappearing Logo,” program, the instructor facilitates a

videoconference session to demonstrate how to design and create a graphical user interface form.

82

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are personalized to each student. The instructor posts a

series of exercises focused on form design issues, use of various form objects, and event

handling.

Assessments

Individual Lab Exercise: “Grading Card” program. Point ranges for each of the letter grades (A,

B, C, etc.) are displayed when the user clicks on the appropriate button. “Clear” and “Exit”

buttons are also included. Students are required to analyze, design, and implement the program.

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded program problem developed. Frank

but constructive feedback is provided and the student is encouraged to continue dialogue with the

instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection Essay (CA Strategy – Articulation). Students are required to submit a short

essay at the end of the week that explains how the lab exercise was approached and what specific

coding techniques were used and why.

Quiz: Learners completes a quiz that requires them to recall concepts related to the design and

creation of a graphical user interface form. Examples include (Zak, 2014):

1. The behavior and characteristics of a form object is controlled by its ____. Answer:

Properties.

2. To change the title bar of a form, we need to set its ______ property. Answer: Text.

3. What is the assignment operator in VB? Answer: Equal sign (=).

4. Which of the many form objects should we use to display static information to the

user? Answer: Label.

Final Exam. Questions that assess the student’s ability to create a form, name objects in a form,

add action buttons, display text in a label, and clear text in an object are included in the final

exam given at the end of the semester. Examples include (Zak, 2014):

1. The _______ property of the form sets where on the screen it will be displayed when

the program is executed. Answer: StartPosition.

2. Which window in the IDE is used to obtain the form objects that we need to place in

the form at design time? Answer: Toolbox.

3. The window in the IDE that displays syntax error messages after compilation is called

____. Answer: Error List.

4. What is the correct method to execute so that a VB form is closed normally? Answer:

Me.Close().

83

C. Learning Objective 1.3: Students will use an Integrated Development Environment

(IDE) to debug a program.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Appendix “A” in the textbook (“Finding and Fixing

Program Errors”). They will also review the written lecture, “Debugging in Visual Studio.”

Focus is on the three types of programming errors (syntax, logic, and runtime), how to discover

each type of error, and how to use the IDE’s debugging tools to discover logic errors.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion are the types of

programming errors, how to discover them, and the use of the Visual Studio’s debugging tool.

CA Strategy - Modeling: Using as basis the “Social Burger,” program, the instructor facilitates a

videoconference session to demonstrate how to identify the three types of programming errors

and also how to use the IDE’s debugging tools to discover logic errors. The “Social Burger”

program is a menu-taking program for a small restaurant, with multiple decisions necessary to

implement the needed logic.

Assessments

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection Essay (CA Strategy – Articulation). Students are required to submit a short

essay at the end of the week that explains how the lab exercise was approached and what specific

coding techniques were used and why.

Quiz. Learners completes a quiz that requires them to recall concepts related to the types of

programming errors and how to detect and correct them. Examples include (Zak, 2014):

1. When programmers do _______ the errors in a program and its causes are identified, so

they can be fixed. Answer: Debugging.

2. What statement will be highlighted in yellow when we are stepping line-by-line in our

code within the debugger? Answer: The next statement to be executed.

3. Logic errors are listed in the Error List window, right? Answer: False.

4. What keyboard key is used to Step Into the code when debugging? Answer: F8 key.

Final Exam. Questions that assess the student’s ability to identify, detect, and correct the three

types of programming errors are included in the final exam given at the end of the semester.

Examples include (Zak, 2014):

1. When using the Step Into tool within the debugger, it is only the variables and properties

named in the highlighted line the ones that you can see the values of, right? Answer:

False.

84

2. Which debugging tool is used in order to stop execution of the program and cede control

to the Debugger? Answer: The breakpoint tool.

3. Let’s suppose that intTotalScore has a value of 200 and that intTests has a value of zero.

The statement dblAvg = intTotalScore / intTests will ________ . Answer: Result in a

runtime error.

4. Let’s suppose that intTotalScore has a value of zero and that intTests has a value of 10.

The statement dblAvg = intTotalScore / intTests will ________. Answer: Assign zero to

the dblAvg variable.

E. Learning Objective 2: Code and test a program that uses variables, arithmetic

expressions, and built-in methods.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 3 (“Using Variables and Constants”). They

will also review the written lecture, “Basic Data Types and Variables.” Focus is on the concepts

of data types, variables, conversion of data types, expressions, and numerical operators.

Students will watch a series of short videos that demonstrate these topics: (1) variables, (2)

accepting input, (3) expressions, (4) DateDiff() function, (5) internal program documentation,

and (6) MessageBox.Show() method.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

data types, variables, conversion of data types, expressions, and numerical operators. The

instructor challenges the student in open class discussion through alternative or novel coding

techniques.

CA Strategy - Modeling: Using the “Grade Average Calculator,” program, the instructor facilitates a

videoconference session to demonstrate how to use data types, variables, conversion of data

types, expressions, and numerical operators. This program requires the acceptance and validation

of three grades and then the average is calculated and displayed.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are personalized to each student. The instructor posts a

series of exercises focused on data types, variables, conversion of data types, expressions, and

numerical operators.

Assessments

Individual Lab Exercises: (1) “Dates to Graduation” program. The user supplies name and major

plus a graduation date (selected with a DateTimePicker) and the program computes and displays

85

the days remaining until graduation in a small dialog box in the center of the screen. (2) “Area

and Volume Calculator” program: The user supplies the length of a square plot, the radius of a

circle, or the radius of a sphere, and the program computes its area or volume, displaying the

results. The complete program must be analyzed, designed, and implemented. Students are

required to analyze, design, and implement both programs.

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection Essay (CA Strategy – Articulation). Students are required to submit a short

essay at the end of the week that explains how the lab exercise was approached and what specific

coding techniques were used and why.

Quiz: Learners completes a quiz that requires them to recall concepts related to data types,

variables, conversion of data types, expressions, and numerical operators. Examples include

(Zak, 2014):

1. To change or “cast” the data type of a variable, we can use the _________ class methods

in our programs. Answer: Convert.

2. Option Strict On warrants that variables must have a data type declared in the Dim

statement. Answer: False.

3. The ________ of the ToString method is used to control how many decimal places we

want to display in the resulting string. Answer: formatting string.

4. The ______ constant can be concatenated into a string to force a new line in the text

displayed in a control. Answer: ControlChars.NewLine, vbNewLine, vbCR, or vbLF.

Final Exam. Questions that assess the student’s ability to declare data types, declare and use

variables, convert data types, create expressions, and use numerical operators are included in the

final exam given at the end of the semester. Examples include (Zak, 2014):

1. True or False. The operator used to concatenate two strings is the % operator. Answer:

False.

2. True or False. The InputBox() function will always return a text value, even if the user

entered nothing when prompted. Answer: False.

3. True or False: Static variables will retain their values even after the procedure where they

were declared has terminated. Answer: True.

4. The ____ method is used to convert or “cast” a Date variable into a String. Answer:

Date.TryParse.

86

F. Learning Objective 3: Code and test a program that uses one or more decisions.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapters 4 (“The Selection Structure”) and 5 (“More

on the Selection Structure”). They will also review the written lecture, “Conditional Statements,

Comparison & Logical Operators.” Focus is on the concepts of decision statements, Boolean

logic, and input validation.

Students will watch a series of short videos that demonstrate these topics: (1) IF statement, (2)

Select-Case statement, (3) accepting input, (4) validating string values, (5) validating numeric

values, (6) multiple validations, (7) using Radioboxes and Checkboxes, and (8) using Listboxes.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

decision statements, Boolean logic, and input validation. The instructor challenges the student in

open class discussion through alternative or novel coding techniques.

CA Strategy - Modeling: Using the “The Social Burger,” program, the instructor facilitates a

videoconference session to demonstrate how to design and write decision statements, use

Boolean logic, and validate user’s input. This program is a menu-taking program for a small

restaurant, with multiple decisions necessary to implement the needed logic.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are personalized to each student. The instructor posts a

series of exercises focused on decision statements, Boolean logic, and input validation.

Assessments

Individual Lab Exercise: “Drive-In Income Calculator” program. The program requires input of

the type of night (Regular / Car), number of tickets sold, numbers of cars admitted, number of

candy sold, and number of popcorn sold, and computes and displays the income generated in a

ListBox object. Students are required to analyze, design, and implement the program.

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

87

Learning Reflection Essay (CA Strategy – Articulation). Students are required to submit a short

essay at the end of the week that explains how the lab exercise was approached and what specific

coding techniques were used and why.

Quiz: Learners completes a quiz that requires them to recall concepts related to decision

statements, Boolean logic, and input validation. Examples include (Zak, 2014):

1. To change a string to all-upper characters we can use the _______ method. Answer:

ToUpper.

2. True or False: The AndAlso logical operator uses a short-circuit evaluation. Answer:

True.

3. True or False: A compound condition using the logical operator OR will be true if either

of the individual conditions is true. Answer: True.

4. The < and > operators are called ________ operators. Answer: Logical.

Final Exam. Questions that assess the student’s ability to design and write decision statements,

use Boolean logic, and validate user’s input are included in the final exam given at the end of the

semester. Examples include (Zak, 2014):

1. True or False: It is not possible to specify the icon that the MessageBox.Show() method

will display to the user. Answer: False.

2. In a Select-Case statement over variable intCode which of the following Case clauses are

valid? Case Is > 7; Case 3, 5; Case 1 To 4; All of them. Answer: All of them.

3. Let’s suppose that the Text property of the txtPrice textbox contains the value 75, what

value will the Double.TryParse(txtPrice.Text, dblPrice) method return? False; True; 75;

75.0; 75.00; None of them. Answer: True.

G. Learning Objective 4: Code and test a program that requires iteration.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 6 (“The Repetition Structure”). They will

also review the written lecture, “Loops.” Focus is on the concept of iteration statements.

Students will watch a series of short videos that demonstrate these topics: (1) loop statements, (2)

Do-Loop statement, (3) For-Next statement, (4) InputBox() function, (5) using loops in

validation – string, and (6) using loops in validation – numeric.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

iteration statements. The instructor challenges the student in open class discussion through

alternative or novel coding techniques.

CA Strategy - Modeling: Using the “Lifetime Earnings,” program, the instructor facilitates a

videoconference session to demonstrate how to design and use iteration statements. In this

88

program the user inputs the name, current age, retirement age, current salary, and expected

annual raise and the program computes and displays the salary at retirement and the accumulated

lifetime earnings.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are personalized to each student. The instructor posts a

series of exercises focused on iteration statements.

Assessments

Individual Lab Exercise: “Hockey Statistics” program. The user supplies the name and number

of seasons played for a hockey player. And then the Goals and Assists for each season played.

Input must be done through an InputBox() function. The total Goals, Assists, and Points are then

computed and displayed. Students are required to analyze, design, and implement the program.

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection Essay (CA Strategy – Articulation). Students are required to submit a short

essay at the end of the week that explains how the lab exercise was approached and what specific

coding techniques were used and why.

Quiz: Learners completes a quiz that requires them to recall concepts related to iteration

statements. Examples include (Zak, 2014):

1. Is a For-Next statement a pretest or a posttest loop? Answer: Pretest.

2. True or False: A Do-Loop statement can be used to implement a posttest structure.

Answer: True.

3. True or False: In flowchart terms, a diamond shape is used to designate a For-Next loop,

right? Answer: False.

4. Let’s suppose that you create a loop where you ask the user for some numeric input

(stored by you in variable intNumericInput after validation) and use that numeric input in

the following statement within the loop: intTotal = intTotal + intNumericInput. What

type of variable is intTotal? Answer: Accumulator.

Final Exam. Questions that assess the student’s ability to design and use iteration statements are

included in the final exam given at the end of the semester. Examples include (Zak, 2014):

1. True or False: We cannot nest a loop within other types of structures, such as If-Then-

Else statements. Answer: False.

2. When considering nested loops, the (inner/outer) _______ loop will typically be

processed less times than the (inner/outer) _______ loop. Answer: Outer, inner.

89

3. To immediately stop a Do-Loop we would use the ___________ statement. Answer: Exit

Do.

4. The ________ listbox property has the position of the item that is currently selected in

the listbox. Answer: SelectedIndex.

H. Learning Objective 5: Code and test a program that uses modular design and

implements one or more modules that obtains data passed to it through its parameter list.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 7 (“Sub and Function Procedures”). They

will also review the written lecture, “Modularization.” Focus is on the concept of modularization.

Students will watch a series of short videos that demonstrate these topics: (1) modularization –

invocation, (2) modularization - data transfer, (3) Sub procedures, and (4) Function procedures.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

modularization. The instructor challenges the student in open class discussion through alternative

or novel coding techniques.

CA Strategy - Modeling: Using the “Lifetime Earnings,” program, the instructor facilitates a

videoconference session to demonstrate how to take a non-modularized program (from a

previous week) and modularize it. The Functions implemented are ValidateString(),

ValidateInteger, and ValidateDouble(), plus the Sub ComputeResults(), with both ByVal and

ByRef parameters.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are personalized to each student. The instructor posts a

series of exercises focused on modularization.

Assessments

Individual Lab Exercise: “Hockey Statistics” program. Same program developed in a previous

week but modularized. Students are required to use at least one Function and one Sub modules,

and to pass data in both ByVal and ByRef. Students are required to analyze, design, and

implement the program.

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

90

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection Essay (CA Strategy – Articulation). Students are required to submit a short

essay at the end of the week that explains how the lab exercise was approached and what specific

coding techniques were used and why.

Quiz: Learners completes a quiz that requires them to recall concepts related to modularization.

Examples include (Zak, 2014):

1. If you are interested in passing only the value of variable to a module, you need to use the

____ keyword when declaring the parameter in the module’s declaration.. Answer:

ByVal.

2. True or False: A Sub procedure can return a value, but a Function procedure cannot.

Answer: False.

3. What statement is used to return a value from a Function procedure? Answer: Return.

Final Exam. Questions that assess the student’s ability to modularize a program are included in

the final exam given at the end of the semester. Examples include (Zak, 2014):

1. True or False. The ByVal parameters of a procedure have module scope and are

destroyed when the procedure ends. Answer: True.

2. True or False. The following module invocation cannot invoke a ByRef parameter: Call

ComputeSalary (1500.25). Answer: True.

3. If you are writing a Function procedure and you want to return the value of variable

dblSalary, what statement do you use? Answer: Return dblSalary.

I. Learning Objective 6: Code and test a program that implements arrays.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 9 (“Arrays”). They will also review the

written lecture, “Arrays.” Focus is on the concept of arrays.

Students will watch a series of short videos that demonstrate these topics: (1) declaring arrays,

(2) updating arrays, (3) two-dimensional arrays, (4) parallel arrays, and (5) processing Arrays

(computing an average.)

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

arrays. The instructor challenges the student in open class discussion through alternative or novel

coding techniques.

91

CA Strategy - Modeling: Using the “Grade Average Calculator,” program, the instructor

facilitates a videoconference session to demonstrate how to declare and use arrays. This program

allows the user to supply up to 30 grades in a course’s assignments and the program displays all

of them in a Listbox and computes the average for the course. Arrays must be used to store the

data.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are personalized to each student. The instructor posts a

series of exercises focused on arrays.

Assessments

Individual Lab Exercise: “Building Rents” program. The user enters the basic data for a building

(name and number of floors) and then supplies the rents for all floors. Finally, the user chooses

one of the floors and displays the corresponding rent. Students are required to analyze, design,

and implement the program.

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection Essay (CA Strategy – Articulation). Students are required to submit a short

essay at the end of the week that explains how the lab exercise was approached and what specific

coding techniques were used and why.

Quiz: Learners completes a quiz that requires them to recall concepts related to arrays. Examples

include (Zak, 2014):

1. What array method would you use to learn the number of elements that the array has?

Answer: Length.

2. True or False: If we want to sort an array in reverse order, we would use the

Array.Reverse method, since the Array.Sort method will sort the array in the normal,

ascending order. Answer: False.

3. True or False: Is the For Each-Next statement capable of processing each element of a

one-dimensional array in its entirety? Answer: True.

Final Exam. Questions that assess the student’s ability to declare and use arrays are included in

the final exam given at the end of the semester. Examples include (Zak, 2014):

1. In a set of two parallel arrays, how are the values in one array related to the other array’s

values? Answer: By their index position in the array.

2. The strStates and strCapitals arrays are parallel arrays. If Florida is stored in the second

element in the strStates array, where is its capital (Tallahassee) stored? Answer:

strCapitals(1).

92

3. Which of the following statements assigns the string “Florida” to the element located in

the third column, fifth row in the two-dimensional strStates array? strStates(3, 5) =

"Florida "; strStates(5, 3) = "Florida "; strStates(4, 2) = "Florida "; strStates(2, 4) =

"Florida ". Answer: strStates(4, 2) = "Florida ".

J. Learning Objective 7: Code and test a program requiring sequential file input / output.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 10 (“Structures and Sequential access Files”).

They will also review the written lecture, “Sequential Files.” Focus is on the concept of

sequential files.

Students will watch a series of short videos that demonstrate these topics: (1) what is a file, (2)

opening and closing files, (3) methods to open a file, (4) reading from a file, (5) writing to a file,

(6) CSV files, and (7) file error handling.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

sequential files. The instructor challenges the student in open class discussion through alternative

or novel coding techniques.

CA Strategy - Modeling: Using the “Lifetime Earnings” program from a previous week, the

instructor facilitates a videoconference session to demonstrate how to add file handling features

to it, saving the data as a CSV file for multiple users and then restoring it from the file for

display into a second form.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are personalized to each student. The instructor posts a

series of exercises focused on sequential files.

Assessments

Individual Lab Exercise: “Hockey Player” program. This program is the same developed in

previous weeks but expanded to save the data for any number of players. Then a second form is

used to display all sets of data thus saved to the file. Students are required to analyze, design, and

implement the program.

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

93

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection Essay (CA Strategy – Articulation). Students are required to submit a short

essay at the end of the week that explains how the lab exercise was approached and what specific

coding techniques were used and why.

Quiz: Learners completes a quiz that requires them to recall concepts related to sequential files.

Examples include (Zak, 2014):

1. Let’s suppose that our VB program needs to know if a specific file is present in a hard

disk. What method do we use to do it? Answer: Exists.

2. What method can we use to determine if a file has or does not have more data to read

from? Answer: Peek().

3. If we want to write to a sequential file, which object do we need to use? Answer:

StreamWriter.

Final Exam. Questions that assess the student’s ability to use sequential files are included in the

final exam given at the end of the semester. Examples include (Zak, 2014):

1. The AppendText method creates a _______ object. Answer: StreamWriter.

2. The Peek method returns ________ when the end of the file is reached. Answer: -1.

3. If the file to be opened exists, the ___________ method erases the file’s contents.

Answer: CreateText.

94

Appendix C

Round 1 -- Brief Description of Cognitive Apprenticeship

When offered in the face-to-face or blended learning classroom, a CS1 (“Computer Science 1”)

course taught using cognitive apprenticeship (CA) methods have offered good results, both in

performance and retention (Vihavainen, Paksula, Luukkainen, & Kurhila, 2011). CA is derived

from the classical style of learning in which many hand crafts are learned: a “master” in the craft

teaches the “apprentice” how the craft is developed through modeling, starting from simple items

and progressing towards more complex items, while all the time providing support and

scaffolding to the apprentice. This scaffolding provided by the master is then gradually removed

as the apprentice gains experience.

CA can be implemented in various ways but some of the essential elements are as follows

(Collins, Brown, & Newman, 1989):

8. Modeling. The instructor offers periodic modeling sessions where the instructor

demonstrates the thought processes developed while attempting to solve programming

problems. The objective is not to demonstrate features of the computer language used but

instead, to show students how the instructor would approach the solution to the problem.

9. Coaching. The instructor offer specific guidance to the student while working on

exercises so that the correct approach is applied to the solution of the problems, with the

objective of correcting performance deviations as soon as possible.

10. Scaffolding. Based on gradually more difficult exercises, the instructor leads the student

toward ever more complex challenges, until the student reaches the needed learning

objectives. As these exercises progress forward, the instructor’s support is gradually

removed, until at the end of the course practically no support is needed.

11. Articulation. Students must explain to the instructor why a specific approach to a problem

works, so that the thinking process leading to the solution can be analyzed and solidified

in the student’s mind.

12. Reflection. After each main learning experience, a “reflection” paper is prepared where

the students summarizes what they have learned during the previous period and how it

can be used in practice.

13. Exploration. Students are encouraged to try out new approaches to resolution of the

problems, with the intent of developing independent thought.

Given that a significant number of students have difficulties when facing the CS1 course, and

given the good results that CA has offered to CS1 courses when taught face-to-face or in a

blended classroom, it appears reasonable to determine how well a CA approach will apply to a

purely online CS1 course. This topic is interesting not only to the researcher, who has taught this

course online for over ten years and continually seeks to improve retention and performance in it,

but also for the computer science teaching community at large.

95

Appendix D

Round 2 -- E-mail to Panel of Experts

Dear Dr. Xxx:

Thank again you for your participation in Round 1 of the study! I have analyzed all the replies

from the panel and prepared a set of documents for Round 2, attached. The documents include

the following:

1. Document_of_Revisions_Round1ToRound2.docx -- Has a tabular summary of all

changes made to the course design as a result of the Round 1 suggestions.

2. Round2-CS1CourseGuideWithCAStrategies-MarkUp.docx -- Is the exact same document

from Round 1, but showing the “mark-up” of changes: text deleted (sample of text

deleted) and text added / changed (sample of text added / changed).

3. Round2-CS1CourseGuideWithCAStrategies.docx -- Is the complete, Round 2 document

which incorporates all changes suggested.

Following are the instructions for Round 2. Please review the attached documentation and then

respond to the following four questions on the Round 2 questionnaire.

Round 2 Questionnaire: Introduction to Computer Programming / CS1 Course Guide

Review

Instructions: When evaluating the design of instruction, it is important to consider three criteria:

effectiveness (i.e., how well do the instructional strategies align with the stated goals and

objectives of the course?); efficiency (i.e., to what extent is are the goals and objectives of the

course accomplished using the least amount of resources possible?); and appeal (i.e., how

willing are students to become engaged in the learning experience?).

I would like your input on these three criteria as well as the use of CA strategies to support the

instruction. After you review the modified course guide, please complete the following

questionnaire. Please be honest and as specific as possible in your comments and

recommendations as your input will help me make improvements to the course design.

1. Effectiveness: The course design is effective (i.e., the learning activities align with the

stated goals and objectives of the course):

1-strongly disagree; 2-disagree; 3-undecided; 4-agree; 5-strongly agree.

Comments/Suggestions for Improvement:

__.

96

2. Efficiency: The course design is efficient (i.e., the goals and objectives of the course are

achieved using the least amount of resources possible):

1-strongly disagree; 2-disagree; 3-undecided; 4-agree; 5-strongly agree.

Comments/Suggestions for Improvement:

__.

3. Appeal: The course design is appealing (i.e., the learning activities are designed to engage

students in the learning experience):

1-strongly disagree; 2-disagree; 3-undecided; 4-agree; 5-strongly agree.

Comments/Suggestions for Improvement:

__.

4. Cognitive apprenticeship: The cognitive apprenticeship strategies as described within the

course guide are appropriate (i.e., the strategies support the type of content that is being

taught):

1-strongly disagree; 2-disagree; 3-undecided; 4-agree; 5-strongly agree.

Comments/Suggestions for Improvement:

__.

5. Additional thoughts: In addition to your comments above, what specific comments,

questions, and/or recommendations do you have for improving the effectiveness,

efficiency, and appeal of this modified course design? What suggestions do you have for

improving the clarity of the course guide in general? Please refer to sections and or page

numbers where appropriate.

So that the study can be developed in a reasonable amount of time, I would very much appreciate

your reply within two weeks of receiving this note. If you need more time, I would also very

much appreciate a brief note from you, so I can adjust the timing for the next round of

consultations.

Thanks!

Best regards,

97

Appendix E

Round 2 -- Document of Revisions

Document of Revisions (DoR)

To: Delphi Study Panel Members

Date: 3/8/2014

From: Reinaldo Fernandez

Re: Round 1 To Round 2, Course Guide changes

Following is a summary of the changes made to the Round 1 Course Guide to incorporate the suggestions made by
the panel. The “Number” indicated is included merely as reference, while the “Change Made” details the change

made and incorporated in the Round 2 Course Guide, with the column “Rationale” explaining why the change was

made.

Number Change Made Rationale

1 Course name changed to

“Introduction to Computer

Programming / CS1”.

One panel member believes that some topics (specifically,

object-oriented programming) are necessary to be added to the

course in order for it to be properly called a “CS1” course (first

professional course taken in computer science.) Since

discussing if the course is a proper implementation or not of the

ACM’s official “CS1” course design is not included within the

scope of the present study, the name change is offered as an

alternative.

2 Course preceded by a so-called

“CS0” course.

A preliminary course is convenient as preparation for this

course, focusing on algorithms and computer-based problem

solving. The course could be described as follows:

This course introduces the basics of programming logic and

algorithm design, including use of different data types and

variables, expressions, decisions, iterative logic, and

modularization. Students learn to design and document

programs using tools such as flowcharts and pseudocode.

3 Required software specified. The required software should be specified, which is Microsoft

Visual Studio 2012 Express Edition (or higher.)

4 Weekly quizzes eliminated. Several panel members thought that the academic load as

originally conceived in the design is too high, particularly for a

short-duration course such as this one. Eliminating the weekly

quiz --but maintaining the comprehensive Final Exam-- allows

retaining all elements of cognitive apprenticeship while

reducing some of the academic load.

98

Number Change Made Rationale

5 Reflection essay replaced by

Standard Solution Analysis.

Several panel members thought that the Reflection essay, as

originally designed, would be somewhat out of place in a

computer programming course. As such, one of these panel

members offered the alternative idea of doing the reflection

(which is required by cognitive apprenticeship) based on the

standard solution to the previous week’s programming problem,

including a comparison of the student’s own solution to this

standard solution, pointing out and analyzing the differences.

6 Grading rubrics added. One panel member suggested adding grading rubrics for all

programming problems.

7 Minor changes. Clarification of minor items and correction of obscure passages,
as follows:

1. The short instructional videos should be available to

students throughout the entire duration of the course.

2. Mention of other computer languages was dropped from the

description (only VB is now mentioned.)

3. The “sequential file input / output” designation was

replaced by “streamed file input / output” designation,

which is more precise.

4. Suggested scheduled due dates added to “Course Summary”

section.

5. Written lecture name for learning objectives 1.1 and 1.2

changed to “Problem Solving with Computers /

Introduction to Visual Basic / Form Design”.

6. The Final Exam includes both multiple-choice questions

and “essay”=style questions, where some code needs to be

written.

99

Appendix F

Round 2 -- Computer Science 1 Course Guide with CA Strategies

Course Title: Introduction to Computer Programming / CS1 (“ICP/CS1” for short.)

Delivery Method: Online

Target Audience: The target audience is the adult, online student, with no previous computer

programming experience. The ICP/CS1 course is typically the first professional course taken in

any of the computer-related programs, such as Computer Science, Information Systems, and

Game Design. This course is typically preceded by what is called in the literature a “CS0”

course, where basic algorithms and computer-based problem solving is taught.

Length of Course: The course is designed for an eight-week term, with the last week dedicated

exclusively to the final exam. No new material is covered in the eighth week. The course is

designed to be challenging and fast-paced, with at least one new topic presented in each of the

seven weeks of the course.

Technology/Tools: The course is delivered using several technologies including the following:

5. Learning Management System (LMS): eCollege (Pearson eCollege, 2013) is used

to house course content such as written lectures, programming problems, quizzes,

and the final exam. Online discussions and grading are also contained within the

LMS.

6. Videoconferencing System: Adobe Connect (Adobe, 2013). Adobe Connect is

used for the modeling sessions held every week, where the instructor explains

how to develop a program that is conceptually similar to the programming

problem that needs to be completed by students that week.

7. Short Instructional Videos: Jing (TechSmith, 2013). The instructor uses Jing to

prepare a set of about 60 short instructional videos, posted in eCollege, that

explain each individual subtopic in detail, including coding samples in Visual

Studio. These videos are available to students throughout the entire course and

can be watched at will when needed.

8. Short Feedback Videos: Jing (TechSmith, 2013). The instructor offers individual

feedback for the weekly programming problems, where the student’s work is

briefly analyzed and commented on. The video is accompanied with a rubric-

based written feedback as well.

Course Description: ICP/CS1 is an introduction to the fundamentals of imperative computer

programming using one of the programming languages included within Microsoft Visual Studio

2012. Even though one particular language is used throughout the course (Visual Basic in this

particular case), the student will be able to apply the skills learned to any programming language.

The approach used is hands-on with various computer programming assignments to reinforce the

100

application of fundamental concepts. In order to focus on the foundational topics of computer

programming, object-oriented topics are purposely not covered. This course design is

specifically oriented towards the use of Visual Basic as host language.

Required Textbook: Zak, D. (2014). Programming with Microsoft Visual Basic 2012, (6th Ed.).

Boston, MA: Cengage Learning. ISBN-13: 978-1-285-07792-5, ISBN-10: 1-285-07792-X. This

textbook’s author has prepared a collection of short instructional videos closely tied to the

“lessons” covered in each chapter. The use of this set of instructional videos is included with the

purchase of the textbook. This course design is specifically oriented towards one of the versions

of ICP/CS1 (using Visual Basic as host language.)

Required software: Microsoft Visual Studio 2012 Express Edition. (Any 2012 version will do.

The “Express Edition” is a free download from the Microsoft website.)

Learning Objectives (LOs)

At the end of this course, the learner will:

8. Use an Integrated Development Environment (IDE) (i.e., Visual Studio) to:

8.1. Create, save, compile, and run a program.

8.2. Design and create a graphical user interface form.

8.3. Debug a program.

9. Code and test a program that uses variables, arithmetic expressions, and built-in methods.

10. Code and test a program that uses one or more decisions.

11. Code and test a program that requires iteration.

12. Code and test a program that uses modular design and implements one or more modules that

obtains data passed to it through its parameter list.

13. Code and test a program that implements arrays.

14. Code and test a program requiring streamed file input / output.

101

Course Summary

The week’s topics, learning objectives, readings, activities, and assessments in the course

can be summarized as follows (points for each assessment indicated, totaling 1000 points) –

NOTE: For Round 2 the points were adjusted so as to eliminate the weekly quiz and as such the

points were adjusted as follows: Programming problem (50 points each); Graded exercises (20

points each); and Graded learning reflection / solution analysis (20 points each):

Week, LOs, and

Topics

Readings/Class Preparation Activities/Assignments (points) –

Due date

Week 1

LOs 1.1 and 1.2

Introduction to

Programming

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (50) – Day 7

2. Graded discussion topics (20) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (20)

– Day 5

Week 2

LOs 2

Data Types,

Variables and

Expressions

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (50) – Day 7

2. Graded discussion topics (20) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (20)

– Day 5

4. Graded learning reflection /

solution analysis (20) – Day 7

Week 3

LOs 3 and 1.3

Decisions and

Debugging

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (50) – Day 7

2. Graded discussion topics (20) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (20)

– Day 5

4. Graded learning reflection /

solution analysis (20) – Day 7

Week 4

LO 4

Iteration

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (50) – Day 7

2. Graded discussion topics (20) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (20)

– Day 5

4. Graded learning reflection /

solution analysis (20) – Day 7

Week 5

LO 5

Modularization

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (50) – Day 7

2. Graded discussion topics (20) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (20)

– Day 5

102

Week, LOs, and

Topics

Readings/Class Preparation Activities/Assignments (points) –

Due date

4. Graded learning reflection /

solution analysis (20) – Day 7

Week 6

LO 6

Arrays

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (50) – Day 7

2. Graded discussion topics (20) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (20)

– Day 5

4. Graded learning reflection /

solution analysis (20) – Day 7

Week 7

LOs 7

Sequential Files

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (50) – Day 7

2. Graded discussion topics (20) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (20)

– Day 5

4. Graded learning reflection /

solution analysis (20) – Day 7

Week 8 1. Final Exam (250) – Day 1 to Day 7

103

Instructional Strategies

A. Learning Objective 1.1: Students will use an Integrated Development Environment

(IDE) to create, save, compile, and run a program.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will read Chapter 1 (“An Introduction to Visual Basic”) and

Chapter 2 (“Designing Applications”). They will also review the written lecture, “Problem

Solving with Computers / Introduction to Visual Basic / Form Design.” Focus is on using the

basic functions of the IDE such as create a basic form, create and edit the code, compile and save

a program, test the finished program, and prepare a program for submission.

Students will watch a series of short videos that demonstrate how to create a basic form, create

and edit the code, compile and save a program, test the finished program, and prepare a program

for submission using Visual Studio.

Generative Strategy/Strategies

Discussion Forum Participation: Students will participate in asynchronous discussion forums

that are guided by the instructor. The topic of discussion reinforces the information presented in

the readings, written lecture, and videos. Emphasis will be placed on the use of Visual Studio.

CA Strategy - Modeling: Using a program named “Disappearing Logo,” the instructor facilitates

a videoconference session to demonstrate how to create a basic form, create and edit the code,

compile and save a program, test the finished program, and prepare a program for submission.

The program incorporates a simple graphical interface design with an image and a couple of

buttons.

Assessments

Individual Lab Exercise: “Hello World” program. Students will analyze, design, and implement

a simple salutation-type program to demonstrate proper use of procedures for creating a basic

form, creating and editing the code, compiling and saving a program, testing the finished

program, and preparing a program for submission. Students are also provided a step-by-step

guide for reference. The grading rubric is as follows (shared with the “Grading Card” program

below):

104

1. Part "A" – Hello World

Correct building of the program 10%

Correct operation of the program 10%

2. Part "B" – Grading card

Correct operation 10%

Overall form design 10%

Appropriate labels for all form objects 10%

Correct operation of "Clear" function. 10%

Correct operation of "Exit" function. 10%

Option Strict On set 10%

Internal program documentation 10%

Clean code. 10%

3. Other issues

N/A

TOTAL 100%

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Final Exam. Questions that assess the student’s ability to create, save, compile, and run a

program are included in the final exam given at the end of the semester. The exam includes

multiple-choice questions and “essay”-type questions where some code has to be written.

Examples include (Zak, 2014):

5. What is the name of the container in our IDE that contains all files and projects for a

complete application? Answer: Solution.

6. True or False: Each object in VB has certain parameters that specify its behavior and

appearance. Answer: True.

7. True or False: It is feasible to sort the contents of the Properties window in either

alphabetic of numeric order. Answer: False.

8. The window used to create in Visual Studio the graphical user interface for your program

is called ___________. Answer: Windows Form Designer.

105

B. Learning Objective 1.2: Students will use an Integrated Development Environment

(IDE) to design and create a graphical user interface form and perform basic input and

output.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 2 (“Designing Applications”). They will also

review the written lecture, “Problem Solving with Computers / Introduction to Visual Basic /

Form Design.” Focus is on the concepts of creating a form, naming object in a form, adding

action buttons, displaying text in a label, and clearing text in an object.

Students will watch a series of short videos that demonstrate these topics.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

the use of Visual Studio to design and create a graphical user interface form and perform basic

input and output. The instructor challenges the student in open class discussion through

alternative or novel coding techniques.

CA Strategy - Modeling: Using the “Disappearing Logo,” program, the instructor facilitates a

videoconference session to demonstrate how to design and create a graphical user interface form.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on form design issues, use of various form objects, and event

handling.

Assessments

Individual Lab Exercise: “Grading Card” program. Point ranges for each of the letter grades (A,

B, C, etc.) are displayed when the user clicks on the appropriate button. “Clear” and “Exit”

buttons are also included. Students are required to analyze, design, and implement the program.

The grading rubric is as follows (shared with the “Hello World” program above):

106

1. Part "A" – Hello World

Correct building of the program 10%

Correct operation of the program 10%

2. Part "B" – Grading card

Correct operation 10%

Overall form design 10%

Appropriate labels for all form objects 10%

Correct operation of "Clear" function. 10%

Correct operation of "Exit" function. 10%

Option Strict On set 10%

Internal program documentation 10%

Clean code. 10%

3. Other issues

N/A

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded program problem developed. Frank

but constructive feedback is provided and the student is encouraged to continue dialogue with the

instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Final Exam. Questions that assess the student’s ability to create a form, name objects in a form,

add action buttons, display text in a label, and clear text in an object are included in the final

exam given at the end of the semester. The exam includes multiple-choice questions and

“essay”-type questions where some code has to be written. Examples include (Zak, 2014):

5. The _______ property of the form sets where on the screen it will be displayed when

the program is executed. Answer: StartPosition.

6. Which window in the IDE is used to obtain the form objects that we need to place in

the form at design time? Answer: Toolbox.

7. The window in the IDE that displays syntax error messages after compilation is called

____. Answer: Error List.

8. What is the correct method to execute so that a VB form is closed normally? Answer:

Me.Close().

107

C. Learning Objective 1.3: Students will use an Integrated Development Environment

(IDE) to debug a program.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Appendix “A” in the textbook (“Finding and Fixing

Program Errors”). They will also review the written lecture, “Debugging in Visual Studio.”

Focus is on the three types of programming errors (syntax, logic, and runtime), how to discover

each type of error, and how to use the IDE’s debugging tools to discover logic errors.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion are the types of

programming errors, how to discover them, and the use of the Visual Studio’s debugging tool.

CA Strategy - Modeling: Using as basis the “Social Burger,” program, the instructor facilitates a

videoconference session to demonstrate how to identify the three types of programming errors

and also how to use the IDE’s debugging tools to discover logic errors. The “Social Burger”

program is a menu-taking program for a small restaurant, with multiple decisions necessary to

implement the needed logic.

Assessments

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Final Exam. Questions that assess the student’s ability to identify, detect, and correct the three

types of programming errors are included in the final exam given at the end of the semester. The

exam includes multiple-choice questions and “essay”-type questions where some code has to be

written. Examples include (Zak, 2014):

5. When using the Step Into tool within the debugger, it is only the variables and properties

named in the highlighted line the ones that you can see the values of, right? Answer:

False.

6. Which debugging tool is used in order to stop execution of the program and cede control

to the Debugger? Answer: The breakpoint tool.

7. Let’s suppose that intTotalScore has a value of 200 and that intTests has a value of zero.

The statement dblAvg = intTotalScore / intTests will ________ . Answer: Result in a

runtime error.

8. Let’s suppose that intTotalScore has a value of zero and that intTests has a value of 10.

The statement dblAvg = intTotalScore / intTests will ________. Answer: Assign zero to

the dblAvg variable.

108

E. Learning Objective 2: Code and test a program that uses variables, arithmetic

expressions, and built-in methods.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 3 (“Using Variables and Constants”). They

will also review the written lecture, “Basic Data Types and Variables.” Focus is on the concepts

of data types, variables, conversion of data types, expressions, and numerical operators.

Students will watch a series of short videos that demonstrate these topics: (1) variables, (2)

accepting input, (3) expressions, (4) DateDiff() function, (5) internal program documentation,

and (6) MessageBox.Show() method.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

data types, variables, conversion of data types, expressions, and numerical operators. The

instructor challenges the student in open class discussion through alternative or novel coding

techniques.

CA Strategy - Modeling: Using the “Grade Average Calculator,” program, the instructor facilitates a

videoconference session to demonstrate how to use data types, variables, conversion of data

types, expressions, and numerical operators. This program requires the acceptance and validation

of three grades and then the average is calculated and displayed.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on data types, variables, conversion of data types, expressions, and

numerical operators.

Assessments

Individual Lab Exercises: (1) “Dates to Graduation” program. The user supplies name and major

plus a graduation date (selected with a DateTimePicker) and the program computes and displays

the days remaining until graduation in a small dialog box in the center of the screen. (2) “Area

and Volume Calculator” program: The user supplies the length of a square plot, the radius of a

circle, or the radius of a sphere, and the program computes its area or volume, displaying the

results. The complete program must be analyzed, designed, and implemented. Students are

required to analyze, design, and implement both programs. The grading rubric is as follows:

109

1. Part "A" - Graduation Date

Correct operation 20%

Handling of data type conversions 10%

"Exit" & "Clear" buttons work OK 3%

Overall form design 3%

Option Strict On set 3%

Internal program documentation 3%

Clean code. 3%

2. Part "B" - Area / Volume
Calculator

Correct operation 20%

Validation of user's input 10%

Handling of data type conversions 10%

"Exit" & "Clear" buttons work OK 3%

Overall form design 3%

Option Strict On set 3%

Internal program documentation 3%

Clean code. 3%

3. Other issues

N/A

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection / Solution Analysis Essay (CA Strategy – Articulation). Students are required

to submit a short essay at the end of the week that analyzes the standard solution to the previous

week’s programming problem (posted by the instructor together with the previous week’s

feedback) explaining how the lab exercise was approached and what specific coding techniques

were used and why. The student also compares their own coding techniques with that standard

solution and explains the differences.

110

Final Exam. Questions that assess the student’s ability to declare data types, declare and use

variables, convert data types, create expressions, and use numerical operators are included in the

final exam given at the end of the semester. The exam includes multiple-choice questions and

“essay”-type questions where some code has to be written. Examples include (Zak, 2014):

5. True or False. The operator used to concatenate two strings is the % operator. Answer:

False.

6. True or False. The InputBox() function will always return a text value, even if the user

entered nothing when prompted. Answer: False.

7. True or False: Static variables will retain their values even after the procedure where they

were declared has terminated. Answer: True.

8. The ____ method is used to convert or “cast” a Date variable into a String. Answer:

Date.TryParse.

111

F. Learning Objective 3: Code and test a program that uses one or more decisions.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapters 4 (“The Selection Structure”) and 5 (“More

on the Selection Structure”). They will also review the written lecture, “Conditional Statements,

Comparison & Logical Operators.” Focus is on the concepts of decision statements, Boolean

logic, and input validation.

Students will watch a series of short videos that demonstrate these topics: (1) IF statement, (2)

Select-Case statement, (3) accepting input, (4) validating string values, (5) validating numeric

values, (6) multiple validations, (7) using Radioboxes and Checkboxes, and (8) using Listboxes.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

decision statements, Boolean logic, and input validation. The instructor challenges the student in

open class discussion through alternative or novel coding techniques.

CA Strategy - Modeling: Using the “The Social Burger,” program, the instructor facilitates a

videoconference session to demonstrate how to design and write decision statements, use

Boolean logic, and validate user’s input. This program is a menu-taking program for a small

restaurant, with multiple decisions necessary to implement the needed logic.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on decision statements, Boolean logic, and input validation.

Assessments

Individual Lab Exercise: “Drive-In Income Calculator” program. The program requires input of

the type of night (Regular / Car), number of tickets sold, numbers of cars admitted, number of

candy sold, and number of popcorn sold, and computes and displays the income generated in a

ListBox object. Students are required to analyze, design, and implement the program. The

grading rubric is as follows:

112

1. Drive-In Revenue

Correct operation 20%

Validation of user's input 25%

Handling of data type conversions 20%

Overall form design 10%

Option Strict On set 10%

Internal program documentation 10%

Clean code. 5%

2. Other issues

N/A

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection / Solution Analysis Essay (CA Strategy – Articulation). Students are required

to submit a short essay at the end of the week that analyzes the standard solution to the previous

week’s programming problem (posted by the instructor together with the previous week’s

feedback) explaining how the lab exercise was approached and what specific coding techniques

were used and why. The student also compares their own coding techniques with that standard

solution and explains the differences.

Final Exam. Questions that assess the student’s ability to design and write decision statements,

use Boolean logic, and validate user’s input are included in the final exam given at the end of the

semester. The exam includes multiple-choice questions and “essay”-type questions where some

code has to be written. Examples include (Zak, 2014):

4. True or False: It is not possible to specify the icon that the MessageBox.Show() method

will display to the user. Answer: False.

5. In a Select-Case statement over variable intCode which of the following Case clauses are

valid? Case Is > 7; Case 3, 5; Case 1 To 4; All of them. Answer: All of them.

6. Let’s suppose that the Text property of the txtPrice textbox contains the value 75, what

value will the Double.TryParse(txtPrice.Text, dblPrice) method return? False; True; 75;

75.0; 75.00; None of them. Answer: True.

113

G. Learning Objective 4: Code and test a program that requires iteration.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 6 (“The Repetition Structure”). They will

also review the written lecture, “Loops.” Focus is on the concept of iteration statements.

Students will watch a series of short videos that demonstrate these topics: (1) loop statements, (2)

Do-Loop statement, (3) For-Next statement, (4) InputBox() function, (5) using loops in

validation – string, and (6) using loops in validation – numeric.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

iteration statements. The instructor challenges the student in open class discussion through

alternative or novel coding techniques.

CA Strategy - Modeling: Using the “Lifetime Earnings,” program, the instructor facilitates a

videoconference session to demonstrate how to design and use iteration statements. In this

program the user inputs the name, current age, retirement age, current salary, and expected

annual raise and the program computes and displays the salary at retirement and the accumulated

lifetime earnings.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on iteration statements.

Assessments

Individual Lab Exercise: “Hockey Statistics” program. The user supplies the name and number

of seasons played for a hockey player. And then the Goals and Assists for each season played.

Input must be done through an InputBox() function. The total Goals, Assists, and Points are then

computed and displayed. Students are required to analyze, design, and implement the program.

The grading rubric is as follows:

114

1. Hockey Statistics

Correct operation 20%

Validation of user's input (w/loops) 30%

Handling of data type conversions 20%

Overall form design 5%

Option Strict On set 10%

Internal program documentation 10%

Clean code. 5%

2. Other issues

N/A

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection / Solution Analysis Essay (CA Strategy – Articulation). Students are required

to submit a short essay at the end of the week that analyzes the standard solution to the previous

week’s programming problem (posted by the instructor together with the previous week’s

feedback) explaining how the lab exercise was approached and what specific coding techniques

were used and why. The student also compares their own coding techniques with that standard

solution and explains the differences.

Final Exam. Questions that assess the student’s ability to design and use iteration statements are

included in the final exam given at the end of the semester. The exam includes multiple-choice

questions and “essay”-type questions where some code has to be written. Examples include (Zak,

2014):

5. True or False: We cannot nest a loop within other types of structures, such as If-Then-

Else statements. Answer: False.

6. When considering nested loops, the (inner/outer) _______ loop will typically be

processed less times than the (inner/outer) _______ loop. Answer: Outer, inner.

7. To immediately stop a Do-Loop we would use the ___________ statement. Answer: Exit

Do.

8. The ________ listbox property has the position of the item that is currently selected in

the listbox. Answer: SelectedIndex.

115

H. Learning Objective 5: Code and test a program that uses modular design and

implements one or more modules that obtains data passed to it through its parameter list.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 7 (“Sub and Function Procedures”). They

will also review the written lecture, “Modularization.” Focus is on the concept of modularization.

Students will watch a series of short videos that demonstrate these topics: (1) modularization –

invocation, (2) modularization - data transfer, (3) Sub procedures, and (4) Function procedures.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

modularization. The instructor challenges the student in open class discussion through alternative

or novel coding techniques.

CA Strategy - Modeling: Using the “Lifetime Earnings,” program, the instructor facilitates a

videoconference session to demonstrate how to take a non-modularized program (from a

previous week) and modularize it. The Functions implemented are ValidateString(),

ValidateInteger, and ValidateDouble(), plus the Sub ComputeResults(), with both ByVal and

ByRef parameters.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on modularization.

Assessments

Individual Lab Exercise: “Hockey Statistics” program. Same program developed in a previous

week but modularized. Students are required to use at least one Function and one Sub modules,

and to pass data in both ByVal and ByRef. Students are required to analyze, design, and

implement the program. The grading rubric is as follows:

116

1. Hockey Player Statistics

Correct operation 10%

Validation of user's input 10%

Handling of data type conversions 10%

Correct modularization 50%

Overall form design 5%

Option Strict On set 5%

Internal program documentation 5%

Clean code. 5%

2. Other issues

N/A

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection / Solution Analysis Essay (CA Strategy – Articulation). Students are required

to submit a short essay at the end of the week that analyzes the standard solution to the previous

week’s programming problem (posted by the instructor together with the previous week’s

feedback) explaining how the lab exercise was approached and what specific coding techniques

were used and why. The student also compares their own coding techniques with that standard

solution and explains the differences.

Final Exam. Questions that assess the student’s ability to modularize a program are included in

the final exam given at the end of the semester. The exam includes multiple-choice questions and

“essay”-type questions where some code has to be written. Examples include (Zak, 2014):

4. True or False. The ByVal parameters of a procedure have module scope and are

destroyed when the procedure ends. Answer: True.

5. True or False. The following module invocation cannot invoke a ByRef parameter: Call

ComputeSalary (1500.25). Answer: True.

6. If you are writing a Function procedure and you want to return the value of variable

dblSalary, what statement do you use? Answer: Return dblSalary.

117

I. Learning Objective 6: Code and test a program that implements arrays.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 9 (“Arrays”). They will also review the

written lecture, “Arrays.” Focus is on the concept of arrays.

Students will watch a series of short videos that demonstrate these topics: (1) declaring arrays,

(2) updating arrays, (3) two-dimensional arrays, (4) parallel arrays, and (5) processing Arrays

(computing an average.)

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

arrays. The instructor challenges the student in open class discussion through alternative or novel

coding techniques.

CA Strategy - Modeling: Using the “Grade Average Calculator,” program, the instructor

facilitates a videoconference session to demonstrate how to declare and use arrays. This program

allows the user to supply up to 30 grades in a course’s assignments and the program displays all

of them in a Listbox and computes the average for the course. Arrays must be used to store the

data.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on arrays.

Assessments

Individual Lab Exercise: “Building Rents” program. The user enters the basic data for a building

(name and number of floors) and then supplies the rents for all floors. Finally, the user chooses

one of the floors and displays the corresponding rent. Students are required to analyze, design,

and implement the program. The grading rubric is as follows:

118

1. Building Rents

Correct operation 15%

Validation of user's input 15%

Handling of data type conversions 10%

Correct use of arrays 35%

Overall form design 5%

Option Strict On set 5%

Internal program documentation 10%

Clean code. 5%

2. Other issues

N/A

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection / Solution Analysis Essay (CA Strategy – Articulation). Students are required

to submit a short essay at the end of the week that analyzes the standard solution to the previous

week’s programming problem (posted by the instructor together with the previous week’s

feedback) explaining how the lab exercise was approached and what specific coding techniques

were used and why. The student also compares their own coding techniques with that standard

solution and explains the differences.

Final Exam. Questions that assess the student’s ability to declare and use arrays are included in

the final exam given at the end of the semester. The exam includes multiple-choice questions and

“essay”-type questions where some code has to be written. Examples include (Zak, 2014):

4. In a set of two parallel arrays, how are the values in one array related to the other array’s

values? Answer: By their index position in the array.

5. The strStates and strCapitals arrays are parallel arrays. If Florida is stored in the second

element in the strStates array, where is its capital (Tallahassee) stored? Answer:

strCapitals(1).

6. Which of the following statements assigns the string “Florida” to the element located in

the third column, fifth row in the two-dimensional strStates array? strStates(3, 5) =

"Florida "; strStates(5, 3) = "Florida "; strStates(4, 2) = "Florida "; strStates(2, 4) =

"Florida ". Answer: strStates(4, 2) = "Florida ".

119

J. Learning Objective 7: Code and test a program requiring streamed file input / output.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 10 (“Structures and Sequential access Files”).

They will also review the written lecture, “Sequential Files.” Focus is on the concept of

sequential files.

Students will watch a series of short videos that demonstrate these topics: (1) what is a file, (2)

opening and closing files, (3) methods to open a file, (4) reading from a file, (5) writing to a file,

(6) CSV files, and (7) file error handling.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

sequential files. The instructor challenges the student in open class discussion through alternative

or novel coding techniques.

CA Strategy - Modeling: Using the “Lifetime Earnings” program from a previous week, the

instructor facilitates a videoconference session to demonstrate how to add file handling features

to it, saving the data as a CSV file for multiple users and then restoring it from the file for

display into a second form.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on sequential files.

Assessments

Individual Lab Exercise: “Hockey Player” program. This program is the same developed in

previous weeks but expanded to save the data for any number of players. Then a second form is

used to display all sets of data thus saved to the file. Students are required to analyze, design, and

implement the program. Given that this program requires use of all topics covered in the course,

including streamed input/output, this program can be considered a “Final Project”. The grading

rubric is as follows:

120

1. Hockey Player Statistics

Correct operation 5%

Validation of user's input 5%

Handling of data type conversions 5%

Data correctly added to file 20%

"Summary" form / menu well
designed

20%

"Summary" data correctly displayed 25%

"Clear File" operation correctly done 15%

Option Strict On set / Clean code /
Internal program documentation

5%

2. Other issues

N/A

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week.

Learning Reflection / Solution Analysis Essay (CA Strategy – Articulation). Students are required

to submit a short essay at the end of the week that analyzes the standard solution to the previous

week’s programming problem (posted by the instructor together with the previous week’s

feedback) explaining how the lab exercise was approached and what specific coding techniques

were used and why. The student also compares their own coding techniques with that standard

solution and explains the differences.

Final Exam. Questions that assess the student’s ability to use sequential files are included in the

final exam given at the end of the semester. The exam includes multiple-choice questions and

“essay”-type questions where some code has to be written. Examples include (Zak, 2014):

4. The AppendText method creates a _______ object. Answer: StreamWriter.

5. The Peek method returns ________ when the end of the file is reached. Answer: -1.

6. If the file to be opened exists, the ___________ method erases the file’s contents.

Answer: CreateText.

121

Appendix G

Round 3 -- E-mail to Panel of Experts

Dear Dr. Xxx:

Thank you for your participation in Round 2 of the study! I have analyzed all the replies from

the panel and prepared a set of documents for Round 3, attached. The documents include the

following:

1. Document_of_Revisions_Round2ToRound3.docx -- Has a tabular summary of all

changes made to the course design as a result of the Round 2 suggestions.

2. Round3-CS1CourseGuideWithCAStrategies-MarkUp.docx -- Is the exact same document

from Round 2, but showing the “mark-up” of changes: text deleted (sample of text

deleted) and text added / changed (sample of text added / changed).

3. Round3-CS1CourseGuideWithCAStrategies.docx -- Is the complete, Round 3 document

which incorporates all changes suggested.

Following are the instructions for Round 3. Please review the attached documentation and then

respond to the following two questions on the Round 3 questionnaire.

Round 3 Questionnaire: Introduction to Computer Programming / CS1 Course Guide

Review

Instructions: The goal of the study was to construct and validate an Introduction to Computer

Programming / CS1 course that incorporates CA strategies and that is designed for online

delivery. The purpose of the first two rounds was to get your input on how the course needed to

be revised to meet this goal, and as such in this third and final round I would like to obtain

agreement from you and all panel members on the following questions:

To the best of your knowledge:

1. Do you agree that the cognitive apprenticeship strategies as described within the course guide

are appropriate (i.e., the strategies support the type of content that is being taught)?

2. Do you agree that the proposed guide is sufficient for the delivery of the course in an online

environment?

3. If you disagree with 1 and/or 2, please explain what additional revisions to the course guide

are necessary in order to meet these two objectives.

4. Please provide any additional comments or questions you might have.

122

So that the study can be developed in a reasonable amount of time, I would very much appreciate

your reply within one week of receiving this note. If you need more time, I would also very

much appreciate a brief note from you, so I can adjust the timing for the next round of

consultations.

Thanks!

Best regards,

123

Appendix H

Round 3 -- Document of Revisions

Document of Revisions (DoR)

To: Delphi Study Panel Members

Date: 4/14/2014

From: Reinaldo Fernandez

Re: Round 2 To Round 3, Course Guide changes

Following is a summary of the changes made to the Round 2 Course Guide to incorporate the suggestions made by
the panel. The “Number” indicated is included merely as reference, while the “Change Made” details the change

made and incorporated in the Round 3 Course Guide, with the column “Rationale” explaining why the change was

made.

Number Change Made Rationale

1 “Suggested Class Policies”

section added to the introductory

pages.

One panel member opined that --due to the intense pace of the

course-- special care must be dedicated to “at-risk” students

(those who are not doing well in the course.)

Another panel member opined that --also due to the intense pace

of the course-- class discussion should be de-emphasized, so

that more time can be devoted to the programming problems

and the individual forum discussions with the instructor.

2 “Suggested Class Procedures”

section added to the introductory

pages.

Following the advice of a panel member, it should be clarified

that the rubrics included in the Course Design document should

be posted in the classroom. In addition, it should also be

clarified that the test question samples included in the Course
Design document should not be included in the classroom.

3 “Specific instances of Cognitive

Apprenticeship implementation”

section added to the introductory

pages.

Clarifies how each of the six elements of which Cognitive

Apprenticeship is composed is mapped to course design

features.

4 Graded learning reflection /

solution analysis essay

eliminated.

Several panel members thought that the academic load as

originally conceived in the design is too high, particularly for a

short-duration course such as this one. Eliminating the graded

learning reflection essay --but emphasizing in its place the

individual discussions between student and instructor-- allows

retaining all elements of cognitive apprenticeship while

reducing some of the academic load.

5 Individual Forum Programming

Problem discussion Individual

Forum Programming Problem

discussion expanded.

The scope and description of this forum was expanded to cover

the reflection note required at the end of the week.

124

Number Change Made Rationale

6 Points in the Course Summary

were adjusted.

The points for each assessment were modified so as to comply

with the material eliminated.

7 Grading rubrics expanded. The grading rubrics were expanded so they could be more

useful to students.

8 Minor changes. Clarification of minor items and correction of obscure passages,

as follows:

7. The description of the individual exercises was clarified.

8. Clarification that the important topic of debugging (LO 1.3)

is covered.

125

Appendix I

Round 3 -- Computer Science 1 Course Guide with CA Strategies

Course Title: Introduction to Computer Programming / CS1 (“ICP/CS1” for short.)

Delivery Method: Online

Target Audience: The target audience is the adult, online student, with no previous computer

programming experience. The ICP/CS1 course is typically the first professional course taken in

any of the computer-related programs, such as Computer Science, Information Systems, and

Game Design. This course is typically preceded by what is called in the literature a “CS0”

course, where basic algorithms and computer-based problem solving is taught.

Length of Course: The course is designed for an eight-week term, with the last week dedicated

exclusively to the final exam. No new material is covered in the eighth week. The course is

designed to be challenging and fast-paced, with at least one new topic presented in each of the

seven weeks of the course.

Technology/Tools: The course is delivered using several technologies including the following:

9. Learning Management System (LMS): eCollege (Pearson eCollege, 2013) is used to

house course content such as written lectures, programming problems, quizzes, and the

final exam. Online discussions and grading are also contained within the LMS.

10. Videoconferencing System: Adobe Connect (Adobe, 2013). Adobe Connect is used for

the modeling sessions held every week, where the instructor explains how to develop a

program that is conceptually similar to the programming problem that needs to be

completed by students that week.

11. Short Instructional Videos: Jing (TechSmith, 2013). The instructor uses Jing to prepare a

set of about 60 short instructional videos, posted in eCollege, that explain each individual

subtopic in detail, including coding samples in Visual Studio. These videos are available

to students throughout the entire course and can be watched at will when needed.

12. Short Feedback Videos: Jing (TechSmith, 2013). The instructor offers individual

feedback for the weekly programming problems, where the student’s work is briefly

analyzed and commented on. The video is accompanied with a rubric-based written

feedback as well. Before the end of the following week, this feedback should be

discussed with the student privately in the student’s Individual Forum (as noted in

sections “CA Exploration - Individual Forum Programming Problem discussion” below.)

Course Description: ICP/CS1 is an introduction to the fundamentals of imperative computer

programming using one of the programming languages included within Microsoft Visual Studio

2012. Even though one particular language is used throughout the course (Visual Basic in this

particular case), the student will be able to apply the skills learned to any programming language.

126

The approach used is hands-on with various computer programming assignments to reinforce the

application of fundamental concepts. In order to focus on the foundational topics of computer

programming, object-oriented topics are purposely not covered. This course design is

specifically oriented towards the use of Visual Basic as host language.

Required Textbook: Zak, D. (2014). Programming with Microsoft Visual Basic 2012, (6th Ed.).

Boston, MA: Cengage Learning. ISBN-13: 978-1-285-07792-5, ISBN-10: 1-285-07792-X. This

textbook’s author has prepared a collection of short instructional videos closely tied to the

“lessons” covered in each chapter. The use of this set of instructional videos is included with the

purchase of the textbook. This course design is specifically oriented towards one of the versions

of ICP/CS1 (using Visual Basic as host language.)

Required Software: Microsoft Visual Studio 2012 Express Edition. (Any 2012 version will do.

The “Express Edition” is a free download from the Microsoft website.)

Suggested Class Policies: Although these ultimately depend on the institution where the course

will be implemented, there are some policies that are suggested for best results with this course

design:

1. “At-risk” students should be identified early in the class and offered help. The nature of

the topics in this course, which build upon one another, imply that failure in one topic

will cause problems for the student in the next topic, so early detection and help are

recommended. The instructor should keep close tabs on how well students are doing in

the course, particularly with the programming problems, and take action as soon as poor

performance is detected.

2. Class discussions should be de-emphasized, though not eliminated, so that more time can

be devoted to the scaffolding exercises and also to the individual programming problem

discussions with the instructor, both developed within the Individual Forum.

Suggested Class Procedures: The following procedures are suggested for better development of

this course:

1. The rubrics indicated in the sections below should be posted in the classroom, so that

students know with more precision what is expected of them and how the programming

problems will be graded.

2. The sample test questions indicated in the sections below should not be posted in the

classroom, so as to avoid student confusion.

Specific instances of Cognitive Apprenticeship implementation. As described in an attached

document, Cognitive apprenticeship (CA) consists of the following elements (immediately

following each of the elements, it is specified how that particular element is implemented in the

course design, in dark red typography):

14. Modeling. The instructor offers periodic modeling sessions where the instructor

demonstrates the thought processes developed while attempting to solve programming

problems. The objective is not to demonstrate features of the computer language used but

instead, to show students how the instructor would approach the solution to the problem.

Implementation. Instructor-led videoconference session.

127

15. Coaching. The instructor offer specific guidance to the student while working on

exercises so that the correct approach is applied to the solution of the problems, with the

objective of correcting performance deviations as soon as possible.

Implementation. Individual asynchronous exercise sessions.

16. Scaffolding. Based on gradually more difficult exercises, the instructor leads the student

toward ever more complex challenges, until the student reaches the needed learning

objectives. As these exercises progress forward, the instructor’s support is gradually

removed, until at the end of the course practically no support is needed.

Implementation. Individual asynchronous exercise sessions.

17. Articulation. Students must explain to the instructor why a specific approach to a problem

works, so that the thinking process leading to the solution can be analyzed and solidified

in the student’s mind.

Implementation. Individual Forum Programming Problem discussion.

18. Reflection. After each main learning experience, a “reflection” exercise is developed

where the student summarizes what they have learned during the previous period and

how it can be used in practice.

Implementation. Individual Forum Programming Problem discussion.

19. Exploration. Students are encouraged to try out new approaches to resolution of the

problems, with the intent of developing independent thought.

Implementation. Discussion forum participation; and also Individual Forum

Programming Problem discussion.

Learning Objectives (LOs)

At the end of this course, the learner will:

15. Use an Integrated Development Environment (IDE) (i.e., Visual Studio) to:

15.1. Create, save, compile, and run a program.

15.2. Design and create a graphical user interface form.

15.3. Debug a program.

16. Code and test a program that uses variables, arithmetic expressions, and built-in methods.

17. Code and test a program that uses one or more decisions.

18. Code and test a program that requires iteration.

19. Code and test a program that uses modular design and implements one or more modules

that obtains data passed to it through its parameter list.

20. Code and test a program that implements arrays.

21. Code and test a program requiring streamed file input / output.

128

Course Summary

The week’s topics, learning objectives, readings, activities, and assessments in the course

can be summarized as follows (points for each assessment indicated, totaling 1000 points) –

NOTE: For Round 3 the points were adjusted so as to reduce the points for the Graded

discussion topics and to reflect the elimination of the Graded learning reflection, so the points

were adjusted as follows: Programming problem (60 points each); Graded discussion topics (10);

Graded exercises (40 points each); and Final Exam (230 points.)

Week, LOs, and

Topics

Readings/Class Preparation Activities/Assignments (points) –

Due date

Week 1

LOs 1.1 and 1.2

Introduction to

Programming

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (60) – Day 7

2. Graded discussion topics (10) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (40)

– Day 5

Week 2

LOs 2

Data Types,

Variables and

Expressions

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (60) – Day 7

2. Graded discussion topics (10) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (40)

– Day 5

Week 3

LOs 3 and 1.3

Decisions and

Debugging

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (60) – Day 7

2. Graded discussion topics (10) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (40)

– Day 5

Week 4

LO 4

Iteration

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (60) – Day 7

2. Graded discussion topics (10) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (40)

– Day 5

Week 5

LO 5

Modularization

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (60) – Day 7

2. Graded discussion topics (10) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (40)

– Day 5

Week 6

LO 6

Arrays

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (60) – Day 7

2. Graded discussion topics (10) –

Day 3 to Day 7

129

Week, LOs, and

Topics

Readings/Class Preparation Activities/Assignments (points) –

Due date

3. Graded exercises (scaffolding) (40)

– Day 5

Week 7

LOs 7

Sequential Files

1. Textbook chapter(s)

2. Written lecture (eCollege)

3. Short videos (Jing)

4. Videoconference (Adobe

Connect)

1. Programming problem (60) – Day 7

2. Graded discussion topics (10) –

Day 3 to Day 7

3. Graded exercises (scaffolding) (40)

– Day 5

Week 8 1. Final Exam (230) – Day 1 to Day 7

130

Instructional Strategies

A. Learning Objective 1.1: Students will use an Integrated Development Environment

(IDE) to create, save, compile, and run a program.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will read Chapter 1 (“An Introduction to Visual Basic”) and

Chapter 2 (“Designing Applications”). They will also review the written lecture, “Problem

Solving with Computers / Introduction to Visual Basic / Form Design.” Focus is on using the

basic functions of the IDE such as create a basic form, create and edit the code, compile and save

a program, test the finished program, and prepare a program for submission.

Students will watch a series of short videos that demonstrate how to create a basic form, create

and edit the code, compile and save a program, test the finished program, and prepare a program

for submission using Visual Studio.

Generative Strategy/Strategies

Discussion Forum Participation: Students will participate in asynchronous discussion forums

that are guided by the instructor. The topic of discussion reinforces the information presented in

the readings, written lecture, and videos. Emphasis will be placed on the use of Visual Studio.

CA Strategy - Modeling: Using a program named “Disappearing Logo,” the instructor facilitates

a videoconference session to demonstrate how to create a basic form, create and edit the code,

compile and save a program, test the finished program, and prepare a program for submission.

The program incorporates a simple graphical interface design with an image and a couple of

buttons.

Assessments

Individual Lab Exercise: “Hello World” program. Students will analyze, design, and implement

a simple salutation-type program to demonstrate proper use of procedures for creating a basic

form, creating and editing the code, compiling and saving a program, testing the finished

program, and preparing a program for submission. Students are also provided a step-by-step

guide for reference. The grading rubric is as follows (shared with the “Grading Card” program

below):

131

 Valuation

Item % 100% 70% 30% 0%

1. Part "A" – Hello
World

Correct building of the

program

10% Program correctly

constructed.

Acceptable

construction but

with some issues.

Unacceptable,

very limited

construction.

Not built.

Correct operation of

the program

10% Operates as

specified.

Operates as

specified except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

2. Part "B" –
Grading card

Correct operation 10% Operates as

specified.

Operates as

specified except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

Overall form design 10% Good design. Too much wasted

space / No form
title.

Poor aesthetics. No form

included.

Appropriate labels for

all form objects

10% Good labels used. Some objects left

unlabeled or with

improper labeling.

Most objects left

unlabeled or with

improper labeling.

No labeling

done.

Correct operation of

“Clear” function

10% “Clear” correctly

implemented.

Only a partial

“Clear” done.

Practically no

objects cleared.

No objects

cleared.

Correct operation of

“Exit” function

10% “Exit” correctly

implemented.

Done but with a

method different

from Close().

- Not included.

Option Strict On set 10% Set. - - Not set.

Internal program

documentation

10% Good program ID

header, module

headers, and in-text

comments.

One of the three

elements missing.

Two of the three

elements missing.

No

documentation

included.

Clean code. 10% Good, easy to read

code.

Acceptable but not

great readability.

Poor readability. No code

included.

TOTAL 100%

General Discussion Forums. A minimum number of substantive posts over different days are

required each week, according to the each particular institution’s class participation policy.

Final Exam. Questions that assess the student’s ability to create, save, compile, and run a

program are included in the final exam given at the end of the semester. The exam includes

multiple-choice questions and “essay”-type questions where some code has to be written.

Examples include (Zak, 2014):

9. What is the name of the container in our IDE that contains all files and projects for a

complete application? Answer: Solution.

10. True or False: Each object in VB has certain parameters that specify its behavior and

appearance. Answer: True.

11. True or False: It is feasible to sort the contents of the Properties window in either

alphabetic of numeric order. Answer: False.

12. The window used to create in Visual Studio the graphical user interface for your program

is called ___________. Answer: Windows Form Designer.

132

B. Learning Objective 1.2: Students will use an Integrated Development Environment

(IDE) to design and create a graphical user interface form and perform basic input and

output.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 2 (“Designing Applications”). They will also

review the written lecture, “Problem Solving with Computers / Introduction to Visual Basic /

Form Design.” Focus is on the concepts of creating a form, naming object in a form, adding

action buttons, displaying text in a label, and clearing text in an object.

Students will watch a series of short videos that demonstrate these topics.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

the use of Visual Studio to design and create a graphical user interface form and perform basic

input and output. The instructor challenges the student in open class discussion through

alternative or novel coding techniques.

CA Strategy - Modeling: Using the “Disappearing Logo,” program, the instructor facilitates a

videoconference session to demonstrate how to design and create a graphical user interface form.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on form design issues, use of various form objects, and event

handling.

Assessments

Individual Lab Exercise: “Grading Card” program. Point ranges for each of the letter grades (A,

B, C, etc.) are displayed when the user clicks on the appropriate button. “Clear” and “Exit”

buttons are also included. Students are required to analyze, design, and implement the program.

The grading rubric is as follows (shared with the “Hello World” program above):

133

 Valuation

Item % 100% 70% 30% 0%

1. Part "A" – Hello
World

Correct building of the

program

10% Program correctly

constructed.

Acceptable

construction but

with some issues.

Unacceptable,

very limited

construction.

Not built.

Correct operation of

the program

10% Operates as

specified.

Operates as

specified except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

2. Part "B" –
Grading card

Correct operation 10% Operates as

specified.

Operates as

specified except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

Overall form design 10% Good design. Too much wasted

space / No form
title.

Poor aesthetics. No form

included.

Appropriate labels for

all form objects

10% Good labels used. Some objects left

unlabeled or with

improper labeling.

Most objects left

unlabeled or with

improper labeling.

No labeling

done.

Correct operation of

“Clear” function

10% “Clear” correctly

implemented.

Only a partial

“Clear” done.

Practically no

objects cleared.

No objects

cleared.

Correct operation of

“Exit” function

10% “Exit” correctly

implemented.

Done but with a

method different

from Close().

- Not included.

Option Strict On set 10% Set. - - Not set.

Internal program

documentation

10% Good program ID

header, module

headers, and in-text

comments.

One of the three

elements missing.

Two of the three

elements missing.

No

documentation

included.

Clean code. 10% Good, easy to read

code.

Acceptable but not

great readability.

Poor readability. No code

included.

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded program problem developed. Frank

but constructive feedback is provided and the student is encouraged to continue dialogue with the

instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week, according to the each particular institution’s class participation policy.

Final Exam. Questions that assess the student’s ability to create a form, name objects in a form,

add action buttons, display text in a label, and clear text in an object are included in the final

exam given at the end of the semester. The exam includes multiple-choice questions and

“essay”-type questions where some code has to be written. Examples include (Zak, 2014):

9. The _______ property of the form sets where on the screen it will be displayed when

the program is executed. Answer: StartPosition.

134

10. Which window in the IDE is used to obtain the form objects that we need to place in

the form at design time? Answer: Toolbox.

11. The window in the IDE that displays syntax error messages after compilation is called

____. Answer: Error List.

12. What is the correct method to execute so that a VB form is closed normally? Answer:

Me.Close().

135

C. Learning Objective 1.3: Students will use an Integrated Development Environment

(IDE) to debug a program.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Appendix “A” in the textbook (“Finding and Fixing

Program Errors”). They will also review the written lecture, “Debugging in Visual Studio.”

Focus is on the three types of programming errors (syntax, logic, and runtime), how to discover

each type of error, and how to use the IDE’s debugging tools to discover logic errors. This topic

of debugging is also covered in other weeks, as the need arises during the modeling sessions or

class discussions.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion are the types of

programming errors, how to discover them, and the use of the Visual Studio’s debugging tool.

CA Strategy - Modeling: Using as basis the “Social Burger,” program, the instructor facilitates a

videoconference session to demonstrate how to identify the three types of programming errors

and also how to use the IDE’s debugging tools to discover logic errors. The “Social Burger”

program is a menu-taking program for a small restaurant, with multiple decisions necessary to

implement the needed logic.

Assessments

General Discussion Forums. A minimum number of substantive posts over different days are

required each week, according to the each particular institution’s class participation policy.

Final Exam. Questions that assess the student’s ability to identify, detect, and correct the three

types of programming errors are included in the final exam given at the end of the semester. The

exam includes multiple-choice questions and “essay”-type questions where some code has to be

written. Examples include (Zak, 2014):

9. When using the Step Into tool within the debugger, it is only the variables and properties

named in the highlighted line the ones that you can see the values of, right? Answer:

False.

10. Which debugging tool is used in order to stop execution of the program and cede control

to the Debugger? Answer: The breakpoint tool.

11. Let’s suppose that intTotalScore has a value of 200 and that intTests has a value of zero.

The statement dblAvg = intTotalScore / intTests will ________ . Answer: Result in a

runtime error.

12. Let’s suppose that intTotalScore has a value of zero and that intTests has a value of 10.

The statement dblAvg = intTotalScore / intTests will ________. Answer: Assign zero to

the dblAvg variable.

136

E. Learning Objective 2: Code and test a program that uses variables, arithmetic

expressions, and built-in methods.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 3 (“Using Variables and Constants”). They

will also review the written lecture, “Basic Data Types and Variables.” Focus is on the concepts

of data types, variables, conversion of data types, expressions, and numerical operators.

Students will watch a series of short videos that demonstrate these topics: (1) variables, (2)

accepting input, (3) expressions, (4) DateDiff() function, (5) internal program documentation,

and (6) MessageBox.Show() method.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

data types, variables, conversion of data types, expressions, and numerical operators. The

instructor challenges the student in open class discussion through alternative or novel coding

techniques.

CA Exploration and Reflection- Individual Forum Programming Problem discussion: Each

student will participate in asynchronous discussion in private with the instructor, discussing the

previous week’s programming problem and the instructor’s grading of it. The student’s coding

and design choices are analyzed and compared with the instructor’s own suggested solution. The

objective is to perform a critical evaluation of any issue that may have been incurred and explore

alternative options. The student is tasked with closing the week’s discussions with a note where

the student summarizes what they have learned during the previous period and how it can be

used in practice.

CA Strategy - Modeling: Using the “Grade Average Calculator,” program, the instructor facilitates a

videoconference session to demonstrate how to use data types, variables, conversion of data

types, expressions, and numerical operators. This program requires the acceptance and validation

of three grades and then the average is calculated and displayed.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on data types, variables, conversion of data types, expressions, and

numerical operators.

Assessments

Individual Lab Exercises: (1) “Dates to Graduation” program. The user supplies name and major

plus a graduation date (selected with a DateTimePicker) and the program computes and displays

the days remaining until graduation in a small dialog box in the center of the screen. (2) “Area

137

and Volume Calculator” program: The user supplies the length of a square plot, the radius of a

circle, or the radius of a sphere, and the program computes its area or volume, displaying the

results. The complete program must be analyzed, designed, and implemented. Students are

required to analyze, design, and implement both programs. The grading rubric is as follows:

138

 Valuation

Item % 100% 70% 30% 0%

1. Part "A" - Graduation

Date

Correct operation 20% Operates as

specified.

Operates as

specified

except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

Handling of data type

conversions

10% All data types are

converted when

needed.

Only some data

types are

converted but

not all.

Nearly no data

type conversions.

No data type

conversions at

all.

Overall form design 3% Good design. Too much

wasted space /

No form title.

Poor aesthetics. No form

included.

Option Strict On set 3% Set. - - Not set.

Internal program

documentation

3% Good program ID

header, module

headers, in-text

comments.

One of the

three elements

missing.

Two of the three

elements missing.

No

documentation

included.

Clean code. 3% Good, easy to read

code.

Acceptable but

not great

readability.

Poor readability. No code

included.

2. Part "B" - Area / Volume

Calculator

Correct operation 20% Operates as

specified.

Operates as

specified
except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

Validation of user's input 10% Good validation

used, such as with

TryParse() method.

Acceptable

validation but

not too

complete.

Poor validation

that causes

runtime or other

errors if the user

enters invalid

data.

No validation at

all.

Handling of data type

conversions

10% All data types are

converted when

needed.

Only some data

types are

converted but

not all.

Nearly no data

type conversions.

No data type

conversions at

all.

Overall form design 3% Good design. Too much

wasted space /
No form title.

Poor aesthetics. No form

included.

Option Strict On set 3% Set. - - Not set.

Internal program

documentation

3% Good program ID

header, module

headers, and in-text

comments.

One of the

three elements

missing.

Two of the three

elements missing.

No

documentation

included.

Clean code. 3% Good, easy to read

code.

Acceptable but

not great
readability.

Poor readability. No code

included.

TOTAL 100%

139

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week, according to the each particular institution’s class participation policy.

Final Exam. Questions that assess the student’s ability to declare data types, declare and use

variables, convert data types, create expressions, and use numerical operators are included in the

final exam given at the end of the semester. The exam includes multiple-choice questions and

“essay”-type questions where some code has to be written. Examples include (Zak, 2014):

9. True or False. The operator used to concatenate two strings is the % operator. Answer:

False.

10. True or False. The InputBox() function will always return a text value, even if the user

entered nothing when prompted. Answer: False.

11. True or False: Static variables will retain their values even after the procedure where they

were declared has terminated. Answer: True.

12. The ____ method is used to convert or “cast” a Date variable into a String. Answer:

Date.TryParse.

140

F. Learning Objective 3: Code and test a program that uses one or more decisions.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapters 4 (“The Selection Structure”) and 5 (“More

on the Selection Structure”). They will also review the written lecture, “Conditional Statements,

Comparison & Logical Operators.” Focus is on the concepts of decision statements, Boolean

logic, and input validation.

Students will watch a series of short videos that demonstrate these topics: (1) IF statement, (2)

Select-Case statement, (3) accepting input, (4) validating string values, (5) validating numeric

values, (6) multiple validations, (7) using Radioboxes and Checkboxes, and (8) using Listboxes.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

decision statements, Boolean logic, and input validation. The instructor challenges the student in

open class discussion through alternative or novel coding techniques.

CA Exploration and Reflection- Individual Forum Programming Problem discussion: Each

student will participate in asynchronous discussion in private with the instructor, discussing the

previous week’s programming problem and the instructor’s grading of it. The student’s coding

and design choices are analyzed and compared with the instructor’s own suggested solution. The

objective is to perform a critical evaluation of any issue that may have been incurred and explore

alternative options. The student is tasked with closing the week’s discussions with a note where

the student summarizes what they have learned during the previous period and how it can be

used in practice.

CA Strategy - Modeling: Using the “The Social Burger,” program, the instructor facilitates a

videoconference session to demonstrate how to design and write decision statements, use

Boolean logic, and validate user’s input. This program is a menu-taking program for a small

restaurant, with multiple decisions necessary to implement the needed logic.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on decision statements, Boolean logic, and input validation.

Assessments

Individual Lab Exercise: “Drive-In Income Calculator” program. The program requires input of

the type of night (Regular / Car), number of tickets sold, numbers of cars admitted, number of

candy sold, and number of popcorn sold, and computes and displays the income generated in a

ListBox object. Students are required to analyze, design, and implement the program. The

grading rubric is as follows:

141

 Valuation

Item % 100% 70% 30% 0%

1. Drive-In Income

Calculator

Correct operation 20% Operates as

specified.

Operates as

specified except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

Validation of user's

input

25% Good validation

used, checking (1)

Entry; (2) Data type:

and (3) Range.

Acceptable

validation but not

too complete.

Poor validation

that causes

runtime or other

errors if the user

enters invalid

data.

No validation of

any kind made.

Handling of data type

conversions

20% All data types are

converted when

needed.

Only some data

types are converted

but not all.

Nearly no data

type conversions.

No data type

conversions at

all.

Overall form design 10% Good design. Too much wasted

space / No form
title.

Poor aesthetics. No form

included.

Option Strict On set 10% Set. - - Not set.

Internal program

documentation

10% Good program ID

header, module

headers, and in-text

comments.

One of the three

elements missing.

Two of the three

elements missing.

No

documentation

included.

Clean code. 5% Good, easy to read

code.

Acceptable but not

great readability.

Poor readability. No code

included.

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week, according to the each particular institution’s class participation policy.

Final Exam. Questions that assess the student’s ability to design and write decision statements,

use Boolean logic, and validate user’s input are included in the final exam given at the end of the

semester. The exam includes multiple-choice questions and “essay”-type questions where some

code has to be written. Examples include (Zak, 2014):

7. True or False: It is not possible to specify the icon that the MessageBox.Show() method

will display to the user. Answer: False.

8. In a Select-Case statement over variable intCode which of the following Case clauses are

valid? Case Is > 7; Case 3, 5; Case 1 To 4; All of them. Answer: All of them.

9. Let’s suppose that the Text property of the txtPrice textbox contains the value 75, what

value will the Double.TryParse(txtPrice.Text, dblPrice) method return? False; True; 75;

75.0; 75.00; None of them. Answer: True.

142

G. Learning Objective 4: Code and test a program that requires iteration.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 6 (“The Repetition Structure”). They will

also review the written lecture, “Loops.” Focus is on the concept of iteration statements.

Students will watch a series of short videos that demonstrate these topics: (1) loop statements, (2)

Do-Loop statement, (3) For-Next statement, (4) InputBox() function, (5) using loops in

validation – string, and (6) using loops in validation – numeric.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

iteration statements. The instructor challenges the student in open class discussion through

alternative or novel coding techniques.

CA Exploration and Reflection- Individual Forum Programming Problem discussion: Each

student will participate in asynchronous discussion in private with the instructor, discussing the

previous week’s programming problem and the instructor’s grading of it. The student’s coding

and design choices are analyzed and compared with the instructor’s own suggested solution. The

objective is to perform a critical evaluation of any issue that may have been incurred and explore

alternative options. The student is tasked with closing the week’s discussions with a note where

the student summarizes what they have learned during the previous period and how it can be

used in practice.

CA Strategy - Modeling: Using the “Lifetime Earnings,” program, the instructor facilitates a

videoconference session to demonstrate how to design and use iteration statements. In this

program the user inputs the name, current age, retirement age, current salary, and expected

annual raise and the program computes and displays the salary at retirement and the accumulated

lifetime earnings.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on iteration statements.

Assessments

Individual Lab Exercise: “Hockey Statistics” program. The user supplies the name and number

of seasons played for a hockey player. And then the Goals and Assists for each season played.

Input must be done through an InputBox() function. The total Goals, Assists, and Points are then

computed and displayed. Students are required to analyze, design, and implement the program.

The grading rubric is as follows:

143

 Valuation

Item % 100% 70% 30% 0%

1. Hockey Statistics

Correct operation 20% Operates as

specified.

Operates as

specified except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

Validation of user's

input (with loops.)

30% Good validation

used, checking (1)

Entry; (2) Data type:

and (3) Range.

Correct use of loops.

Acceptable

validation but not

too complete or

incorrect use of

loops.

Acceptable

validation nut

without using

loops at all.

No validation of

any kind made.

Handling of data type

conversions

20% All data types are

converted when

needed.

Only some data

types are converted

but not all.

Nearly no data

type conversions.

No data type

conversions at

all.

Overall form design 5% Good design. Too much wasted

space / No form

title.

Poor aesthetics. No form

included.

Option Strict On set 10% Set. - - Not set.

Internal program

documentation

10% Good program ID

header, module

headers, and in-text

comments.

One of the three

elements missing.

Two of the three

elements missing.

No

documentation

included.

Clean code. 5% Good, easy to read

code.

Acceptable but not

great readability.

Poor readability. No code

included.

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week, according to the each particular institution’s class participation policy.

Final Exam. Questions that assess the student’s ability to design and use iteration statements are

included in the final exam given at the end of the semester. The exam includes multiple-choice

questions and “essay”-type questions where some code has to be written. Examples include (Zak,

2014):

9. True or False: We cannot nest a loop within other types of structures, such as If-Then-

Else statements. Answer: False.

10. When considering nested loops, the (inner/outer) _______ loop will typically be

processed less times than the (inner/outer) _______ loop. Answer: Outer, inner.

11. To immediately stop a Do-Loop we would use the ___________ statement. Answer: Exit

Do.

12. The ________ listbox property has the position of the item that is currently selected in

the listbox. Answer: SelectedIndex.

144

H. Learning Objective 5: Code and test a program that uses modular design and

implements one or more modules that obtains data passed to it through its parameter list.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 7 (“Sub and Function Procedures”). They

will also review the written lecture, “Modularization.” Focus is on the concept of modularization.

Students will watch a series of short videos that demonstrate these topics: (1) modularization –

invocation, (2) modularization - data transfer, (3) Sub procedures, and (4) Function procedures.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

modularization. The instructor challenges the student in open class discussion through alternative

or novel coding techniques.

CA Exploration and Reflection- Individual Forum Programming Problem discussion: Each

student will participate in asynchronous discussion in private with the instructor, discussing the

previous week’s programming problem and the instructor’s grading of it. The student’s coding

and design choices are analyzed and compared with the instructor’s own suggested solution. The

objective is to perform a critical evaluation of any issue that may have been incurred and explore

alternative options. The student is tasked with closing the week’s discussions with a note where

the student summarizes what they have learned during the previous period and how it can be

used in practice.

CA Strategy - Modeling: Using the “Lifetime Earnings,” program, the instructor facilitates a

videoconference session to demonstrate how to take a non-modularized program (from a

previous week) and modularize it. The Functions implemented are ValidateString(),

ValidateInteger, and ValidateDouble(), plus the Sub ComputeResults(), with both ByVal and

ByRef parameters.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on modularization.

Assessments

Individual Lab Exercise: “Hockey Statistics” program. Same program developed in a previous

week but modularized. Students are required to use at least one Function and one Sub modules,

and to pass data in both ByVal and ByRef. Students are required to analyze, design, and

implement the program. The grading rubric is as follows:

145

 Valuation

Item % 100% 70% 30% 0%

1. Hockey Statistics

Correct operation 10% Operates as

specified.

Operates as

specified except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

Validation of user's

input

10% Good validation

used, checking (1)

Entry; (2) Data type:

and (3) Range.

Acceptable

validation but not

too complete.

Poor validation

that causes

runtime or other

errors if the user

enters invalid

data.

No validation of

any kind made.

Handling of data type

conversions

10% All data types are

converted when

needed.

Only some data

types are converted

but not all.

Nearly no data

type conversions.

No data type

conversions at

all.

Correct modularization 50% Correct use of both

Functions and Sub
procedures. Correct

passing of both

ByVal and ByRef

parameters.

Correct use of both

Functions and Sub
procedures but no

ByRef parameters

used.

Limited use of

Functions and / or
Sub procedures.

Limited or non-

existent passing of

parameters.

No

modularization
done.

Overall form design 5% Good design. Too much wasted

space / No form

title.

Poor aesthetics. No form

included.

Option Strict On set 5% Set. - - Not set.

Internal program

documentation

5% Good program ID

header, module

headers, and in-text

comments.

One of the three

elements missing.

Two of the three

elements missing.

No

documentation

included.

Clean code. 5% Good, easy to read

code.

Acceptable but not

great readability.

Poor readability. No code

included.

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week, according to the each particular institution’s class participation policy.

Final Exam. Questions that assess the student’s ability to modularize a program are included in

the final exam given at the end of the semester. The exam includes multiple-choice questions and

“essay”-type questions where some code has to be written. Examples include (Zak, 2014):

7. True or False. The ByVal parameters of a procedure have module scope and are

destroyed when the procedure ends. Answer: True.

8. True or False. The following module invocation cannot invoke a ByRef parameter: Call

ComputeSalary (1500.25). Answer: True.

9. If you are writing a Function procedure and you want to return the value of variable

dblSalary, what statement do you use? Answer: Return dblSalary.

146

I. Learning Objective 6: Code and test a program that implements arrays.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 9 (“Arrays”). They will also review the

written lecture, “Arrays.” Focus is on the concept of arrays.

Students will watch a series of short videos that demonstrate these topics: (1) declaring arrays,

(2) updating arrays, (3) two-dimensional arrays, (4) parallel arrays, and (5) processing Arrays

(computing an average.)

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

arrays. The instructor challenges the student in open class discussion through alternative or novel

coding techniques.

CA Exploration and Reflection- Individual Forum Programming Problem discussion: Each

student will participate in asynchronous discussion in private with the instructor, discussing the

previous week’s programming problem and the instructor’s grading of it. The student’s coding

and design choices are analyzed and compared with the instructor’s own suggested solution. The

objective is to perform a critical evaluation of any issue that may have been incurred and explore

alternative options. The student is tasked with closing the week’s discussions with a note where

the student summarizes what they have learned during the previous period and how it can be

used in practice.

CA Strategy - Modeling: Using the “Grade Average Calculator,” program, the instructor

facilitates a videoconference session to demonstrate how to declare and use arrays. This program

allows the user to supply up to 30 grades in a course’s assignments and the program displays all

of them in a Listbox and computes the average for the course. Arrays must be used to store the

data.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on arrays.

Assessments

Individual Lab Exercise: “Building Rents” program. The user enters the basic data for a building

(name and number of floors) and then supplies the rents for all floors. Finally, the user chooses

one of the floors and displays the corresponding rent. Students are required to analyze, design,

and implement the program. The grading rubric is as follows:

147

 Valuation

Item % 100% 70% 30% 0%

1. Building Rents

Correct operation 15% Operates as

specified.

Operates as

specified except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

Validation of user's

input

15% Good validation

used, checking (1)

Entry; (2) Data type:

and (3) Range.

Acceptable

validation but not

too complete.

Poor validation

that causes

runtime or other

errors if the user

enters invalid

data.

No validation of

any kind made.

Handling of data type

conversions

10% All data types are

converted when

needed.

Only some data

types are converted

but not all.

Nearly no data

type conversions.

No data type

conversions at

all.

Correct use of arrays 35% Arrays correctly

declared and used.

Acceptable

declaration and use
of arrays but with

issues.

Arrays correctly

declared but not
used.

No arrays used.

Overall form design 5% Good design. Too much wasted

space / No form

title.

Poor aesthetics. No form

included.

Option Strict On set 5% Set. - - Not set.

Internal program

documentation

10% Good program ID

header, module
headers, and in-text

comments.

One of the three

elements missing.

Two of the three

elements missing.

No

documentation
included.

Clean code. 5% Good, easy to read

code.

Acceptable but not

great readability.

Poor readability. No code

included.

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week, according to the each particular institution’s class participation policy.

Final Exam. Questions that assess the student’s ability to declare and use arrays are included in

the final exam given at the end of the semester. The exam includes multiple-choice questions and

“essay”-type questions where some code has to be written. Examples include (Zak, 2014):

7. In a set of two parallel arrays, how are the values in one array related to the other array’s

values? Answer: By their index position in the array.

8. The strStates and strCapitals arrays are parallel arrays. If Florida is stored in the second

element in the strStates array, where is its capital (Tallahassee) stored? Answer:

strCapitals(1).

9. Which of the following statements assigns the string “Florida” to the element located in

the third column, fifth row in the two-dimensional strStates array? strStates(3, 5) =

148

"Florida "; strStates(5, 3) = "Florida "; strStates(4, 2) = "Florida "; strStates(2, 4) =

"Florida ". Answer: strStates(4, 2) = "Florida ".

149

J. Learning Objective 7: Code and test a program requiring streamed file input / output.

Content Type/Performance Level: Concepts/Recall and also Cognitive Procedure/Application

Initial Presentation: Students will review Chapter 10 (“Structures and Sequential access Files”).

They will also review the written lecture, “Sequential Files.” Focus is on the concept of

sequential files.

Students will watch a series of short videos that demonstrate these topics: (1) what is a file, (2)

opening and closing files, (3) methods to open a file, (4) reading from a file, (5) writing to a file,

(6) CSV files, and (7) file error handling.

Generative Strategy/Strategies

CA Exploration - Discussion Forum Participation: Students will participate in asynchronous

discussion forums that are guided by the instructor. The topic of discussion reinforces the

information presented in the readings, written lecture, and videos. Emphasis will be placed on

sequential files. The instructor challenges the student in open class discussion through alternative

or novel coding techniques.

CA Exploration and Reflection- Individual Forum Programming Problem discussion: Each

student will participate in asynchronous discussion in private with the instructor, discussing the

previous week’s programming problem and the instructor’s grading of it. The student’s coding

and design choices are analyzed and compared with the instructor’s own suggested solution. The

objective is to perform a critical evaluation of any issue that may have been incurred and explore

alternative options. The student is tasked with closing the week’s discussions with a note where

the student summarizes what they have learned during the previous period and how it can be

used in practice.

CA Strategy - Modeling: Using the “Lifetime Earnings” program from a previous week, the

instructor facilitates a videoconference session to demonstrate how to add file handling features

to it, saving the data as a CSV file for multiple users and then restoring it from the file for

display into a second form.

CA Strategy - Coaching and Scaffolding: The instructor creates an exercise session using the

asynchronous forum. These sessions are individualized for each student. The instructor posts a

series of exercises focused on sequential files.

Assessments

Individual Lab Exercise: “Hockey Player” program. This program is the same developed in

previous weeks but expanded to save the data for any number of players. Then a second form is

used to display all sets of data thus saved to the file. Students are required to analyze, design, and

implement the program. Given that this program requires use of all topics covered in the course,

including streamed input/output, this program can be considered a “Final Project”. The grading

rubric is as follows:

150

 Valuation

Item % 100% 70% 30% 0%

1. Xxx

Correct operation 5% Operates as

specified.

Operates as

specified except for

some aspects.

Has serious

operational issues.

Program doesn’t

compile.

Validation of user's

input

5% Good validation

used, checking (1)

Entry; (2) Data type:

and (3) Range.

Acceptable

validation but not

too complete.

Poor validation

that causes

runtime or other

errors if the user

enters invalid

data.

No validation of

any kind made.

Handling of data type

conversions

5% All data types are

converted when

needed.

Only some data

types are converted

but not all.

Nearly no data

type conversions.

No data type

conversions at

all.

Data correctly added to

file

20% Data added in an

appropriate format.

Data added but

with an inefficient
or inappropriate

format.

Only pre-

formatted lines of
data added.

No data added to

the file.

"Summary" form /

menu well designed

20% Form and menu

correctly designed.

Acceptable but not

as required design

of form and/or

menu.

Poor form and

menu design.

“Summary” form

not included.

"Summary" data

correctly displayed

25% Data correctly

displayed.

Some data

displayed but not in

a good format. Or

incomplete data

shown.

Only pre-

formatted lines of

data displayed.

“Summary” data

not displayed.

"Clear File" operation

correctly done

15% Operation correctly

implemented.

Form cleared but

not the file.

-

“Clear File”

operation not

done.

Overall form design 1.25% Good design. Too much wasted

space / No form
title.

Poor aesthetics. No form

included.

Option Strict On set 1.25% Set. - - Not set.

Internal program

documentation

1.25% Good program ID

header, module

headers, and in-text

comments.

One of the three

elements missing.

Two of the three

elements missing.

No

documentation

included.

Clean code. 1.25% Good, easy to read

code.

Acceptable but not

great readability.

Poor readability. No code

included.

TOTAL 100%

CA Strategy – Reflection - Feedback on Graded Assignment: A short five-minute video is

prepared with feedback from the instructor for each graded individual lab exercise developed.

Frank but constructive feedback is provided and the student is encouraged to continue dialogue

with the instructor via the individual discussion forum.

General Discussion Forums. A minimum number of substantive posts over different days are

required each week, according to the each particular institution’s class participation policy.

151

Final Exam. Questions that assess the student’s ability to use sequential files are included in the

final exam given at the end of the semester. The exam includes multiple-choice questions and

“essay”-type questions where some code has to be written. Examples include (Zak, 2014):

7. The AppendText method creates a _______ object. Answer: StreamWriter.

8. The Peek method returns ________ when the end of the file is reached. Answer: -1.

9. If the file to be opened exists, the ___________ method erases the file’s contents.

Answer: CreateText.

152

Appendix J

Round 3 -- Final E-mail to Panel of Experts

Dear Dr. Xxx:

Thank you for your participation in the third and final round of the study! I have analyzed all the

replies from the panel and I can report that there was consensus that the course design as

proposed in the final round does comply with the objectives of the internal validation, that is:

1. The cognitive apprenticeship strategies as described within the course guide are appropriate

(i.e., the strategies support the type of content that is being taught.)

2. The proposed guide is sufficient for the delivery of the course in an online environment.

Needless to say, I am immensely grateful for your participation in the study and I very much

appreciate your detailed analysis and suggestions, which have made the course design

significantly better, both as an implementation of cognitive apprenticeship in the online

environment and also with respect to the important parameters of effectiveness, efficiency, and

appeal.

If interested in the actual dissertation report that I will write based on this research, please send

me a note and I will E-mail it to you once it is approved, later this year.

Thanks!

Best regards,

153

Appendix K

Nova Southeastern University Institutional Review Board Approval

154

References

AAUP. (2006). 1940 Statement of Principles on Academic Freedom and Tenure of the American

Association of University Professors, Tenth Ed. [PDF document]. Retrieved from the

AAUP website: http://www.aaup.org/report/1940-statement-principles-academic-

freedom-and-tenure.

ACM. (2001). Computing curricula 2001. Journal on Educational Resources in Computing, 1(3).

Adobe. (2013). Adobe Connect [computer software]. San Jose, CA.

Allan, V. & Kolesar, M. (1997). Teaching computer science: a problem solving approach that

works. ACM SIGCUE Outlook, 25(1-2), 2-10.

Allen, I. & Seaman, J. (2014). Grade Change: Tracking Online Education in the United States,

2013. Retrieved from http://sloanconsortium.org/publications/survey/grade-change-2013.

Ambrosio, A., Moreira, F., Almeida, L., Franco, A., & Macedo, J. (2011). Identifying cognitive

abilities to improve CS1 outcome. Proceedings of the 41st ASEE/IEEE Frontiers in

Education Conference. Rapid City, SD, F3G1-F3G7.

Austing, R., Barnes, B., Bonnette, D., Engel, G., & Stokes, G. (1979). Curriculum ’78:

recommendations for the undergraduate program in computer science -- a report of the

ACM curriculum committee on computer science. Communications of the ACM, 22(3).

Barg, M., Fekete, A., Greening, T., Hollands, O., Kay, J., & Kingston, J. (2000). Problem-Based

learning for foundation computer science courses. Computer Science Education, 10(2),

109-128.

Barker, L.J., McDowell, C., and Kalahar, K. (2009). Exploring Factors that Influence Computer

Science Introductory Course Students to Persist in the Major. Proceedings of the 40th

SIGCSE Technical Symposium on Computer Science Education. Chattanooga, Tennessee,

March 2009.

Barnes, T., Richter, H., Powell, E., Chaffin, A., & Godwin, A. (2007). Game2Learn: building

CS1 learning games for retention. Proceedings of the 12th Annual SIGCSE Conference

on Innovation and Technology in Computer Science Education. Dundee, Scotland, 121-

125.

Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA: Addison-

Wesley.

Beier, M., Miller, L., & Wang, S. (2012). Science games and the development of scientific

possible selves. Cultural Studies of Science Education, 7(4), 963-978.

http://www.aaup.org/report/1940-statement-principles-academic-freedom-and-tenure
http://www.aaup.org/report/1940-statement-principles-academic-freedom-and-tenure

155

Bennedsen, J. & Caspersen, M. (2005). Revealing the programming process. Proceedings of the

36th SIGCSE Technical Symposium on Computer Science Education, 186-190.

Bennedsen, J. & Caspersen, M. (2007). Failure rates in introductory programming. ACM

SIGCSE Bulletin, 39(2), 32-36.

Bowles, K. (1978). A CS1 course based on stand-alone microcomputers. Proceedings of the

1978 SIGCSE Technical Symposium on Computer Science Education, 125-127.

Bransford, J. D., & Stein, B. S. (1993). The IDEAL problem solver: A guide for improving

thinking, learning, and creativity (2nd ed.) New York: W. H. Freeman and Company.

Brown, J., Collins, A. and Duguid, P. (1989) Situated cognition and the culture of learning,

Educational Researcher, 18(1), 32–42.

Camtasia. (2013). Camtasia Studio [Computer software]. Okemos, MI: TechSmith, Corp.

Retrieved March 16, 2013, from http://www.techsmith.com/.

Carlisle, M., Wilson, T., Humphries, J., & Hadfield, S. (2004). Raptor: Introducing programming

to non-majors with flowcharts. Journal of Computing Sciences in Colleges, 19(4), 52-60.

Collins, A., Brown, J., & Newman, S. (1989). Cognitive apprenticeship: Teaching the craft of

reading, writing and mathematics. In Knowing, Learning and Instruction: Essays in

honor of Robert Glaser. Hillside.

Collins, A., J. Brown, & A. Holum. (1991). Cognitive apprenticeship: Making thinking visible.

American Educator, 15 (3): 6-41.

Cooper, S., Dann, W., Pausch, R. (2000). Alice: a 3-D tool for introductory programming

concepts. Proceedings of the fifth annual CCSC northeastern conference on the Journal

of Computing in Small Colleges (CCSC '00), 107-116.

Costelloe, E., Sherry, E., & Magee, P. (2009) Experiences Gained Using a Set of SCORM

Compliant Reusable Learning Objects for Teaching Programming. International Journal

on E-Learning, 8(2), 175-191.

Dalkey, N. & Helmer, O. (1963). An experimental application of the Delphi method to the use of

experts. Management Science, 9(3), 458-467.

Dasarathy, B., Sullivan, K., Schmidt, D. C., Fisher, D. H., & Porter, A. (2014). The past, present,

and future of MOOCs and their relevance to software engineering. Proceedings of the

36th International Conference on Software Engineering, 212-224.

156

Demetriadis, S., Papadopoulos, P., Stamelos, I., & Fischer, F. (2008). The effect of scaffolding

students’ context-generating cognitive activity in technology-enhanced case-based

learning. Computers & Education, 51(2), 939-954.

Dierbach, C., Taylor, B., Zhou, H., & Zimand, I. (2005). Experiences with a CS0 course targeted

for CS1 success. Proceedings of the 36th SIGCSE Technical Symposium on Computer

Science Education, 317-320.

Doering, A. & Veletsianos, G. (2008). What lies beyond effectiveness and efficiency?

Adventure learning design. Internet and Higher Education, 11(3-4), 137-144.

Fjuk, A., Berge, O., Bennedsen, J., & Caspersen, M. E. (2004). Learning object-orientation

through ICT-mediated apprenticeship. Proceedings of the Fourth IEEE International

Conference on Advanced Learning Technologies (ICALT'04), 380-384.

Foster, A. (2008). Games and motivation to learn science: Personal identity, applicability,

relevance, and meaningfulness. Journal of Interactive Learning Research, 19, 597–614.

Gannon, R., Ley, K., Crawford, C., & Warner, A. (2009). Motivators and inhibitors for

university faculty in distance and e-learning. British Journal of Educational Technology,

40(1), 149–163.

Garcia, H., Sánchez, E., & Acuña, S. R. (2013). Support for self-regulation in learning complex

topics from multimedia explanations: Do learners need extensive or minimal support?

Instructional Science, 41(3), 539-553.

Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic

Books.

Garlick, R. & Cankaya, E. (2010). Using Alice in CS1 – A quantitative experiment. Proceedings

of the 14th annual ACM SIGCSE conference on Innovation and technology in computer

science education (ITiCSE’10), 165-168.

Ge, X., & Land, S. M. (2004). A conceptual framework for scaffolding ill-structured problem-

solving processes using question prompts and peer interactions. Educational Technology

Research and Development, 52(2), 5-22.

Gonzalez, G. (2006). A systematic approach to active and cooperative learning in CS1 and its

effects on CS2. Proceedings of the 37th SIGCSE Technical Symposium on Computer

Science Education, 133-137.

Greening, T. (1998). Scaffolding for success in problem-based learning. Medical Education

Online, 3. Retrieved from http://med-ed-online.net/index.php/meo/issue/view/375

http://med-ed-online.net/index.php/meo/issue/view/375

157

Bouta, H. & Paraskeva, F. (2013). The cognitive apprenticeship theory for the teaching of

mathematics in an online 3D virtual environment. International Journal of Mathematical

Education in Science and Technology, 44(2), 159-178.

Hassinen, M. and Mayra, H. (2006). Learning programming by programming: A case study.

Proceedings of the 6th Baltic Sea conference on computing education research, 117–119.

Herrmann, N., Popyack, J., Char, B., & Zoski, P. (2004). Assessment of a course redesign:

introductory computer programming using online modules. Proceedings of the 35th

SIGCSE Technical Symposium on Computer Science Education, 66-70.

Hughes, J. and Ramanee-Peiris, D. (2006). ASSISTing CS1 students to learn: learning

approaches and object-oriented programming. Proceedings of the 11th Annual SIGCSE

Conference on Innovation and Technology in Computer Science Education, 275-279.

Keijonen, H., Kurhila, J., & Vihavainen, A. (2013). Carry-on effect in extreme apprenticeship.

Proceedings of the IEEE Frontiers in Education Conference, 2013, 1150 - 1155.

Kirschner, P. & Sweller, J. (2006). Why minimal guidance during instruction does not work: An

analysis of the failure of constructivist, discovery, problem-based, experiential, and

inquiry-based teaching. Educational Psychologist, 41(2), 75-86.

Knobelsdorf, M., Kreitz, C., & Bohne, S. (2014). Teaching theoretical computer science using a

cognitive apprenticeship approach. Proceedings of the 45th ACM Technical Symposium

on Computer Science Education, 67-72.

Kumar, D. (2013). The changing, not evolving pedagogy of CS1. ACM Inroads, 4(3), 36-37.

Kuo, F., Hwang, G., Chen, S., & Chen, S. (2012). A cognitive apprenticeship approach to

facilitating web-based collaborative problem solving. Educational Technology & Society,

15(4), 319-331.

Linstone, H. A., & Turoff, M. (Eds.). (1975). The Delphi method. Reading, MA: Addison-

Wesley.

Mayer, R., Mautone, P., & Prothero, W. (2002). Pictorial aids for learning by doing in a

multimedia geology simulation game. Journal of Educational Psychology, 94(1), 171-

185.

Mitroff, I. & Turoff, M. (1975). Philosophical and methodological foundations of Delphi. In The

Delphi method (Chapter 11.B). Reading, MA: Addison-Wesley.

Morey, A. (2004). Globalization and the emergence of for-profit higher education. Higher

Education, 48(1), 131-150.

158

Moritz, S., Wei, F., Parvez, S., & Blank, G. (2005). From objects-first to design-first with

multimedia and intelligent tutoring. Proceedings of the 10th Annual SIGCSE Conference

on Innovation and Technology in Computer Science Education, 99-103.

Morrison, G.R., Ross, S.M., Kalman, H.K. & Kemp, J.E. (2011). Designing Effective Instruction,

(6th Ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.

Mow, I., Wing, K., & Yates, G. (2006). The impact of CABLE on teaching computer

programming. Learning by Effective Utilization of Technologies: Facilitating

Intercultural Understanding, Mizoguchi, R. et al. (Eds.) IOS Press. 55-62.

Neville, A. (2008) Problem-based learning and medical education forty years on: A review of its

effects on knowledge and clinical performance. Medical Principles and Practice, 18(1),

1-9.

Neuman, D. (1995). High school students’ use of databases: results of a national Delphi study.

Journal of the American Society for Information Science, 46(4), 284-298.

Pea, R. (2004). The social and technological dimensions of scaffolding and related theoretical

concepts for learning, education, and human activity. The Journal of the Learning

Sciences, 13(3), 423–451.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., &

Paterson, J. (2007). A survey of literature on the teaching of introductory programming.

Working group reports on ITiCSE on Innovation and technology in computer science

education (ITiCSE-WGR '07), Janet Carter and June Amillo (Eds.). ACM, New York,

NY, USA, 204-223.

Pearson. (2014). Pearson eCollege [computer software]. Centennial, CO.

Price, K. (2013). Using visual technologies in the introductory programming courses for

Computer Science majors. Unpublished doctoral dissertation, Nova Southeastern

University, Fort Lauderdale, FL.

Phillips, D. C. and Soltis, J. F. (2004). Perspectives on Learning (4th Ed.). New York: Teachers

College Press, 41-52.

Ramdass, D. (2012). The role of cognitive apprenticeship in learning science in a virtual world.

Cultural Studies of Science Education, 7(4), 985-992.

Ramo, J. & Vikberg, T. (2014). Extreme apprenticeship – Engaging undergraduate students on a

mathematics course. Proceedings of the 2014 Frontiers in Mathematics and Science

Education Research Conference, 26-33.

Reid, P. (2014). Categories for barriers to adoption of instructional technologies. Education and

Information Technologies, 19(2), 383-407.

159

Reigeluth, C. M., & Frick, T. W. (1999). Formative Research: A Methodology for Creating and

Improving Design Theories. In C. M. Reigeluth (Ed.), Instructional-Design Theories and

Models (633-651). Mahwah, NJ: Lawrence Erlbaum Assoc.

Restrepo, J. & Trefftz, H. (2005). Telepresence support for synchronous distance education.

Proceedings of the ACM Symposium on Virtual Reality Software and Technology, 63-67.

Rich, L., Perry, H., & Guzdial, M. (2004). A CS1 course designed to address interests of women,

Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education,

190-194.

Richey, R.C. (2005). Validating instructional design and development models. In J.M. Spector,

C. Ohrazda, A. Van Schaack, and D.A. Wiley (Eds.), Innovations in Instructional

Technology (171-185). Mahwah, NJ: Lawrence Erlbaum Assoc.

Richey, R.C. & Klein, J.D. (2007). Design and Development Research. Mahwah, NJ: Lawrence

Erlbaum Associates, Inc.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review

and discussion. Computer Science Education, 13(2), 137-172.

Robins, A. (2010). Learning edge momentum: A new account of outcomes in CS1. Computer

Science Education, 20(1), 37-71.

Rosenberg, M. (2003). Redefining e-learning. Performance Improvement, 42(3), 38-41.

Rountree, N., Rountree, J., Robins, A., & Hannah, R. (2004). Interacting factors that predict

success and failure in a CS1 course. Proceedings of the Annual Joint Conference

Integrating Technology into Computer Science Education, 101-104.

Soh, L. (2006). Incorporating an intelligent tutoring system into CS1. Proceedings of the 37th

SIGCSE Technical Symposium on Computer Science Education, 486-490.

Stevenson, D. and Wagner, P. (2006). Developing real-world programming assignments for CS1.

SIGCSE Bulletin – ACM, 38(3): 158-162.

Stone, J. & Clark, T. (2011). The impact of problem-oriented animated learning modules in a

CS1-style course. Proceedings of the 42nd SIGSCE Technical Symposium on Computer

Science Education, 51-56.

TechSmith. (2013). Jing [computer software]. Okemos, MI.

Thrun, S. (October, 2012). Democratizing higher education. Unpublished paper presented at The

18th Annual Sloan Consortium International Conference on Online Learning, October

10-12, Lake Buena Vista, FL.

160

Tierney, W. (2011). Too big to fail: The role of for-profit colleges and universities in American

higher education. The Magazine of Higher Learning, 43(6), 27-32.

Tillmann, N., de Halleux, J., Xie, T., Gulwani, S., & Bishop, J. (2013). Teaching and learning

programming and software engineering via interactive gaming. Proceedings of the 35th

International Conference on Software Engineering Education, 1117-1126.

Toff, R. (1955). Are we overprotecting our children in school, too? The Educational Forum,

19(2), 165-167.

Tracey, M. (2007). Design and development research: a model validation case. Educational

Technology Research & Development, 57(4), 553-571

Tracey, M. & Richey, R. (2007). ID model construction and validation: A multiple intelligences

case. Educational Technology Research & Development, 55(4), 369-390.

Tsang, J., Naughton, P., Leong, S., Hill, A., Kelly, C., & Leahy, A. (2008). Virtual reality

simulation in endovascular surgical training. The Royal Colleges of Surgeons of

Edinburgh and Ireland, 6, 214–220.

Turner, E., Albert, E., Turner, R., & Latour, L. (2007). Retaining majors through the introductory

sequence. Proceedings of the 38th SIGCSE Technical Symposium on Computer Science

Education, 24-28.

Valentine, D. W. (2004). CS educational research: a meta-analysis of SIGCSE technical

symposium proceedings. Proceedings of the 35th SIGCSE Technical Symposium on

Computer Science Education, 255-259.

Vincenti, G., Braman, J., & Hilberg, J. (2012). Teaching introductory programming through

reusable learning objects: A pilot study. Journal of Computing Sciences in Colleges,

28(3), 38-45.

Vilner, T., Zue, E., & Sagi, R. (2012). Integrating Video Components in CS1. Proceedings of the

43rd ACM SIGCSE Technical Symposium on Computer Science Education. Raleigh,

North Carolina, 123-128.

Vihavainen, A., Paksula, M., & Luukkainen, M. (2011) Extreme apprenticeship method in

teaching programming for beginners. Proceedings of the 42nd ACM Technical

Symposium on Computer Science Education, 93-98

Vihavainen, A., Paksula, M., Luukkainen, M. & Kurhila, J. (2011). Extreme Apprenticeship

method: Key practices and upward scalability. Proceedings of the 16th ACM Annual

Conference on Innovation and Technology in Computer Science Education. Darmstadt,

Germany, 273-277.

161

Vihavainen, A., Luukkainen, M. & Kurhila, J. (2012). Multi-faceted Support for MOOC in

Programming. Proceedings of the 13th ACM 13th Annual Conference on Information

Technology Education, 171-176.

Vihavainen, A., Vikberg, T., Luukkainen, M., & Partel, M. (2013) Scaffolding students’ learning

using Test My Code. Proceedings of the 18th Annual Conference on Innovation and

Technology in Computer Science Education, 117-122

Von Merrienboer, J. & Sweller, J. (2005). Cognitive load theory and complex learning: Recent

development and future directions. Educational Psychology Review, 17(2), 147-177.

Wang, C., Dong, L., Li, C., Zhang, W., & He, J. (2012). The reform of programming teaching

based on constructivism. Advances in Electric and Electronics. W. Hu (Ed.) Springer-

Verlag, Berlin-Heidelberg, 425-431.

Wass, R. Harland, T., and Mercer, A. (2011). Scaffolding critical thinking in the zone of

proximal development. Higher Education Research & Development, 30(3), 317–328.

Williams, L., Wiebe, E., Yang. K., Ferzli, M. & Miller, C. (2002). In support of pair

programming in the introductory computer science course. Computer Science Education,

12(3), 197-212.

Wortman, D. & Rheingans, P. (2007). Visualizing trends in student performance across

computer science courses. Proceedings of the 38th SIGCSE Technical Symposium on

Computer science Education, 430-434.

York, C. & Ertmer, P. (2011). Towards an understanding of instructional design heuristics: an

exploratory Delphi study. Educational Technology Research and Development, 59(6),

841-863.

Yoo, J., Yoo, S., Seo, S., Dong, Z., & Pettey, C. (2012). Can we teach algorithm development

skills? Proceedings of the 50th Southeast Conference of the ACM, Tuscaloosa, AL, 101-

105.

Yuliya, C., Zingaro, D., & Petersen, A. (2014). Identifying challenging CS1 concepts in a large

problem dataset. Proceedings of the 45th ACM Technical Symposium on Computer

Science Education, 695-700.

Zak, D. (2014). Programming with Microsoft Visual Basic 2012, (6th Ed.) Boston, MA: Cengage

Learning.

	Nova Southeastern University
	NSUWorks
	2014

	A Cognitive Apprenticeship Approach for Teaching Abstract and Complex Skills in an Online Learning Environment
	Reinaldo Fernandez
	Share Feedback About This Item
	NSUWorks Citation

	Paper Template

