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Abstract

Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in
quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are
not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth
environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific
growth condition. Here, we present a method to identify ‘‘phenotypic signatures’’ by time-frequency analysis of unbalanced
growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different
bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene
network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial
physiology and for the classification of bacterial strains.
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Introduction

Bacterial growth is influenced by environmental factors, such as

temperature, pH, and nutrient concentration [1–3]. When

bacteria are grown in environments with limited nutrients,

bacterial physiology can change considerably due to continually

changing environmental factors. As a result of such ‘‘unbalanced’’

growth, the instantaneous growth rates can fluctuate drastically

over time. These fluctuations are generally considered to be

undesirable in quantitative studies of bacterial physiology and gene

regulation. To limit these fluctuations, bacteria can instead be

incubated in balanced growth environments so that bacterial

physiology can be maintained at constant growth rates, which is

typically achieved by using a chemostat or by periodic dilution of

cultures [4]. Such growth environments, however, are neither

natural nor readily amendable for high-throughput screening of

bacterial physiology [5].

Instead, unbalanced growth is routinely used in high-through-

put analyses of bacterial phenotypes and genotypes. For instance,

knockout strains of Escherichia coli have been grown in batch

cultures supplemented with different carbon and nitrogen sources.

Here, the growth phenotypes of these bacterial strains were then

used to construct a coupled metabolic and gene regulatory

network [6]. Furthermore, E. coli strains from the Keio Collection

have been previously grown on agar plates supplemented with

different chemical stressors (i.e., drugs). From this analysis, the

colony sizes of each bacterial strain were then used to cluster genes

and drugs with similar functions [7]. Indeed, to increase the

resolution of such unbalanced growth assays, several technologies

have been used to study bacterial growth dynamics, including

microfluidics [8], microscopes [9], and spectroscopy [10].

Under well-controlled experimental conditions, the fluctuations

of growth rate during unbalanced growth are not random. Instead,

they reflect the interplay between bacterial physiology and the

growth environment: bacterial growth changes environmental

conditions, which in turn influences bacterial growth. In partic-

ular, these fluctuations could be considered as quantitative

phenotypes of bacteria under a specific growth condition

(Figure 1). In this study, we refer to such fluctuations as cell-

coupled perturbations.

The use of cell-coupled perturbations towards system identifi-

cation is under-appreciated. In contrast, several studies have used

controlled perturbations for system identification. For instance,

previous studies have shown that complex [11] or multiple [12]

input perturbations, as well as fluctuation resonance [13], can be

used to improve the identification of reaction parameters. In

addition, several studies have reconstructed cellular networks using

cellular noise [14–16]. Finally, experimentally driven oscillatory

stimuli have been used previously to reconstruct cellular pathways

[17].

To identify systems using cell-coupled perturbations, we aimed

to develop a set of empirical descriptors that capture growth
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dynamics by using wavelet transform [18]. Wavelet transform

serves to decompose growth dynamics into time-frequency

domains. Indeed, such decomposition has been used to analyze

temporal dynamics [19–21] and to deduce dynamic signatures for

system identification [22]. Furthermore, the decomposition can

filter out noise from signals based on their frequencies. In this

study, we take advantage of the decomposition to infer growth

models using both modeling and experiments. Our results have

implications for system identification, experimental design for

cellular perturbations, and high-throughput bacterial phenotyping,

with relevance for the diagnosis of infectious diseases [23].

Results

It is well established that appropriate perturbations can enhance

the identification of the system underlying experimental observa-

tions [11,17,24]. This notion has recently been applied to the

analysis of gene regulation, where either controlled or endogenous

perturbations (e.g., stochastic gene expression) have been exploited

to identify gene circuits [11,14–17,25]. In the context of

unbalanced growth, we hypothesized that the coupling between

growth rate fluctuations and the changing growth environment

would also facilitate system identification. To test this hypothesis,

we constructed random minimal models to implement such

coupling. Each model consists of four variables: three cellular

components and an input signal (Figure 2A, node N) that

represents a nutrient. While simple, these models can generate

non-trivial dynamics with appropriate feedback loops between the

cellular components [26].

To construct a minimal model, we generated six reaction links

to connect the three cellular components randomly (nodes P, Q

and R, Figure S1A) and generated random values for the system

parameters. Node P was set to receive either a constant input flux

or a cell-coupled input from the node N. We assumed that all

nodes were observable and that all initial conditions were the

same. Furthermore, we ensured that each of the links was not

repeated. With each model, we simulated two distinct conditions

by using either a constant or a cell-coupled signal. For each

condition, we then used temporal dynamics of three simulated

system variables to learn the system parameters. Using these

models, we tested if coupling of an input signal to cellular

components (cell-coupled signal) could generate more information

about the underlying models than a constant and uncoupled input

signal.

We used local parameter identifiability as a measure of

information encoded in the system output [27–29]. This metric

quantifies the likelihood of identifying an unknown parameter

correctly using fluctuations of system variables. To accomplish

this, we calculated local parameter identifiability by analyzing the

algebraic structures of the transfer function matrix of each model

[28,29]. Briefly, we calculated a Jacobian matrix (H) of transfer

functions (g) by differentiating g using each parameter. Next, we

calculated the correlation matrix R of H. Our analysis generates a

correlation matrix, where each element (21#Rij#1) measures the

correlation between two parameters (ki and kj). If Rij is close to 1 or

21, the two parameters are strongly correlated, which corre-

sponds to low parameter identifiability (Text S1). Applying this

method to an illustrative model (Figure S1A), we demonstrate that

a cell-coupled signal enabled the identification of all parameters.

With a constant signal, parameter k3 was not identifiable. To test

the generality of this observation, we generated 500 random

models, each containing six random edges and randomized

parameter values. For each model, we calculated the number of

identifiable parameters by using either a cell-coupled or a constant

signal. Our results show that cell-coupled signals significantly

increased the number of identified parameters as compared to

constant signals (Figure 2A).

We then investigated whether cell-coupled signals could improve

the identification of unknown reaction links between system

components in nonlinear models, which were generated using both

Figure 1. The analysis of unbalanced growth dynamics using wavelet transform. Unbalanced growth dynamics arise due to coupling
between bacterial physiology and the growth environment (left panel). Such fluctuations are typically neglected in quantitative studies of bacterial
growth but could be exploited as phenotype signatures using wavelet transform (middle panel). The signatures could be used to distinguish bacterial
strains and infer growth models (right panel).
doi:10.1371/journal.pcbi.1003751.g001

Author Summary

The measurement of bacterial growth in batch cultures is a
routine practice in microbiology. In these cultures, bacte-
rial growth rates drastically fluctuate over time due to the
continuously changing growth environment: changing
population size, accumulation of waste products, and
depletion of nutrients. Such ‘‘unbalanced’’ growth is
normally considered undesirable, which has led to the
design of methods to achieve balanced growth environ-
ments (i.e., chemostats). However, we have discovered that
unbalanced growth dynamics contain rich information
that can be exploited to deduce regulatory functions or to
classify cell strains or growth conditions. We further show
that this approach is generally applicable to temporal gene
expression data. Taken together, our method and results
have broad implications for system identification, experi-
mental design, and the study of cellular growth.

Phenotypic Signatures in Bacterial Growth
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mass action reactions and Michaelis-Menten reactions (Figure S1B).

To emulate a constant-input environment, node N was set at a

constant value. To emulate a cell-coupled input environment, we set

node N to be consumed by node P (NRP in Figure 2). We

simulated each ‘‘true’’ model using a random set of parameters. We

assumed that all nodes are observable. The simulation results were

augmented with 20% noise and used as the data to identify the

models. We estimated linear models using a standard linear

regression method [17,30] (Equation 1 & Figure S1C & D).

dy

dt
~Ay ð1Þ

where y represents the vector of molecular species, t represents time

(hour), and A represents the reaction matrix. Briefly, we first used

the regression method to generate a connectivity matrix A
(Equation 1), where each element (Aij) specifies the likelihood that

two variables are linked. We assumed they are linked when Aij.

0.005. Increasing the Aij threshold to 0.01 does not change our

conclusions. We then evaluated the accuracy of inference by using

the true model as the reference. Specifically, each original model

would have m ‘‘true’’ edges. Each estimated model would contain a

subset n of these true edges. We calculated the ratio n/m as the

metric of estimation accuracy. Based on the analysis of 500 random

models, we found that cell-coupled signals significantly improved

Figure 2. Unbalanced growth environments improve the identification of simple models. A. The difference of correctly estimated
parameters between cell-coupled (kunbalanced) and constant signals (kbalanced). Cell-coupled signals gave rise to overall higher parameter identifiability
than constant signals. We created 500 models with random edges between three nodes (left panel, P, Q, R). We then compared parameter
identifiability by using time series of N, Q, and R (right panel). Positive values indicate higher identifiability of parameters using cell-coupled signals.
Negative values indicate higher identifiability using constant signals. The red line indicates time series of a constant input signal. The blue line
represents time series of a cell-coupled signal. B. Histograms of the accuracy of estimated models using either constant or cell-coupled signals.
Models estimated using cell-coupled signals (red bars) have a higher accuracy as compared to models estimated using constant signals (grey bars).
Each histogram was calculated using 500 models.
doi:10.1371/journal.pcbi.1003751.g002

Phenotypic Signatures in Bacterial Growth

PLOS Computational Biology | www.ploscompbiol.org 3 August 2014 | Volume 10 | Issue 8 | e1003751



the accuracy of inference in comparison to constant signals

(Figure 2B).

These two analyses show that cell-coupled signals indeed

generate informative fluctuations in simple models that enhance

system identification. We then hypothesized that this notion is

applicable to the analysis of unbalanced bacterial growth. At a

crude level, different strains of the same bacterial species may be

governed by either the same cellular network with different

parameters or similar networks with minor differences in cellular

components and their interactions. A nutrient could be considered

as a cell-coupled signal in a batch culture. Under the same initial

growth condition, the distinct growth curves would then reflect the

different dynamics of the underlying networks (and the associated

parameters). Different strains can thus be classified according to

their growth curves. Based on the simulation analysis described

above, we hypothesized that unbalanced growth, in which cell-

coupled signals lead to fluctuations of a system variable (growth

rate), could improve such classification. Here, we used the growth

rate as the measured system variable because it could be easily

measured without introducing extrinsic reporters [31] and it most

faithfully reflects the interplay between bacterial physiology and

the growth environment [5].

To test this idea, we collected high-temporal-resolution growth

curves of six Escherichia coli strains, a Pseudomonas aeruginosa
strain, and an enterotoxigenic E. coli (ETEC) strain (Table S1), all

grown in batch cultures using M9 minimal media. Specific growth

rates were calculated using the central differences of optical

densities at each time point. For each growth curve, the specific

growth rates fluctuated drastically over time (Figure 3A & Figure

S2A). For comparison, we first calculated several conventional

metrics, including maximal growth rates, final OD, and summa-

tion of differences (Table S2). Each of these metrics describes a

specific aspect of a growth curve and is commonly reported in

microbiology experiments [5,32]. We found that each of these

conventional metrics by itself could not distinguish the bacterial

strains because mean values of each of these metrics were within

one standard deviation for at least two of the strains. The

fundamental limitation of these metrics is that they do not take full

advantage of the rich temporal information in each growth curve,

as reflected by the fluctuations in the specific growth rates.

Therefore, all subsequent analyses were based on the entire

growth curves.

We next transformed each time course of growth rates into the

time-frequency domain, which was unique for each strain

(Figure 3B & Figure S2B). All wavelet transform was performed

using the Daubechies (db4) wavelet unless otherwise noted. The

decomposition also separated random noise from signals by their

frequencies. Based on the decomposition, informative empirical

descriptors of growth dynamics could be extracted and used for

system identification [22,33]. We note that the advantages of

wavelet transform have been exploited in the analysis of heart

rhythm [19], the cell cycle [21], and metabolic pathways [20].

Here, we sought to determine the most informative wavelet

frequencies that could distinguish different bacterial strains. To

discover these frequencies, we used a hierarchical clustering

method that classifies all growth curves into groups based on the

average Euclidean distance between their wavelet coefficients. To

assess the performance of the clustering method, we calculated the

Davies–Bouldin score to assess the internal classification quality

[34]. The Davies-Bouldin score calculates the tightness of a cluster

by comparing the scattering of data within a cluster versus the

distance between centroids of two clusters: the smaller the score,

the more distinct are the clusters. We found that many wavelet

frequencies with small Davies–Bouldin scores (Figure S2C, score

,0.4) gave rise to clusters that correctly classify growth curves

according to bacterial strains (Figure 3C, period = 24.6 h). This

result suggests that the wavelet transform could filter and focus the

data on informative frequencies by suppressing random fluctua-

tions. We note that the use of raw growth curves resulted in the

mis-identification of one strain (Figure 3D & Figure S2D). In

addition, a bootstrap analysis shows that the wavelet-based

method produces fewer numbers of misclassified strains when

compared to using raw data (Figure S2E & F). These results

further corroborate the effectiveness of the wavelet-based ap-

proach in strain identification.

Next, we hypothesized that strain classification can be enhanced

by combining data measured in the presence of well-defined

perturbations (Figure S3 & Text S1). Specifically, we perturbed

bacterial growth by decreasing temperature, introducing a

metabolic burden using a plasmid [35], or decreasing the nutrient

concentration (Figure S3A & B, & Table S3). We concatenated

growth curves of each bacterial strain into one time series (Figure

S3C), which was used for strain identification. Indeed, the

combination of the perturbation results improved strain identifi-

cation by increasing the separation between clusters of MG1655z1

and BL21pro strains (Figure S3D). These analyses demonstrate

that unbalanced growth environments can indeed improve the

classification of bacterial strains.

In principle, our computational framework is applicable to the

identification of reaction links between any system variables using

cell-coupled signals. To test this, we analyzed growth curves of 66

E. coli knockout and wild-type strains under normal growth

conditions and when perturbed by infection with bacteriophage

lambda [36]. For each strain, we combined growth curves with

and without bacteriophage lambda infection to enhance strain

classification and then analyzed the data with our framework (Text

S1). Our analysis gave rise to a tight cluster of K12 wild type

strains (Figure 4). In addition, our framework clustered genes that

are involved in lamB regulation (lamB, malT, malI,& manZ),

which is involved in phage binding and transport [36]. Our

framework also clustered genes involved in lipopolysaccharide

synthesis (rfaE, rfaD, rfaF,& rfaC), which may be involved in

phage transport [36]. We note that the two groups of genes could

not be separated in a previous study that used raw growth curves

without wavelet transform [36].

In addition to growth curves, our method can be applied to

other system readouts with sufficient temporal fluctuations, such as

gene expression. We first identified a rich dataset [37] that consists

of high resolution of gene expression profiles from 1920 promoters

in E. coli measured under six different conditions: glucose, no

glucose, no amino acids, no phosphate, no nitrogen, and with

ethanol. This dataset was used in the previous study to analyze

promoter activities in different growth conditions. The authors

found that expression levels of the translational machinery tightly

follow growth rates. They proposed a model that accounts for

resource distribution among promoters. In addition to the analysis

of translational machinery, the dataset could also be used to

identify correlations between promoters. Correlation between

expression profiles is often used to infer regulatory strengths

between transcription factors and DNA promoters [38,39]. Here,

we aimed to apply our wavelet-based approach to identify

correlations between promoters using this dataset.

Since each growth condition in the dataset would represent a

unique set of cell-coupled perturbations, we hypothesized that we

could combine the data to estimate correlations between

promoters. Each gene expression profile was transformed into

the time-frequency domain. Next, we calculated the summation of

wavelet coefficients at each frequency (Ctotal,f) and time point

Phenotypic Signatures in Bacterial Growth
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(Ctotal,t) (Figure S4A). We then identified the frequency and time

point that exhibited the highest values of Ctotal. Therefore, each

gene expression profile is represented by only two features, which

would speed up the following clustering analysis.

To facilitate the comparison of our results with literature data,

we focused on promoters that are regulated by RpoH (identified

using RegulonDB [40]), the master regulator of the heat shock

response in E. coli. We chose this series of promoters because it is a

well-studied pathway that protects bacteria from environmental

stress [41]. Specifically, we asked if our wavelet-based method

could identify RpoH-regulated promoters that are highly corre-

lated using expression profiles of promoters across different growth

conditions.

Indeed, our approach clustered promoters that are highly

correlated with RpoH (Text S1, Figure S4). The classification

provided a hierarchical view of the correlation strengths between

promoters. For instance, expression profiles of both lon and clpP
are highly correlated to that of rpoH. However, expression profiles

Figure 3. Unbalanced growth environments give rise to rich perturbations. A. A typical growth curve of MG1655z1 bacterial strain. Grey
crosses represent original data. The black line represents the denoised growth curve using the ‘‘wden’’ function in Matlab with a Daubechies (db4)
wavelet, a soft universal threshold and no rescaling. B. Wavelet transform of the raw growth curve (a) using a Daubechies (db4) wavelet. The heat
map shows the amplitudes at each specific period and time-point. The black box indicates the range of periods that did not generate tight clusters of
bacterial strains (Figure S2C). C. Classification of bacterial strains using the corresponding wavelet transforms. All bacterial strains were classified
correctly. mg = MG1655z1, dpro = DH5aPro, pao = PAO1, mds = MDS42, bpro = BL21Pro, etec = ETEC, jm109 = JM109, top 10 = Top10. All data was
classified using the standard hierarchical clustering algorithm in Matlab with the average Euclidean distance as the metric. D. Classification of
bacterial strains using the raw growth curves. One strain was classified incorrectly, as indicated by the red arrow.
doi:10.1371/journal.pcbi.1003751.g003

Phenotypic Signatures in Bacterial Growth
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Figure 4. Analysis of bacteriophage lambda infection dynamics. Classification of bacterial knockout strains using unbalanced growth
dynamics perturbed by the infection of bacteriophage lambda. Wild type K12 strains were classified into one tight cluster (left panel). Furthermore,
two clusters associated with either lipopolysaccharide synthesis or LamB regulation were identified by distinct clusters. Each distinct cluster is
represented by the same color in the tree. The right panel shows the corresponding phenotypic signatures of each strain.
doi:10.1371/journal.pcbi.1003751.g004

Phenotypic Signatures in Bacterial Growth
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of dnaJ, dnaK, and clpX are less correlated to that of rpoH (Figure

S4B). These results suggest that the expression of lon and clpP
might be regulated strongly by RpoH, while the expression of

dnaJ, dnaK, and clpX might not be regulated solely by RpoH.

Since our results are based solely on the correlation of expression

profiles, we sought to evaluate our results with a previous study

that analyzed binding strengths of RpoH to promoters using

ChIP-on-chip assays [42]. Indeed, ten of the closely clustered

promoters in our results exhibited high consensus sequence of

RpoH binding sites (Figure S4C) when compared to the ChIP-on-

chip assays. Therefore, our framework produces correlation

strengths between promoters that are on par with more labor-

intensive and expensive ChIP-on-chip methods.

Thus far, our analysis indicates that the growth rate fluctuations

during unbalanced growth can effectively classify bacterial strains,

growth conditions, and genes within the same pathways. Since our

analyses suggest that cell-coupled signals can lead to better system

identification (Figure 1 & 2), we hypothesized that growth rate

fluctuations could be used to infer a minimal gene network that

could account for dominant features of the growth dynamics. To

test this hypothesis, we attempted to identify parsimonious growth

models by using a swarm algorithm, which has been shown to

converge rapidly towards global minimal solutions (Figure 5A &

Text S1) [43]. A swarm algorithm is a stochastic optimization

method inspired by natural evolution [44,45]. It is based on

heuristic search procedures that incorporate random variation and

selection. Specifically, it simulates a social behavior where each

individual in a swarm adjusts its evolution according to its own

evolution experience and the evolution experience of other

individuals [46]. The key to the success of this optimization strategy

is information sharing between individuals to attain a common goal.

We adapted the swarm algorithm to evolve models by randomly

selecting and combining basic equation components and kinetic

parameters (Text S1). Specifically, we chose 12 basic equation

components that consisted of either polynomials or Michaelis-

Menten type equations, which cover commonly used formulations

of reaction kinetics, including the power law, mass action, and

enzymatic kinetics. The algorithm then created a population of

bacterial growth models, each consisting of a specific combination

of the equation components. For each population, the algorithm

created individuals with randomly generated kinetic parameters.

Next, the algorithm evaluated the individuals and identified the

parameter set that gave rise to the best fit to the input data. The

algorithm then evolved the other individuals based on the best

parameter set. After a predefined number of iterations, the

algorithm identified the best model and evolved the other models

accordingly.

To constrain our search space, we made two simplifying

assumptions. First, we assumed that bacterial growth was limited

by a single substrate, which is consistent with the use of minimal

growth media in our experiments. Second, we only considered a

three-variable model, which can generate sufficiently complex

dynamics to capture the dominant features of the experimental data.

Our search algorithm revealed a model that could fit all

observed growth dynamics by appropriate parameterization

(Equations 2–5). The average error per time-point is

,0.01 hour21, which is close to the readability value of our

instrumentation suggesting a high goodness of fit.

dG

dt
~{k1Gk2 Qk3{k4Gk5z

k6

k7zNk9

1

k8zQk10

zk11Nk12 Qk13{k14Gk15

ð2Þ

dN

dt
~{k11Nk12 Qk13zk14Gk15 ð3Þ

dP

dt
~k1Gk2 Qk3zk4Gk5 ð4Þ

dQ

dt
~

k16

k17zNk19

1

k18zQk20
{k1Gk2 Qk3{k11Nk12 Qk13 ð5Þ

where G represents a molecular species that modulates the growth

rate, N represents the nutrient, P & Q represent two groups of

molecular species, and ki represents parameters that are optimized

by the search algorithm. Parameter values of the optimized model

are listed in Table S4. We assumed that node G directly modulates

the growth rate with a proportionality constant of one.

This network consists of coupled positive and negative feedback

loops (Figure 5B), which makes intuitive sense. Positive feedback

loops can introduce a time-delay in the rise of the growth rate, but

can then rapidly increase the growth rate after the time-delay.

Negative feedback loops can maintain homeostasis of the growth

rate. To further test the inferred model, we perturbed it by either

increasing metabolic burden due to plasmid load or decreasing

reaction rates due to low growth temperature. Specifically, plasmid

load was simulated by increasing k4 to 1.2 (Equation 2–5 & Table

S4) and a lower growth temperature was simulated by reducing all

of the kinetic constants by 30%. The perturbed model gave rise to

results (Figure S5) that agree with the qualitative trends of our

experimental results (Figure S3A). With plasmid load, the

maximum growth rate is decreased and the entry time to

stationary phase is maintained. With a lower growth temperature,

the maximum growth rate is decreased and the entry time to

stationary phase is extended.

These results show that unbalanced growth data can indeed be

used to propose network motifs underlying growth dynamics. We

note that our method could theoretically be extended to include

more constraints and data that tend to improve model identifi-

cation because the method is capable of handling multiple

objectives and constraints.

Discussion

In summary, our results demonstrate that unbalanced bacterial

growth can provide rich information that facilitates network

inference or classification of bacterial strains. The ability to

distinguish microorganisms quickly is of critical importance in

several fields including medicine, agriculture and biotechnology.

Our approach relies on a simple growth assay and as such may

offer a simpler and complimentary approach to current methods

[5]. Current approaches of bacterial identification rely primarily

on analysis of rRNA sequences that cannot differentiate between

different strains of a species [47,48]. Along this line, our method

serves as an alternative that enables high throughput, strain-level

phenotyping of bacteria. The ability of our framework to identify

certain genes involved in the same cellular pathways may allow the

identification of previously overlooked cellular components that

contribute to the dynamics of a single network. Finally, our results

may have value for improving experimental design in the study of

cellular dynamics and gene regulation by allowing for more

accurate and efficient construction of predictive models that are

useful in suggesting hypotheses and exploring the likely effects of

experimental interventions.
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Materials and Methods

For each bacterial strain, a single frozen stock was used to

inoculate growth medium. We plated the frozen stock on LB agar

plates and then randomly picked bacteria colonies for experi-

ments. LB medium was used to prepare overnight cultures in

37uC. After ,16 hours growth, the overnight cultures were

diluted 100-fold again into fresh LB media to prepare the 2nd

batch of overnight cultures. The 2nd batch of overnight cultures

was diluted 100-fold into minimal M9 medium, supplemented

with specific percentages of glucose and casamino acids (Table S3).

Bacteria were grown in 200 ml of medium covered by 50 ml

mineral oil (Sigma Aldrich, MO) in 96-well microplates at the

specified temperature in a VICTOR 3 microplate reader (Perkin

Elmer, MA). The microplates were shaken and measured at

10 minutes intervals. We did not observe significant media

evaporation during the experimental duration. We also did not

observe cross-contamination from neighboring wells. See Text S1

for additional details on Methods and Materials in this study.

Supporting Information

Figure S1 Minimal models for the comparison of
information content. A. A framework to measure parameter

Figure 5. Reverse engineering of a growth model using the wavelet transform. A. The flowchart of a swarm algorithm that identifies
growth models using the wavelet transform. The algorithm stochastically evolves growth models by combining different equation components and
parameters. See detailed algorithm description in Text S1. B. An identified model (left panel) using unbalanced growth dynamics of four bacterial
strains: MG1655z1 (mg), DH5aPro (dpro), BL21Pro (bpro), and MDS (mds) (right panel). The model can explain growth curves of the four bacterial
strains with distinct growth dynamics. In the left panel, green lines represent activation while red lines represent repression. In the right panel, grey
cross hairs represent original data. The black lines represent simulated data using the model.
doi:10.1371/journal.pcbi.1003751.g005
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identifiability. For simplicity, we created models using linear flux

equations. A model was transformed using Laplace transform,

followed by calculation of its transfer function. The transfer

function was used to calculate identifiability of each parameter,

which yielded a correlation matrix between the parameters.

Correlation factors close to either 1 or 21 indicate high

correlation, hence low identifiability. For a sample model, four

parameters were identifiable using a constant input (with fixed

nutrient levels, red box). In contrast, all five parameters were

identifiable using a cell-coupled input (blue box). The red line

represents time series of a constant input signal. The blue line

represents time series of a cell-coupled signal. B. Components of

the minimal models. We constructed nonlinear models using flux

reactions (green lines), positive regulation loops (blue lines), and

negative regulation loops (red lines). We also included multiplica-

tive reactions of two molecular species. C. An example of a model.

Lines as described in (B). D. An estimated linear model (top panel,

matrix A in Eq. S1) and the corresponding system dynamics

(bottom panel). We estimated a linear model (top panel) using the

resulting temporal dynamics from (B) (bottom panels). A blue line

represents N. A green line represents P. A red line represents Q. A

cyan line represents R.

(TIFF)

Figure S2 Wavelet transform of bacterial growth rate
curves. A. Sample growth rate curves of seven bacterial strains.

mg = MG1655z1, dpro = DH5aPro, pao = PAO1, mds = MDS42,

bpro = BL21Pro, etec = ETEC, jm109 = JM109, top 10 = Top10.

B. Wavelet transform of the bacterial strains. C. Davies-Bouldin

scores at different wavelet periods. This metric was used to assess

clustering quality. A lower score indicates better separation of

clusters. D. Classification of growth rate curves into respective

groups using the results from Figure 3C & D. The top panels show

the classification results using raw growth data and the bottom

panels show the classification results using wavelet transform. Red

labels indicate growth curves that were mis-classified into the

wrong groups. MG = MG1655z1, Dpro = DH5aPro, PAO = -

PAO1, MDS = MDS42, Bpro = BL21Pro, ETEC = ETEC,

JM109 = JM109, Top10 = Top10. E. Histogram of misclassified

strains using the wavelet-based method. A bootstrap method was

used to remove one sample at a time for the clustering analysis.

The wavelet method correctly classified all strains, except in one

instance of the bootstrap samples. F. Histogram of misclassified

strains using raw data. The clustering analysis classified all strains

correctly in only one instance of the bootstrap samples.

(TIFF)

Figure S3 Time series multiplexing for enhanced iden-
tification of bacterial strains. A. Growth rates of MG1655z1

over time. MG1655z1 was subjected to five experimental

perturbations: plasmid load (black line), lower incubation temper-

ature (black dotted line), and lower nutrient (black dashed line).

See Table S3 for detailed experimental setup. B. Growth rates of

BL21Pro over time. BL21Pro was subjected to the same

experimental perturbations as (A). C. Multiplex growth rates of

MG1655z1. Growth curves in four different experimental

conditions were multiplexed into one single growth curve. The

multiplexed growth curve was used for strain identification in (D).

D. Classification of BL21Pro and MG1655z1 using either the

control or the multiplex growth curves. The multiplex growth

curves significantly increased the separation between BL21Pro and

MG1655z1, which suggests that they could be better identified in

experiments.

(TIFF)

Figure S4 Applying the computational framework to
gene expression data. A. Wavelet transforms of a time series of

gene expression levels. Each expression profile was transformed

into the wavelet domain, which gives rise to two wavelet features.

The two wavelet features correspond to the time and period when

the sum of wavelet coefficients is the highest, as indicated by the

peak in the top and right panels. B. Classification of promoters

that are regulated by RpoH across six experimental conditions [8].

Only a subset of promoters is classified together with rpoH (red

color lines), suggesting that they share close dynamical similarity

with RpoH. These promoters could be regulated more strongly by

RpoH. A red arrow indicates the position of rpoH. The box on the

right indicates the signature heatmap of each promoter. Each row

of the signature heatmap represents the feature vector of each

promoter. The feature vector consists of a concatenation of two

features for each growth condition (from left to right: glucose, no

glucose, no amino acids, no nitrogen, no phosphate, and with

ethanol). C. Consensus sequences of 235 and 210 promoter

regions for genes that cluster close (indicate by a * in panel B) or

far (indicated by a # in panel B) from rpoH. In addition, we used

high scoring and low scoring 235 and 210 consensus sequences

from a ChIP-on-chip study of rpoH [6]. We compared these

consensus sequences to the functional consensus sequence that was

previously identified [5]. Changes in the functional consensus

sequence have been shown to reduce transcription of downstream

genes. Overall, we found that genes that clustered closer to rpoH,

as well as those with high ChIP-on-chip scores, had a consensus

sequence that was more similar to the functional consensus

sequence than those that clustered farther away (and those with

lower ChIP-on-chip scores).

(TIFF)

Figure S5 Perturbation of the estimated growth model.
Predicted growth rates using the estimated model (Fig. 3B). To test

the predictive power of the estimated growth model, we emulated

either plasmid load or a lower growth temperature by modifying

system parameters (Equation 2–5). To emulate plasmid load, k4

was increased to 1.2 (Equation 2–5 & Table S4). To emulate a

lower growth temperature, all kinetic constants were reduced by

30%. The predicted results agree qualitatively with our experi-

mental results (Fig. S3A). Specifically, with plasmid load,

maximum growth rates decrease, but the overall growth rate

profile is similar between unperturbed and perturbed cells. With a

lower growth temperature, maximum growth rates decrease and

perturbed cells reach stationary phase later than the unperturbed

cells.

(TIFF)

Table S1 Genotypes of bacteria used in this study
(Figure 3 & Figure S2). The detailed genotypes and sources

of bacterial strains used in the study.

(DOCX)

Table S2 Growth metrics extracted from bacterial
growth curves (Figure 3). We extracted three growth metrics

from growth curves: maximum growth rate, final optical density

(OD), and summation of differences. The indicated bacterial

strains could not be distinguished by these metrics.

(DOCX)

Table S3 Experimental conditions of each perturbation
(Figure S3). We used four culture conditions to perturb bacterial

growth. Each culture condition perturbs one of three parameters:

plasmid load, culture temperature, or nutrient concentration.

(DOCX)
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Table S4 Kinetic constants of Equations 2–5. Parameters

were identified using the swarm algorithm for the best fit of

bacterial growth curves.

(DOCX)

Text S1 The supporting information contains support-
ing methods, supporting results, Figures S1, S2, S3, S4,
S5, and Tables S1, S2, S3, S4.

(DOCX)
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